1
|
Rocha-Roa C, Cortes E, Cuesta SA, Mora JR, Paz JL, Flores-Sumoza M, Márquez EA. Study of potential inhibition of the estrogen receptor α by cannabinoids using an in silico approach: Agonist vs antagonist mechanism. Comput Biol Med 2023; 152:106403. [PMID: 36543006 DOI: 10.1016/j.compbiomed.2022.106403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/13/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Breast cancer is the main cancer type with more than 2.2 million cases in 2020, and is the principal cause of death in women; with 685000 deaths in 2020 worldwide. The estrogen receptor is involved at least in 70% of breast cancer diagnoses, and the agonist and antagonist properties of the drug in this receptor play a pivotal role in the control of this illness. This work evaluated the agonist and antagonist mechanisms of 30 cannabinoids by employing molecular docking and dynamic simulations. Compounds with docking scores < -8 kcal/mol were analyzed by molecular dynamic simulation at 300 ns, and relevant insights are given about the protein's structural changes, centered on the helicity in alpha-helices H3, H8, H11, and H12. Cannabicitran was the cannabinoid that presented the best relative binding-free energy (-34.96 kcal/mol), and based on rational modification, we found a new natural-based compound with relative binding-free energy (-44.83 kcal/mol) better than the controls hydroxytamoxifen and acolbifen. Structure modifications that could increase biological activity are suggested.
Collapse
Affiliation(s)
- Cristian Rocha-Roa
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellín, Colombia; Grupo GEPAMOL, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, 630004, Colombia.
| | - Eliceo Cortes
- Life Science Research Center, Universidad Simón Bolivar, Barranquilla, 080002, Colombia.
| | - Sebastián A Cuesta
- Instituto de Simulación Computacional (ISC), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito, 170901, Ecuador.
| | - José R Mora
- Instituto de Simulación Computacional (ISC), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito, 170901, Ecuador
| | - José L Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, 15081, Peru
| | - Máryury Flores-Sumoza
- Grupo de Investigación en Química y Biología, Departamento de Química y Biología, Universidad del Norte, Km 5 Vía Puerto Colombia 1569, Barranquilla, Atlántico, 081007, Colombia
| | - Edgar A Márquez
- Grupo de Investigación en Química y Biología, Departamento de Química y Biología, Universidad del Norte, Km 5 Vía Puerto Colombia 1569, Barranquilla, Atlántico, 081007, Colombia.
| |
Collapse
|
2
|
Zhu Y, Zheng F, Xiao C, Liu X, Yao X, Zeng W. Synthesis and Bio-evaluation of 2-Alkyl Substituted Fluorinated Genistein Analogues Against Breast Cancer. Med Chem 2021; 18:589-601. [PMID: 34463229 DOI: 10.2174/1573406417666210830114715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast cancer is the leading cause of cancer death in women. The current methods of chemotherapy for breast cancer generally have strong adverse reactions and drug resistance. Therefore, the discovery of novel anti-breast cancer lead compounds is urgently needed. OBJECTIVE Design and synthesize a series of 2-alkyl substituted fluorinated genistein analogues and evaluate their anti-breast cancer activity. METHODS Target compounds were obtained in a multistep reaction synthesis. The anti-tumor activity of compounds I-1~I-35 were evaluated with MCF-7, MDA-MB-231, MDA-MB-435, and MCF-10A cell lines in vitro, with tamoxifen as the positive control. Molecular docking was used to study the interaction between the synthesized compounds and PI3K-gamma. RESULTS A series of 2-alkyl substituted fluorinated genistein analogues were designed, synthesized and screened for their bioactivity. Most of the compounds displayed better selectivity toward breast cancer cell lines as compared with tamoxifen. Among these analogues, I-2, I-3, I-4, I-9, I-15 and I-17 have the strongest selective inhibition of breast cancer cells. Compounds I-10, I-13, I-15, I-17 and I-33 were found to have significant inhibitory effects on breast cancer cells. Molecular docking studies have shown that these compounds may act as PI3Kγ inhibitors and may further exhibit anti-breast cancer effects. CONCLUSION Most of the newly synthesized compounds could highly selectively inhibit breast cancer cell lines. The experimental results indicate that the synthesized analogs may also have obvious selective inhibitory effects on other malignant proliferation cancer cells.
Collapse
Affiliation(s)
- Yingli Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Fan Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Can Xiao
- Group of Lead Compound, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Xiaohe Liu
- Group of Lead Compound, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Xu Yao
- Group of Lead Compound, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
3
|
Li J, Cao H, Feng H, Xue Q, Zhang A, Fu J. Evaluation of the Estrogenic/Antiestrogenic Activities of Perfluoroalkyl Substances and Their Interactions with the Human Estrogen Receptor by Combining In Vitro Assays and In Silico Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14514-14524. [PMID: 33111528 DOI: 10.1021/acs.est.0c03468] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The potential estrogenic activities of perfluoroalkyl substances (PFASs) are controversial. Here, we investigated the estrogenic/antiestrogenic activities of PFASs and explored the corresponding interaction mode of PFASs with the estrogen receptor (ER) by combining in vitro assays and in silico modeling. We found that three PFASs (perfluorobutanoic acid, perfluorobutane sulfonate, and perfluoropentanoic acid) exerted antiestrogenic effects by inhibiting luciferase activity, whereas perfluorohexane sulfonate (PFHxS) and perfluorooctane sulfonate (PFOS) exerted estrogenic effects by inducing luciferase activity. When coexposed to 17β-estradiol (E2), all tested PFASs attenuated the E2-stimulated luciferase activity; unexpectedly, each PFAS could further attenuate the luciferase activity generated by the cotreatment with ICI 182,780 and E2, with a minimal effective concentration comparable to that found in human serum. PFHxS and PFOS significantly induced the gene expression of TFF1; additionally, all PFASs inhibited the E2-induced gene expression of TFF1 and EGR3. Furthermore, the results of the blind docking analyses suggested that the interaction with the coactivator-binding region on the ER surface should be included as a pathway through which PFASs exert estrogenic and antiestrogenic activities. Finally, we revealed the critical molecular property of the zero-order molecular connectivity index (MCI) (0χ) that affects the antiestrogenic activity of PFASs.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Huiming Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Hongru Feng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
| | - Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
| |
Collapse
|
4
|
Mazurek AH, Szeleszczuk Ł, Simonson T, Pisklak DM. Application of Various Molecular Modelling Methods in the Study of Estrogens and Xenoestrogens. Int J Mol Sci 2020; 21:E6411. [PMID: 32899216 PMCID: PMC7504198 DOI: 10.3390/ijms21176411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
In this review, applications of various molecular modelling methods in the study of estrogens and xenoestrogens are summarized. Selected biomolecules that are the most commonly chosen as molecular modelling objects in this field are presented. In most of the reviewed works, ligand docking using solely force field methods was performed, employing various molecular targets involved in metabolism and action of estrogens. Other molecular modelling methods such as molecular dynamics and combined quantum mechanics with molecular mechanics have also been successfully used to predict the properties of estrogens and xenoestrogens. Among published works, a great number also focused on the application of different types of quantitative structure-activity relationship (QSAR) analyses to examine estrogen's structures and activities. Although the interactions between estrogens and xenoestrogens with various proteins are the most commonly studied, other aspects such as penetration of estrogens through lipid bilayers or their ability to adsorb on different materials are also explored using theoretical calculations. Apart from molecular mechanics and statistical methods, quantum mechanics calculations are also employed in the studies of estrogens and xenoestrogens. Their applications include computation of spectroscopic properties, both vibrational and Nuclear Magnetic Resonance (NMR), and also in quantum molecular dynamics simulations and crystal structure prediction. The main aim of this review is to present the great potential and versatility of various molecular modelling methods in the studies on estrogens and xenoestrogens.
Collapse
Affiliation(s)
- Anna Helena Mazurek
- Chair and Department of Physical Pharmacy and Bioanalysis, Department of Physical Chemistry, Medical Faculty of Pharmacy, University of Warsaw, Banacha 1 str., 02-093 Warsaw Poland; (A.H.M.); (D.M.P.)
| | - Łukasz Szeleszczuk
- Chair and Department of Physical Pharmacy and Bioanalysis, Department of Physical Chemistry, Medical Faculty of Pharmacy, University of Warsaw, Banacha 1 str., 02-093 Warsaw Poland; (A.H.M.); (D.M.P.)
| | - Thomas Simonson
- Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, 91-120 Palaiseau, France;
| | - Dariusz Maciej Pisklak
- Chair and Department of Physical Pharmacy and Bioanalysis, Department of Physical Chemistry, Medical Faculty of Pharmacy, University of Warsaw, Banacha 1 str., 02-093 Warsaw Poland; (A.H.M.); (D.M.P.)
| |
Collapse
|
5
|
Cao H, Wang L, Liang Y, Li Z, Feng H, Sun Y, Zhang A, Fu J. Protonation state effects of estrogen receptor α on the recognition mechanisms by perfluorooctanoic acid and perfluorooctane sulfonate: A computational study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:647-656. [PMID: 30658300 DOI: 10.1016/j.ecoenv.2019.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/20/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been reported to cause adverse health effects on wildlife as well as humans. Numerous studies demonstrated that PFOA and PFOS could interfere with the transcriptional activation of estrogen receptor α (ERα) by mimicking the function of endogenous ligand, whereas some reports suggested that the two compounds present non-estrogenic activities. These conflicting results bring a confusion to understand their molecular mechanism on the ERα-mediated signaling pathway. To address this issue, we performed the molecular docking and molecular dynamics simulations to elaborate the structural characteristics for the binding of PFOA and PFOS to ERα. Our results indicated that the two opposite binding orientations were modulated by the protonation states of key residue His524. In sub-acidic condition, PFOA and PFOS prefer to form the H-bonding interactions with the protonated His524, whereas Arg394 provided the H-bonding interactions for stable binding in sub-alkaline condition. Conformational analyses implied that the diverse binding modes were closely related to the conformational propensity of ERα for subsequent coactivator recruitment and transcription activation. Generally, our findings provide a flexible strategy to assess the pH impacts of microenvironment on the toxicities of perfluoroalkyl acids by their interactions with proteins.
Collapse
Affiliation(s)
- Huiming Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ling Wang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zhunjie Li
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Hongru Feng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
| | - Yuzhen Sun
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China.
| |
Collapse
|
6
|
Xue Q, Liu X, Liu XC, Pan WX, Fu JJ, Zhang AQ. The Effect of Structural Diversity on Ligand Specificity and Resulting Signaling Differences of Estrogen Receptor α. Chem Res Toxicol 2019; 32:1002-1013. [DOI: 10.1021/acs.chemrestox.8b00338] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
| | - Xian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
| | - Xiu-Chang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Wen-Xiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
| | - Jian-Jie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
| | - Ai-Qian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, P.R. China
| |
Collapse
|
7
|
Hou TY, Weng CF, Leong MK. Insight Analysis of Promiscuous Estrogen Receptor α-Ligand Binding by a Novel Machine Learning Scheme. Chem Res Toxicol 2018; 31:799-813. [PMID: 30019586 DOI: 10.1021/acs.chemrestox.8b00130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Estrogen receptor α (ERα) plays a significant role in occurrence of breast cancer and may cause various adverse side-effects when ERα is an off-target protein. A theoretical model was derived to predict the binding affinity of ERα using the pharmacophore ensemble/support vector machine (PhE/SVM) scheme to consider the promiscuous characteristic of ERα. The estimations by PhE/SVM were discovered to be in good agreement with the observed values for those training molecules ( n = 31, r2 = 0.80, qCV2 = 0.77, RMSE = 0.57, s = 0.58), test molecules ( n = 179, q2 = 0.91-0.96, RMSE = 0.33, s = 0.26) and outliers ( n = 15, q2 = 0.80-0.86, RMSE = 0.56, s = 0.49). When subjected to various statistical validations, the PhE/SVM model consistently fulfilled the strictest criteria. A mock test also asserted its predictivity. When compared with crystal structures, the calculated results are consistent with the reported ERα-ligand co-complex structure, and the plasticity nature of ERα is also disclosed. Consequently, this precise, fast, and robust model can be adopted to predict ERα-ligand binding affinities and to design safer non-ERα-targeted pharmaceuticals in the process of drug discovery and development.
Collapse
|
8
|
Geetha Rani Y, Lakshmi BS. Structural insight into the antagonistic action of diarylheptanoid on human estrogen receptor alpha. J Biomol Struct Dyn 2018; 37:1189-1203. [PMID: 29557271 DOI: 10.1080/07391102.2018.1453378] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Estrogen receptor α (ER α) is an important therapeutic target in the regulation of ligand dependent signaling in breast cancer. The current study investigates the anti-estrogenic potential of the Diarylheptanoid, 5-hydroxy-7-(4-hydroxy-3 methoxyphenyl)-1-phenyl-3-heptanone (DAH) in silico. Rigid Docking analysis of DAH at the ligand binding domain (LBD) of ER α showed hydrogen bond interactions with Arg394 and Glu353 at the active site, similar to the positive controls 4-Hydroxy Tamoxifen (4-OHT) and Fulvestrant (FUL). The protein and the protein-DAH complexes were further analyzed using molecular dynamics simulations for a time scale of 50 ns using GROMACS. Root mean square fluctuation (RMSF) analysis showed large fluctuations at the N-terminal region of Helices (H) 3, 9 and at the C-terminal region of H11, which could be involved in the antagonistic conformational change. Interestingly, H12 appeared to move away from the ligand binding pocket and occupy the co-activator binding groove at the LBD of ER α. Secondary structure analysis of the protein upon binding of DAH and CUR showed structural change from α-helix to Turn conformation at H4. We hypothesize that this structural change at H4, similar to the positive control, could hinder the activity of AF-2 by blocking the binding of co-activator. These conformational changes in ER α indicate an anti-estrogenic and therapeutic potential of the DAH.
Collapse
Affiliation(s)
- Yuvaraj Geetha Rani
- a Tissue Culture and Drug Discovery Laboratory, Department of Biotechnology, Centre for Food Technology , Anna University , Chennai 600025 , India
| | - Baddireddi Subhadra Lakshmi
- a Tissue Culture and Drug Discovery Laboratory, Department of Biotechnology, Centre for Food Technology , Anna University , Chennai 600025 , India
| |
Collapse
|
9
|
Mahesha CK, Agarwal DS, Karishma P, Markad D, Mandal SK, Sakhuja R. Iridium-catalyzed [4 + 2] annulation of 1-arylindazolones with α-diazo carbonyl compounds: access to indazolone-fused cinnolines. Org Biomol Chem 2018; 16:8585-8595. [DOI: 10.1039/c8ob01681j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An Ir-catalyzed tandem strategy for the synthesis of indazolone-fused cinnolines by [4 + 2] annulation of 1-arylindazolones with α-diazo carbonyl compounds.
Collapse
Affiliation(s)
| | - Devesh S. Agarwal
- Department of Chemistry
- Birla Institute of Technology & Science
- Pilani
- India
| | - Pidiyara Karishma
- Department of Chemistry
- Birla Institute of Technology & Science
- Pilani
- India
| | - Datta Markad
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Mohali
- India
| | - Sanjay K. Mandal
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Mohali
- India
| | - Rajeev Sakhuja
- Department of Chemistry
- Birla Institute of Technology & Science
- Pilani
- India
| |
Collapse
|
10
|
Cocci P, Mozzicafreddo M, Angeletti M, Mosconi G, Palermo FA. In silico prediction and in vivo analysis of antiestrogenic potential of 2-isopropylthioxanthone (2-ITX) in juvenile goldfish (Carassius auratus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:202-210. [PMID: 27454205 DOI: 10.1016/j.ecoenv.2016.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
Previous studies have shown both anti-estrogenic and anti-androgenic activities of 2-isopropylthioxanthone (2-ITX), a well known food contaminant, in in vitro assays. However, no data are available on the anti-estrogenic potentials and risks of 2-ITX in aquatic organisms. This work evaluated the potential endocrine disrupting effects of 2-ITX at the level of estrogen receptor (ER) signaling cascade using juvenile goldfish (Carassius auratus) as model. Firstly, we investigated the ligand binding efficiency of 2-ITX to the ligand binding domains (LBD) of goldfish ER subtypes using a molecular docking approach. Secondly, we assessed the effects of 2-ITX on E2-induced hepatic expression of ERα1, ERβ1, ERβ2, and vitellogenin (VTG) in vivo. Crosstalk between ER-VTG and aryl hydrocarbon receptor 2 (AhR2)-cytochrome P4501A (CYP1A) was also investigated. Fish were injected with increasing doses of 2-ITX ranging from 2 to 10µg/g BW, and results were compared to the effect of tamoxifen, a well-known ER modulator. We observed that compared to ERβ, the interaction potentials of 2-ITX to goldfish ERα1 LBD was more stable in the inactive receptor conformation. The in silico docking simulation analysis also revealed that 2-ITX acted as agonist for the goldfish AhR2 LBDs suggesting the ability of this compound to activate the cross-talk between the ERα- and AhR-signaling pathways. In vivo experiments confirm in silico simulation predictions demonstrating that 2-ITX reduced the estrogenicity of E2 at both transcriptional and post-transcriptional levels, indicating a clear anti-estrogenic effect. Co-exposure of E2 and 2-ITX also resulted in a significant decrease of CYP1A gene expression with respect to 2-ITX alone. Results from these studies collectively revealed that the antiestrogenic property of 2-ITX can be ascribed to a combination of effects on multiple signaling pathways suggesting the potential for this environmental contaminant to affect the hormonal control of reproductive processes in fish.
Collapse
Affiliation(s)
- Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy.
| | - Matteo Mozzicafreddo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Mauro Angeletti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Francesco Alessandro Palermo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| |
Collapse
|
11
|
Alvarez LD, Veleiro AS, Burton G. Exploring the molecular basis of action of ring D aromatic steroidal antiestrogens. Proteins 2015; 83:1297-306. [DOI: 10.1002/prot.24820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/03/2015] [Accepted: 04/24/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Lautaro D. Alvarez
- Departamento de Química Orgánica and UMYMFOR (CONICET-UBA); Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires; Buenos Aires Argentina
| | - Adriana S. Veleiro
- Departamento de Química Orgánica and UMYMFOR (CONICET-UBA); Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires; Buenos Aires Argentina
| | - Gerardo Burton
- Departamento de Química Orgánica and UMYMFOR (CONICET-UBA); Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
12
|
Poluzzi E, Piccinni C, Raschi E, Rampa A, Recanatini M, De Ponti F. Phytoestrogens in postmenopause: the state of the art from a chemical, pharmacological and regulatory perspective. Curr Med Chem 2014; 21:417-36. [PMID: 24164197 PMCID: PMC3963458 DOI: 10.2174/09298673113206660297] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 08/01/2013] [Accepted: 10/04/2013] [Indexed: 11/22/2022]
Abstract
Phytoestrogens represent a diverse group of non-steroidal natural products, which seem to have some oestrogenic effects and are often marketed as food supplements. Population exposed to phytoestrogens is potentially increasing, in part because an unfavourable risk-benefit profile of Hormone Replacement Therapy (HRT) for prolonged treatments (e.g., osteoporosis prevention) highlighted by the publication of the Women Health Initiative (WHI) trial in 2002, but also because many post-menopausal women often perceived phytoestrogens in food supplements as a safer alternative than HRT. Despite of increasing preclinical and clinical studies in the past decade, appealing evidence is still lacking to support the overall positive risk-benefit profile of phytoestrogens. Their status as food supplements seems to discourage studies to obtain new evidence, and the chance to buy them by user's initiative make it difficult to survey their prevalence and pattern of use. The aim of the present review is to: (a) outline the clinical scenario underlying the increased interest on phytoestrogens, by overviewing the evolution of the evidence on HRT and its main therapeutic goals (e.g., menopausal symptoms relief, chemoprevention, osteoporosis prevention); (b) address the chemical and pharmacological features (e.g. chemical structure, botanical sources, mechanism of action) of the main compounds (e.g., isoflavones, lignans, coumestans); (c) describe the clinical evidence on potential therapeutic applications; (d) put available evidence on their riskbenefit profile in a regulatory perspective, in light of the recent regulation on health claims of food supplements.
Collapse
Affiliation(s)
| | | | | | | | | | - Fabrizio De Ponti
- Pharmacology Unit Department of Medical and Surgical Sciences Via Irnerio, 48 I-40126 Bologna BO Italy.
| |
Collapse
|
13
|
Sengupta S, Obiorah I, Maximov PY, Curpan R, Jordan VC. Molecular mechanism of action of bisphenol and bisphenol A mediated by oestrogen receptor alpha in growth and apoptosis of breast cancer cells. Br J Pharmacol 2014; 169:167-78. [PMID: 23373633 DOI: 10.1111/bph.12122] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/21/2012] [Accepted: 01/08/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Oestrogen receptor alpha (ERα) binds to different ligand which can function as complete/partial oestrogen-agonist or antagonist. This depends on the chemical structure of the ligands which modulates the transcriptional activity of the oestrogen-responsive genes by altering the conformation of the liganded-ERα complex. This study determined the molecular mechanism of oestrogen-agonistic/antagonistic action of structurally similar ligands, bisphenol (BP) and bisphenol A (BPA) on cell proliferation and apoptosis of ERα + ve breast cancer cells. EXPERIMENTAL APPROACH DNA was measured to assess the proliferation and apoptosis of breast cancer cells. RT-PCR and ChIP assays were performed to quantify the transcripts of TFF1 gene and recruitment of ERα and SRC3 at the promoter of TFF1 gene respectively. Molecular docking was used to delineate the binding modes of BP and BPA with the ERα. PCR-based arrays were used to study the regulation of the apoptotic genes. KEY RESULTS BP and BPA induced the proliferation of breast cancer cells; however, unlike BPA, BP failed to induce apoptosis. BPA consistently acted as an agonist in our studies but BP exhibited mixed agonistic/antagonistic properties. Molecular docking revealed agonistic and antagonistic mode of binding for BPA and BP respectively. BPA treatment resembled E2 treatment in terms of PCR-based regulation of apoptotic genes whereas BP was similar to 4OHT treatment. CONCLUSIONS AND IMPLICATIONS The chemical structure of ERα ligand determines the agonistic or antagonistic biological responses by the virtue of their binding mode, conformation of the liganded-ERα complex and the context of the cellular function.
Collapse
Affiliation(s)
- S Sengupta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
14
|
Leclercq G, Jacquot Y. Interactions of isoflavones and other plant derived estrogens with estrogen receptors for prevention and treatment of breast cancer-considerations concerning related efficacy and safety. J Steroid Biochem Mol Biol 2014; 139:237-44. [PMID: 23274118 DOI: 10.1016/j.jsbmb.2012.12.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/07/2012] [Accepted: 12/18/2012] [Indexed: 12/20/2022]
Abstract
Phytoestrogens are natural endocrine disruptors that interfere with estrogenic pathways. They insert directly within the hormone-binding domain of ERα and β, with a preference for the β isoform of which the concentration predominates in the normal mammary epithelium. Since ERβ antagonizes the growth promoting effect of ERα, which is mainly expressed in estrogen-sensitive tumor cells, a potential protective action against breast cancer incidence has been ascribed to phytoestrogens. The fact that Asian women living in far-east countries who consume isoflavone-rich food are less subjected to breast cancer emergence than their congeners in the USA as well as Caucasian women has been advocated to justify such a concept. Overview of data concerning the mechanism of action phytoestrogens reveals that such a view is an oversimplification: Such compounds interfere with a huge panel of regulatory proteins, giving rise to both promoting and antagonizing carcinogenic effects. Moreover, various physiological and pathological factors able to amplify these effects are not often sufficiently taken into account, which increases the difficulty to interpret data. Nevertheless, this overview of data established that chemical structures and concentrations modulate such effects: at the micromolar level, isoflavones activate ERα-mediated transcription and breast cancer cell proliferation while flavones fail to induce any significant promoting effects. At higher doses, both classes of compounds may display an antitumor activity. Reasons for such distinct behaviors as well as their potential impact in therapeutic applications are analyzed here. Ability of isoflavones and flavones to antagonize the association of calmodulin to ERα, which is required for its enhanced transcriptional activity is evoked to justify the antitumor activity ascribed to some flavones. Finally, a suspicion that peculiar classes of phytoestrogens may adopt a SERM-like conformation is addressed in a context of selection and synthesis of compounds with non-equivocal therapeutic value. This article is part of a Special Issue entitled "Phytoestrogens".
Collapse
Affiliation(s)
- Guy Leclercq
- Laboratoire J.-C. Heuson de Cancérologie Mammaire, Université Libre de Bruxelles (U.L.B.), Institut Jules Bordet, 1, rue Héger Bordet, Brussels, B-1000, Belgium.
| | | |
Collapse
|
15
|
Morishima F, Inokuchi Y, Ebata T. Structure and hydrogen-bonding ability of estrogens studied in the gas phase. J Phys Chem A 2013; 117:13543-55. [PMID: 24131263 DOI: 10.1021/jp407438j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The structures of estrogens (estrone(E1), β-estradiol(E2), and estriol(E3)) and their 1:1 hydrogen-bonded (hydrated) clusters with water formed in supersonic jets have been investigated by various laser spectroscopic methods and quantum chemical calculations. In the S1-S0 electronic spectra, all three species exhibit the band origin in the 35,050-35,200 cm(-1) region. By use of ultraviolet-ultraviolet hole-burning (UV-UV HB) spectroscopy, two conformers, four conformers, and eight conformers, arising from different orientation of OH group(s) in the A-ring and D-ring, are identified for estrone, β-estradiol, and estriol, respectively. The infrared-ultraviolet double-resonance (IR-UV DR) spectra in the OH stretching vibration are observed to discriminate different conformers of the D-ring OH for β-estradiol and estriol, and it is suggested that in estriol only the intramolecular hydrogen bonded conformer exists in the jet. For the 1:1 hydrated cluster of estrogens, the S1-S0 electronic transition energies are quite different depending on whether the water molecule is bound to A-ring OH or D-ring OH. It is found that the water molecule prefers to form an H-bond to the A-ring OH for estrone and β-estradiol due to the higher acidity of phenolic OH than that of the alcoholic OH. On the other hand, in estriol the water molecule prefers to be bound to the D-ring OH due to the formation of a stable ring-structure H-bonding network with two OH groups. Thus, the substitution of one hydroxyl group to the D-ring drastically changes the hydrogen-bonding preference of estrogens.
Collapse
Affiliation(s)
- Fumiya Morishima
- Department of Chemistry, Graduate School of Science, Hiroshima University , Higashi-Hiroshima 739-8526, Japan
| | | | | |
Collapse
|
16
|
Zhuang S, Bao L, Linhananta A, Liu W. Molecular modeling revealed that ligand dissociation from thyroid hormone receptors is affected by receptor heterodimerization. J Mol Graph Model 2013; 44:155-60. [PMID: 23831995 DOI: 10.1016/j.jmgm.2013.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 11/28/2022]
Abstract
Numerous ligands bind tightly to thyroid hormone receptors (TRs), and exploring the binding and dissociation of these ligands from TRs will increase our understanding of their mechanisms of action. TRs form transcriptionally active heterodimers with retinoid X receptor (RXR); whether this heterodimerization affects ligand dissociation is poorly understood. To investigate the effects of heterodimerization, classical molecular dynamics (MD) simulations and random acceleration molecular dynamics (RAMD) simulations were performed to probe the dissociation of triiodothyronine (T3) from a TRα-RXR ligand binding domain (LBD) heterodimer and the TRα and TRβ LBDs at the atomic level. Seven (I-VII) dissociation pathways were identified for T3. Heterodimerization inhibited pathway I in the TRα-RXR LBD heterodimer, which may block the proper orientation of the helix 12 (H12), therefore affecting the biological functions of TRs. Upon TR heterodimerization, the second most dominant dissociation pathway switched from pathway IV for TRα LBD to pathway II for TRα-RXR LBD. No significant effects of TR heterodimerization were observed on the dominant dissociation pathway III that was located between H3, the H1-H2 loop and the β-sheet. Our study revealed that TR heterodimerization significantly affects T3 dissociation, which provides important information for the study of other TR ligands.
Collapse
Affiliation(s)
- Shulin Zhuang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | | | | | | |
Collapse
|