1
|
Sugiura M, Kimura M, Shimamoto N, Takegawa Y, Nakamura M, Koyama K, Sellés J, Boussac A, Rutherford AW. Tuning of the Chl D1 and Chl D2 properties in photosystem II by site-directed mutagenesis of neighbouring amino acids. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149013. [PMID: 37717932 DOI: 10.1016/j.bbabio.2023.149013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Photosystem II is the water/plastoquinone photo-oxidoreductase of photosynthesis. The photochemistry and catalysis occur in a quasi-symmetrical heterodimer, D1D2, that evolved from a homodimeric ancestor. Here, we studied site-directed mutants in PSII from the thermophilic cyanobacterium Thermosynechoccocus elongatus, focusing on the primary electron donor chlorophyll a in D1, ChlD1, and on its symmetrical counterpart in D2, ChlD2, which does not play a direct photochemical role. The main conserved amino acid specific to ChlD1 is D1/T179, which H-bonds the water ligand to its Mg2+, while its counterpart near ChlD2 is the non-H-bonding D2/I178. The symmetrical-swapped mutants, D1/T179I and D2/I178T, and a second ChlD2 mutant, D2/I178H, were studied. The D1 mutations affected the 686 nm absorption attributed to ChlD1, while the D2 mutations affected a 663 nm feature, tentatively attributed to ChlD2. The mutations had little effect on enzyme activity and forward electron transfer, reflecting the robustness of the overall enzyme function. In contrast, the mutations significantly affected photodamage and protective mechanisms, reflecting the importance of redox tuning in these processes. In D1/T179I, the radical pair recombination triplet on ChlD1 was shared onto a pheophytin, presumably PheD1 and the detection of 3PheD1 supports the proposed mechanism for the anomalously short lifetime of 3ChlD1; e.g. electron transfer quenching by QA- of 3PheD1 after triplet transfer from 3ChlD1. In D2/I178T, a charge separation could occur between ChlD2 and PheD2, a reaction that is thought to occur in ancestral precursors of PSII. These mutants help understand the evolution of asymmetry in PSII.
Collapse
Affiliation(s)
- Miwa Sugiura
- Proteo-Science Research Center, Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| | - Masaya Kimura
- Proteo-Science Research Center, Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Naohiro Shimamoto
- Proteo-Science Research Center, Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Yuki Takegawa
- Proteo-Science Research Center, Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Makoto Nakamura
- Proteo-Science Research Center, Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kazumi Koyama
- Proteo-Science Research Center, Department of Chemistry, Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Julien Sellés
- Institut de Biologie Physico-Chimique, UMR CNRS 7141 and Sorbonne Université, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Alain Boussac
- Institut de Biologie Intégrative de la Cellule, UMR9198, CEA Saclay, 91191 Gif-Sur-Yvette, France.
| | | |
Collapse
|
2
|
Nguyen HH, Song Y, Maret EL, Silori Y, Willow R, Yocum CF, Ogilvie JP. Charge separation in the photosystem II reaction center resolved by multispectral two-dimensional electronic spectroscopy. SCIENCE ADVANCES 2023; 9:eade7190. [PMID: 37134172 PMCID: PMC10156117 DOI: 10.1126/sciadv.ade7190] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The photosystem II reaction center (PSII RC) performs the primary energy conversion steps of oxygenic photosynthesis. While the PSII RC has been studied extensively, the similar time scales of energy transfer and charge separation and the severely overlapping pigment transitions in the Qy region have led to multiple models of its charge separation mechanism and excitonic structure. Here, we combine two-dimensional electronic spectroscopy (2DES) with a continuum probe and two-dimensional electronic vibrational spectroscopy (2DEV) to study the cyt b559-D1D2 PSII RC at 77 K. This multispectral combination correlates the overlapping Qy excitons with distinct anion and pigment-specific Qx and mid-infrared transitions to resolve the charge separation mechanism and excitonic structure. Through extensive simultaneous analysis of the multispectral 2D data, we find that charge separation proceeds on multiple time scales from a delocalized excited state via a single pathway in which PheoD1 is the primary electron acceptor, while ChlD1 and PD1 act in concert as the primary electron donor.
Collapse
Affiliation(s)
- Hoang H Nguyen
- Department of Physics and Biophysics, University of Michigan, 450 Church St., Ann Arbor, MI 48109, USA
| | - Yin Song
- Department of Physics and Biophysics, University of Michigan, 450 Church St., Ann Arbor, MI 48109, USA
- School of Optics and Photonics, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Elizabeth L Maret
- Department of Physics and Biophysics, University of Michigan, 450 Church St., Ann Arbor, MI 48109, USA
| | - Yogita Silori
- Department of Physics and Biophysics, University of Michigan, 450 Church St., Ann Arbor, MI 48109, USA
| | - Rhiannon Willow
- Department of Physics and Biophysics, University of Michigan, 450 Church St., Ann Arbor, MI 48109, USA
| | - Charles F Yocum
- Department of Molecular, Cellular and Developmental Biology and Department of Chemistry, University of Michigan, 450 Church St, Ann Arbor, MI 48109, USA
| | - Jennifer P Ogilvie
- Department of Physics and Biophysics, University of Michigan, 450 Church St., Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Tamura H, Saito K, Ishikita H. The origin of unidirectional charge separation in photosynthetic reaction centers: nonadiabatic quantum dynamics of exciton and charge in pigment-protein complexes. Chem Sci 2021; 12:8131-8140. [PMID: 34194703 PMCID: PMC8208306 DOI: 10.1039/d1sc01497h] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/03/2021] [Indexed: 11/21/2022] Open
Abstract
Exciton charge separation in photosynthetic reaction centers from purple bacteria (PbRC) and photosystem II (PSII) occurs exclusively along one of the two pseudo-symmetric branches (active branch) of pigment-protein complexes. The microscopic origin of unidirectional charge separation in photosynthesis remains controversial. Here we elucidate the essential factors leading to unidirectional charge separation in PbRC and PSII, using nonadiabatic quantum dynamics calculations in conjunction with time-dependent density functional theory (TDDFT) with the quantum mechanics/molecular mechanics/polarizable continuum model (QM/MM/PCM) method. This approach accounts for energetics, electronic coupling, and vibronic coupling of the pigment excited states under electrostatic interactions and polarization of whole protein environments. The calculated time constants of charge separation along the active branches of PbRC and PSII are similar to those observed in time-resolved spectroscopic experiments. In PbRC, Tyr-M210 near the accessary bacteriochlorophyll reduces the energy of the intermediate state and drastically accelerates charge separation overcoming the electron-hole interaction. Remarkably, even though both the active and inactive branches in PSII can accept excitons from light-harvesting complexes, charge separation in the inactive branch is prevented by a weak electronic coupling due to symmetry-breaking of the chlorophyll configurations. The exciton in the inactive branch in PSII can be transferred to the active branch via direct and indirect pathways. Subsequently, the ultrafast electron transfer to pheophytin in the active branch prevents exciton back transfer to the inactive branch, thereby achieving unidirectional charge separation.
Collapse
Affiliation(s)
- Hiroyuki Tamura
- Department of Applied Chemistry, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8654 Japan
- Research Center for Advanced Science and Technology, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8904 Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8654 Japan
- Research Center for Advanced Science and Technology, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8904 Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8654 Japan
- Research Center for Advanced Science and Technology, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8904 Japan
| |
Collapse
|
4
|
Müh F, Zouni A. Structural basis of light-harvesting in the photosystem II core complex. Protein Sci 2020; 29:1090-1119. [PMID: 32067287 PMCID: PMC7184784 DOI: 10.1002/pro.3841] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022]
Abstract
Photosystem II (PSII) is a membrane-spanning, multi-subunit pigment-protein complex responsible for the oxidation of water and the reduction of plastoquinone in oxygenic photosynthesis. In the present review, the recent explosive increase in available structural information about the PSII core complex based on X-ray crystallography and cryo-electron microscopy is described at a level of detail that is suitable for a future structure-based analysis of light-harvesting processes. This description includes a proposal for a consistent numbering scheme of protein-bound pigment cofactors across species. The structural survey is complemented by an overview of the state of affairs in structure-based modeling of excitation energy transfer in the PSII core complex with emphasis on electrostatic computations, optical properties of the reaction center, the assignment of long-wavelength chlorophylls, and energy trapping mechanisms.
Collapse
Affiliation(s)
- Frank Müh
- Department of Theoretical Biophysics, Institute for Theoretical Physics, Johannes Kepler University Linz, Linz, Austria
| | - Athina Zouni
- Humboldt-Universität zu Berlin, Institute for Biology, Biophysics of Photosynthesis, Berlin, Germany
| |
Collapse
|
5
|
Absorption-energy calculations of chlorophyll a and b with an explicit solvent model. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
Gelzinis A, Abramavicius D, Ogilvie JP, Valkunas L. Spectroscopic properties of photosystem II reaction center revisited. J Chem Phys 2017; 147:115102. [DOI: 10.1063/1.4997527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Andrius Gelzinis
- Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio 9-III, 10222 Vilnius, Lithuania
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Sauletekio 3, 10257 Vilnius, Lithuania
| | - Darius Abramavicius
- Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio 9-III, 10222 Vilnius, Lithuania
| | - Jennifer P. Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Leonas Valkunas
- Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio 9-III, 10222 Vilnius, Lithuania
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Sauletekio 3, 10257 Vilnius, Lithuania
| |
Collapse
|
7
|
Müh F, Plöckinger M, Renger T. Electrostatic Asymmetry in the Reaction Center of Photosystem II. J Phys Chem Lett 2017; 8:850-858. [PMID: 28151674 DOI: 10.1021/acs.jpclett.6b02823] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The exciton Hamiltonian of the chlorophyll (Chl) and pheophytin (Pheo) pigments in the reaction center (RC) of photosystem II is computed based on recent crystal structures by using the Poisson-Boltzmann/quantum-chemical method. Computed site energies largely confirm a previous model inferred from fits of optical spectra, in which ChlD1 has the lowest site energy, while that of PheoD1 is higher than that of PheoD2. The latter assignment has been challenged recently under reference to mutagenesis experiments. We argue that these data are not in contradiction to our results. We conclude that ChlD1 is the primary electron donor in both isolated RCs and intact core complexes at least at cryogenic temperatures. The main source of asymmetry in site energies is the charge distribution in the protein. Because many small contributions from various structural elements have to be taken into account, it can be assumed that this asymmetry was established in evolution by global optimization of the RC protein.
Collapse
Affiliation(s)
- Frank Müh
- Institute of Theoretical Physics, Department of Theoretical Biophysics, Johannes Kepler University Linz , Altenberger Strasse 69, AT-4040 Linz, Austria
| | - Melanie Plöckinger
- Institute of Theoretical Physics, Department of Theoretical Biophysics, Johannes Kepler University Linz , Altenberger Strasse 69, AT-4040 Linz, Austria
| | - Thomas Renger
- Institute of Theoretical Physics, Department of Theoretical Biophysics, Johannes Kepler University Linz , Altenberger Strasse 69, AT-4040 Linz, Austria
| |
Collapse
|
8
|
Zabelin AA, Neverov KV, Krasnovsky AA, Shkuropatova VA, Shuvalov VA, Shkuropatov AY. Characterization of the low-temperature triplet state of chlorophyll in photosystem II core complexes: Application of phosphorescence measurements and Fourier transform infrared spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:782-8. [PMID: 27040752 DOI: 10.1016/j.bbabio.2016.03.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 10/21/2022]
Abstract
Phosphorescence measurements at 77 K and light-induced FTIR difference spectroscopy at 95 K were applied to study of the triplet state of chlorophyll a ((3)Chl) in photosystem II (PSII) core complexes isolated from spinach. Using both methods, (3)Chl was observed in the core preparations with doubly reduced primary quinone acceptor QA. The spectral parameters of Chl phosphorescence resemble those in the isolated PSII reaction centers (RCs). The main spectral maximum and the lifetime of the phosphorescence corresponded to 955±1 nm and of 1.65±0.05 ms respectively; in the excitation spectrum, the absorption maxima of all core complex pigments (Chl, pheophytin a (Pheo), and β-carotene) were observed. The differential signal at 1667(-)/1628(+)cm(-1) reflecting a downshift of the stretching frequency of the 13(1)-keto C=O group of Chl was found to dominate in the triplet-minus-singlet FTIR difference spectrum of core complexes. Based on FTIR results and literature data, it is proposed that (3)Chl is mostly localized on the accessory chlorophyll that is in triplet equilibrium with P680. Analysis of the data suggests that the Chl triplet state responsible for the phosphorescence and the FTIR difference spectrum is mainly generated due to charge recombination in the reaction center radical pair P680(+)PheoD1(-), and the energy and temporal parameters of this triplet state as well as the molecular environment and interactions of the triplet-bearing Chl molecule are similar in the PSII core complexes and isolated PSII RCs.
Collapse
Affiliation(s)
- Alexey A Zabelin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russian Federation
| | - Konstantin V Neverov
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninskii pr., 33, Moscow 119071, Russian Federation; Biology Department, M.V. Lomonosov Moscow State University, Vorobyovy Gory, Moscow 119992, Russian Federation
| | - Alexander A Krasnovsky
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninskii pr., 33, Moscow 119071, Russian Federation; Biology Department, M.V. Lomonosov Moscow State University, Vorobyovy Gory, Moscow 119992, Russian Federation
| | - Valentina A Shkuropatova
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russian Federation
| | - Vladimir A Shuvalov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russian Federation
| | - Anatoly Ya Shkuropatov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russian Federation.
| |
Collapse
|
9
|
Zabelin AA, Shkuropatova VA, Shkuropatov AY, Shuvalov VA. Temperature dependence of light-induced absorbance changes associated with chlorophyll photooxidation in manganese-depleted core complexes of photosystem II. BIOCHEMISTRY (MOSCOW) 2015; 80:1279-87. [DOI: 10.1134/s0006297915100089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Chen J, Kell A, Acharya K, Kupitz C, Fromme P, Jankowiak R. Critical assessment of the emission spectra of various photosystem II core complexes. PHOTOSYNTHESIS RESEARCH 2015; 124:253-265. [PMID: 25832780 DOI: 10.1007/s11120-015-0128-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
We evaluate low-temperature (low-T) emission spectra of photosystem II core complexes (PSII-cc) previously reported in the literature, which are compared with emission spectra of PSII-cc obtained in this work from spinach and for dissolved PSII crystals from Thermosynechococcus (T.) elongatus. This new spectral dataset is used to interpret data published on membrane PSII (PSII-m) fragments from spinach and Chlamydomonas reinhardtii, as well as PSII-cc from T. vulcanus and intentionally damaged PSII-cc from spinach. This study offers new insight into the assignment of emission spectra reported on PSII-cc from different organisms. Previously reported spectra are also compared with data obtained at different saturation levels of the lowest energy state(s) of spinach and T. elongatus PSII-cc via hole burning in order to provide more insight into emission from bleached and/or photodamaged complexes. We show that typical low-T emission spectra of PSII-cc (with closed RCs), in addition to the 695 nm fluorescence band assigned to the intact CP47 complex (Reppert et al. J Phys Chem B 114:11884-11898, 2010), can be contributed to by several emission bands, depending on sample quality. Possible contributions include (i) a band near 690-691 nm that is largely reversible upon temperature annealing, proving that the band originates from CP47 with a bleached low-energy state near 693 nm (Neupane et al. J Am Chem Soc 132:4214-4229, 2010; Reppert et al. J Phys Chem B 114:11884-11898, 2010); (ii) CP43 emission at 683.3 nm (not at 685 nm, i.e., the F685 band, as reported in the literature) (Dang et al. J Phys Chem B 112:9921-9933, 2008; Reppert et al. J Phys Chem B 112:9934-9947, 2008); (iii) trap emission from destabilized CP47 complexes near 691 nm (FT1) and 685 nm (FT2) (Neupane et al. J Am Chem Soc 132:4214-4229, 2010); and (iv) emission from the RC pigments near 686-687 nm. We suggest that recently reported emission of single PSII-cc complexes from T. elongatus may not represent intact complexes, while those obtained for T. elongatus presented in this work most likely represent intact PSII-cc, since they are nearly indistinguishable from emission spectra obtained for various PSII-m fragments.
Collapse
Affiliation(s)
- Jinhai Chen
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA
| | | | | | | | | | | |
Collapse
|
11
|
Frankcombe TJ. Explicit calculation of the excited electronic states of the photosystem II reaction centre. Phys Chem Chem Phys 2015; 17:3295-302. [DOI: 10.1039/c4cp04468a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The excited states of the photosystem II reaction centre cofactors have been calculated as a single “supermolecule”. Charge transfer states are shown to be dependent on electrostatic environment.
Collapse
|
12
|
Chauvet A, Jankowiak R, Kell A, Picorel R, Savikhin S. Does the singlet minus triplet spectrum with major photobleaching band near 680-682 nm represent an intact reaction center of Photosystem II? J Phys Chem B 2014; 119:448-55. [PMID: 25495638 DOI: 10.1021/jp510049k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We use both frequency- and time-domain low-temperature (5-20 K) spectroscopies to further elucidate the shape and spectral position of singlet minus triplet (triplet-bottleneck) spectra in the reaction centers (RCs) of Photosystem II (PSII) isolated from wild-type Chlamydomonas reinhardtii and spinach. It is shown that the shape of the nonresonant transient hole-burned spectrum in destabilized RCs from C. reinhardtii is very similar to that typically observed for spinach. This suggests that the previously observed difference in transient spectra between RCs from C. reinhardtii and spinach is not due to the sample origin but most likely due to a partial destabilization of the D1 and D2 polypeptides. This supports our previous assignments that destabilized RCs (referred to as RC680) (Acharya, K. et al. J. Phys. Chem. B 2012, 116, 4860-4870), with a major photobleaching band near 680-682 nm and the absence of a photobleaching band near 673 nm, do not represent the intact RC residing within the PSII core complex. Time-resolved absorption difference spectra obtained for partially destabilized RCs of C. reinhardtii and for typical spinach RCs support the above conclusions. The absence of clear photobleaching bands near 673 and 684 nm (where the PD1 chlorophyll and the active pheophytin (PheoD1) contribute, respectively) in picosecond transient absorption spectra in both RCs studied in this work indicates that the cation can move from the primary electron donor (ChlD1) to PD1 (i.e., PD1ChlD1(+)PheoD1(-) → PD1(+)ChlD1PheoD1(-)). Therefore, we suggest that ChlD1 is the major electron donor in usually studied destabilized RCs (with a major photobleaching near 680-682 nm), although the PD1 path (where PD1 serves as the primary electron donor) is likely present in intact RCs, as discussed in Acharya, K. et al. J. Phys. Chem. B 2012, 116, 4860-4870.
Collapse
Affiliation(s)
- Adrien Chauvet
- Department of Physics and Astronomy, Purdue University , West Lafayette, Indiana 47907, United States
| | | | | | | | | |
Collapse
|
13
|
Zabelin AA, Shkuropatova VA, Makhneva ZK, Moskalenko AA, Shuvalov VA, Shkuropatov AY. Chemically modified reaction centers of photosystem II: Exchange of pheophytin a with 7-deformyl-7-hydroxymethyl-pheophytin b. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1870-1881. [DOI: 10.1016/j.bbabio.2014.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 11/28/2022]
|
14
|
Dong H, Ryu IS, Fleming GR. Pseudo-rephasing and pseudo-free-induction-decay mechanism in two-color three-pulse photon echo of a binary system. J Phys Chem B 2013; 117:16416-21. [PMID: 24283795 DOI: 10.1021/jp409352z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We investigate the two-color three-pulse photon echo peak shift in a (left-right) binary system, where each component consists of a heterodimer. On the basis of the model, we find that the effect of the excitonic asymmetry between two components leads to an additional factor in the peak shift. A pseudo-rephasing and pseudo-free-induction-decay mechanism is proposed to explain the resultant negative peak shift, when the differences between the two left/right components have the opposite sign. In such a case, estimates of the electronic coupling strength via two- and one-color peak shift experiments lead to an underestimate of the coupling magnitude.
Collapse
Affiliation(s)
- Hui Dong
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | | | | |
Collapse
|
15
|
Krausz E. Selective and differential optical spectroscopies in photosynthesis. PHOTOSYNTHESIS RESEARCH 2013; 116:411-426. [PMID: 23839302 DOI: 10.1007/s11120-013-9881-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/28/2013] [Indexed: 06/02/2023]
Abstract
Photosynthetic pigments are inherently intense optical absorbers and have strong polarisation characteristics. They can also luminesce strongly. These properties have led optical spectroscopies to be, quite naturally, key techniques in photosynthesis. However, there are typically many pigments in a photosynthetic assembly, which when combined with the very significant inhomogeneous and homogeneous linewidths characteristic of optical transitions, leads to spectral congestion. This in turn has made it difficult to provide a definitive and detailed electronic structure for many photosynthetic assemblies. An electronic structure is, however, necessary to provide a foundation for any complete description of fundamental processes in photosynthesis, particularly those in reaction centres. A wide range of selective and differential spectral techniques have been developed to help overcome the problems of spectral complexity and congestion. The techniques can serve to either reduce spectral linewidths and/or extract chromophore specific information from unresolved spectral features. Complementary spectral datasets, generated by a number of techniques, may then be combined in a 'multi-dimensional' theoretical analysis so as to constrain and define effective models of photosynthetic assemblies and their fundamental processes. A key example is the work of Renger and his group (Raszewski, Biophys J 88(2):986-998, 2005) on PS II reaction centre assemblies. This article looks to provide an overview of some of these techniques and indicate where their strengths and weaknesses may lie. It highlights some of our own contributions and indicates areas where progress may be possible.
Collapse
Affiliation(s)
- Elmars Krausz
- Research School of Chemistry, Australian National University, Building 35 Science Road, Canberra, ACT, 0200, Australia,
| |
Collapse
|
16
|
Vishnev MI, Zabelin AA, Shkuropatova VA, Yanyushin MF, Shuvalov VA, Shkuropatov AY. Chemical modification of photosystem II core complex pigments with sodium borohydride. BIOCHEMISTRY (MOSCOW) 2013; 78:377-84. [DOI: 10.1134/s0006297913040068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Jankowiak R. Probing Electron-Transfer Times in Photosynthetic Reaction Centers by Hole-Burning Spectroscopy. J Phys Chem Lett 2012; 3:1684-1694. [PMID: 26285729 DOI: 10.1021/jz300505r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A brief discussion is presented of transient hole-burned (HB) spectra (and the information that they provide) obtained for isolated reaction centers (RCs) from wild-type (WT) Rhodobacter sphaeroides, RCs containing zinc-bacteriochlorophylls (Zn-BChls), and RCs of Photosystem II (PSII) from spinach and Chlamydomonas reinhardtii . The shape of the spectral density and the strength of electron-phonon coupling in bacterial RCs are discussed. We focus, however, on heterogeneity of isolated PS II RCs from spinach and, in particular, Chlamydomonas reinhardtii , site energies of active (electron acceptor) and inactive pheophytins, the nature of the primary electron donor(s), and the possibility of multiple charge-separation (CS) pathways in the isolated PSII RC. We conclude with comments on current efforts in HB spectroscopy in the area of photosynthesis and future directions in HB spectroscopy.
Collapse
Affiliation(s)
- Ryszard Jankowiak
- Department of Chemistry and Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
18
|
Acharya K, Zazubovich V, Reppert M, Jankowiak R. Primary electron donor(s) in isolated reaction center of photosystem II from Chlamydomonas reinhardtii. J Phys Chem B 2012; 116:4860-70. [PMID: 22462595 DOI: 10.1021/jp302849d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isolated reaction centers (RCs) from wild-type Chlamydomonas (C.) reinhardtii of Photosystem II (PSII), at different levels of intactness, were studied to provide more insight into the nature of the charge-separation (CS) pathway(s). We argue that previously studied D1/D2/Cytb559 complexes (referred to as RC680), with ChlD1 serving as the primary electron donor, contain destabilized D1 and D2 polypeptides and, as a result, do not provide a representative model system for the intact RC within the PSII core. The shapes of nonresonant transient hole-burned (HB) spectra obtained for more intact RCs (referred to as RC684) are very similar to P(+)QA(-) - PQA absorbance difference and triplet minus singlet spectra measured in PSII core complexes from Synechocystis PCC 6803 [Schlodder et al. Philos. Trans. R. Soc. London, Ser. B2008, 363, 1197]. We show that in the RC684 complexes, both PD1 and ChlD1 may serve as primary electron donors, leading to two different charge separation pathways. Resonant HB spectra cannot distinguish the CS times corresponding to different paths, but it is likely that the zero-phonon holes (ZPHs) observed in the 680-685 nm region (corresponding to CS times of ∼1.4-4.4 ps) reveal the ChlD1 pathway; conversely, the observation of charge-transfer (CT) state(s) in RC684 (in the 686-695 nm range) and the absence of ZPHs at λB > 685 nm likely stem from the PD1 pathway, for which CS could be faster than 1 ps. This is consistent with the finding of Krausz et al. [Photochem. Photobiol. Sci.2005, 4, 744] that CS in intact PSII core complexes can be initiated at low temperatures with fairly long-wavelength excitation. The lack of a clear shift of HB spectra as a function of excitation wavelength within the red-tail of the absorption (i.e., 686-695 nm) and the absence of ZPHs suggest that the lowest-energy CT state is largely homogeneously broadened. On the other hand, in usually studied destabilized RCs, that is, RC680, for which CT states have never been experimentally observed, ChlD1 is the most likely electron donor.
Collapse
Affiliation(s)
- Khem Acharya
- Department of Chemistry and ‡Department of Physics, Kansas State University , Manhattan, Kansas 66506, United States
| | | | | | | |
Collapse
|