Pyryaeva AP, Ershov KS, Kochubei SA, Baklanov AV. Singlet Oxygen Generation via UV-A, -B, and -C Photoexcitation of Isoprene-Oxygen (C
5H
8-O
2) Encounter Complexes in the Gas Phase.
J Phys Chem A 2020;
124:8469-8477. [PMID:
32986424 DOI:
10.1021/acs.jpca.0c07509]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The formation of singlet oxygen 1O2 provided by the photoexcitation of the encounter complexes of isoprene with oxygen (C5H8-O2) in the gas phase within the spectral region 253.5-355 nm has been observed at the elevated pressure of oxygen. Singlet oxygen has been detected with its NIR luminescence centered near 1.27 μm. The photogeneration of 1O2 is found to be a one-photon process. In the UV-C region (253-278 nm) the quantum yield of 1O2 is measured. This yield of 1O2 is governed mainly by photoexcitation of O2 molecules to the Herzberg III (3Δu) state via enhanced absorption by C5H8-O2 collision complexes. So excited triplet O2 gives rise to singlet oxygen because of triplet-triplet annihilation in the collisions with unexcited O2 molecules. In the UV-B (308 nm) region the appearance of 1O2 is attributed to the excitation of a double spin-flip (DSF) transition in complex C5H8-O2. In the UV-A region (355 nm) besides DSF the O2-assisted T1 ← S0 excitation of isoprene to the triplet state takes place, which is a sensitizer of 1O2 formation. The contribution of the encounter complexes C5H8-O2 to the production of singlet oxygen and to the lifetime of isoprene in the Earth's troposphere are estimated.
Collapse