1
|
Grząbka-Zasadzińska A, Woźniak M, Kaszubowska-Rzepka A, Baranowska M, Sip A, Ratajczak I, Borysiak S. Enhancing Sustainability and Antifungal Properties of Biodegradable Composites: Caffeine-Treated Wood as a Filler for Polylactide. MATERIALS (BASEL, SWITZERLAND) 2024; 17:698. [PMID: 38592001 PMCID: PMC10856079 DOI: 10.3390/ma17030698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 04/10/2024]
Abstract
This study investigates the suitability of using caffeine-treated and untreated black cherry (Prunus serotina Ehrh.) wood as a polylactide filler. Composites containing 10%, 20%, and 30% filler were investigated in terms of increasing the nucleating ability of polylactide, as well as enhancing its resistance to microorganisms. Differential scanning calorimetry studies showed that the addition of caffeine-treated wood significantly altered the crystallization behavior of the polymer matrix, increasing its crystallization temperature and degree of crystallinity. Polarized light microscopic observations revealed that only the caffeine-treated wood induced the formation of transcrystalline structures in the polylactide. Incorporation of the modified filler into the matrix was also responsible for changes in the thermal stability and decreased hydrophilicity of the material. Most importantly, the use of black cherry wood treated with caffeine imparted antifungal properties to the polylactide-based composite, effectively reducing growth of Fusarium oxysporum, Fusarium culmorum, Alternaria alternata, and Trichoderma viride. For the first time, it was reported that treatment of wood with a caffeine compound of natural origin alters the supermolecular structure, nucleating abilities, and imparts antifungal properties of polylactide/wood composites, providing promising insights into the structure-properties relationship of such composites.
Collapse
Affiliation(s)
- Aleksandra Grząbka-Zasadzińska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland; (A.G.-Z.); (A.K.-R.)
| | - Magdalena Woźniak
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland; (M.W.); (I.R.)
| | - Agata Kaszubowska-Rzepka
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland; (A.G.-Z.); (A.K.-R.)
| | - Marlena Baranowska
- Department of Silviculture, Poznan University of Life Sciences, Wojska Polskiego 42, 60-625 Poznan, Poland;
| | - Anna Sip
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-625 Poznan, Poland;
| | - Izabela Ratajczak
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland; (M.W.); (I.R.)
| | - Sławomir Borysiak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland; (A.G.-Z.); (A.K.-R.)
| |
Collapse
|
2
|
Calabrese C, Camiruaga A, Parra-Santamaria M, Evangelisti L, Melandri S, Maris A, Usabiaga I, Fernandez JA. A Competition between Relative Stability and Binding Energy in Caffeine Phenyl-Glucose Aggregates: Implications in Biological Mechanisms. Int J Mol Sci 2023; 24:4390. [PMID: 36901823 PMCID: PMC10002916 DOI: 10.3390/ijms24054390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Hydrogen bonds and stacking interactions are pivotal in biological mechanisms, although their proper characterisation within a molecular complex remains a difficult task. We used quantum mechanical calculations to characterise the complex between caffeine and phenyl-β-D-glucopyranoside, in which several functional groups of the sugar derivative compete with each other to attract caffeine. Calculations at different levels of theory (M06-2X/6-311++G(d,p) and B3LYP-ED=GD3BJ/def2TZVP) agree to predict several structures similar in stability (relative energy) but with different affinity (binding energy). These computational results were experimentally verified by laser infrared spectroscopy, through which the caffeine·phenyl-β-D-glucopyranoside complex was identified in an isolated environment, produced under supersonic expansion conditions. The experimental observations correlate with the computational results. Caffeine shows intermolecular interaction preferences that combine both hydrogen bonding and stacking interactions. This dual behaviour had already been observed with phenol, and now with phenyl-β-D-glucopyranoside, it is confirmed and maximised. In fact, the size of the complex's counterparts affects the maximisation of the intermolecular bond strength because of the conformational adaptability given by the stacking interaction. Comparison with the binding of caffeine within the orthosteric site of the A2A adenosine receptor shows that the more strongly bound caffeine·phenyl-β-D-glucopyranoside conformer mimics the interactions occurring within the receptor.
Collapse
Affiliation(s)
- Camilla Calabrese
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias—I.U. CINQUIMA, Universidad de Valladolid, E-47011 Valladolid, Spain
| | - Ander Camiruaga
- Institut des Sciences Moléculaires d’Orsay (ISMO), UMR8214, Université Paris-Saclay, CNRS, Bat. 520, F-91405 Orsay, France
| | - Maider Parra-Santamaria
- Departamento de Química Física, Facultad de Ciencias y Tecnología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/N, E-48940 Leioa, Spain
| | - Luca Evangelisti
- Dipartimento di Chimica “Giacomo Ciamician”, Campus of Ravenna, Università di Bologna, Via Sant’Alberto, 163, 48123 Ravenna, Italy
| | - Sonia Melandri
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Assimo Maris
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Imanol Usabiaga
- Departamento de Química Física, Facultad de Ciencias y Tecnología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/N, E-48940 Leioa, Spain
| | - José A. Fernandez
- Departamento de Química Física, Facultad de Ciencias y Tecnología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/N, E-48940 Leioa, Spain
| |
Collapse
|
3
|
Dimitriu L, Constantinescu-Aruxandei D, Preda D, Nichițean AL, Nicolae CA, Faraon VA, Ghiurea M, Ganciarov M, Băbeanu NE, Oancea F. Honey and Its Biomimetic Deep Eutectic Solvent Modulate the Antioxidant Activity of Polyphenols. Antioxidants (Basel) 2022; 11:2194. [PMID: 36358566 PMCID: PMC9686586 DOI: 10.3390/antiox11112194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 09/29/2023] Open
Abstract
Honey is a highly valued natural product with antioxidant, antimicrobial and anti-inflammatory properties. However, its antioxidant activity (AOA) is not as high as that of other honeybee products, such as propolis. Several polyphenol-honey formulations have been proposed up to now, most of them using maceration of biomass in honey or mixtures with liquid extracts, which either limit polyphenols bioavailability or destroy the characteristics of honey. To improve the health benefits of honey by increasing AOA and keeping its structural and sensory properties, we propose its enrichment in a polyphenol extract of raspberry after solvent evaporation. A honey-biomimetic natural deep eutectic solvent (NaDES) was prepared and compared with honey. The main polyphenols found in the raspberry extract were tested in combination with honey and NaDES, respectively. The AOA was determined by DPPH, ABTS, CUPRAC, and FRAP methods. The AOA behaviour of honey-polyphenol mixtures varied from synergism to antagonism, being influenced by the AOA method, polyphenol type, and/or mixture concentration. The honey-biomimetic NaDES resulted in similar AOA behaviour as with honey mixed with polyphenols. Honey seems to have additional properties that increase synergism or reduce antagonism in some cases. Honey and its biomimetic NaDES modulate AOA of polyphenols extract.
Collapse
Affiliation(s)
- Luminița Dimitriu
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv., No. 59, Sector 1, 011464 Bucharest, Romania
| | - Diana Constantinescu-Aruxandei
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania
| | - Daniel Preda
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, University Politehnica Bucharest, Str. Gheorghe Polizu nr/1-7, Sector 1, 011061 Bucharest, Romania
| | - Andra-Lavinia Nichițean
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv., No. 59, Sector 1, 011464 Bucharest, Romania
- Research and Development Department, Rom Honey Group Srl, Str. Grădinari nr. 1, Iași County, 700390 Iași, Romania
| | - Cristian-Andi Nicolae
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania
| | - Victor Alexandru Faraon
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania
| | - Marius Ghiurea
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania
| | - Mihaela Ganciarov
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania
| | - Narcisa Elena Băbeanu
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv., No. 59, Sector 1, 011464 Bucharest, Romania
| | - Florin Oancea
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv., No. 59, Sector 1, 011464 Bucharest, Romania
| |
Collapse
|
4
|
Zeinalipour-Yazdi CD. A DFT study of the interaction of aspirin, paracetamol and caffeine with one water molecule. J Mol Model 2022; 28:285. [PMID: 36056215 PMCID: PMC9439270 DOI: 10.1007/s00894-022-05258-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/31/2022] [Indexed: 11/28/2022]
Abstract
We have studied the interaction of water with three important analgesics, aspirin, paracetamol and caffeine using DFT calculations and FTIR-ATR spectroscopy. In our study, water is used as a probe molecule to reveal the various H-bonding sites on the electrostatic potential energy surface of the analgesics. We find that water forms a strong double H-bond with the COOH group of aspirin and that the oxygen of the ester group can become H-bond acceptors. Paracetamol forms the strongest H-bond with water at the hydroxyl group and weaker H-bonds with the C = O group and the N–H group. Caffeine forms the strongest H-bond with water at the top C = O group and can form additional H-bonds with the bottom C = O group and the nitrogen of the imidazole ring. These studies may help to better understand the solvation of these analgesics in water.
Collapse
|
5
|
An electrochemical sensor for caffeine at a carbon nanofiber modified glassy carbon electrode. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01365-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
Araújo D, Rodrigues T, Alves VD, Freitas F. Chitin-Glucan Complex Hydrogels: Optimization of Gel Formation and Demonstration of Drug Loading and Release Ability. Polymers (Basel) 2022; 14:785. [PMID: 35215701 PMCID: PMC8877193 DOI: 10.3390/polym14040785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Chitin-glucan complex (CGC) hydrogels were fabricated through a freeze-thaw procedure for biopolymer dissolution in NaOH 5 mol/L, followed by a dialysis step to promote gelation. Compared to a previously reported methodology that included four freeze-thaw cycles, reducing the number of cycles to one had no significant impact on the hydrogels' formation, as well as reducing the total freezing time from 48 to 18 h. The optimized CGC hydrogels exhibited a high and nearly spontaneous swelling ratio (2528 ± 68%) and a water retention capacity of 55 ± 3%, after 2 h incubation in water, at 37 °C. Upon loading with caffeine as a model drug, an enhancement of the mechanical and rheological properties of the hydrogels was achieved. In particular, the compressive modulus was improved from 23.0 ± 0.89 to 120.0 ± 61.64 kPa and the storage modulus increased from 149.9 ± 9.8 to 315.0 ± 76.7 kPa. Although the release profile of caffeine was similar in PBS and NaCl 0.9% solutions, the release rate was influenced by the solutions' pH and ionic strength, being faster in the NaCl solution. These results highlight the potential of CGC based hydrogels as promising structures to be used as drug delivery devices in biomedical applications.
Collapse
Affiliation(s)
- Diana Araújo
- Associate Laboratory i4HB, School of Science and Technology, Institute for Health and Bioeconomy, NOVA University Lisbon, 2819-516 Caparica, Portugal; (D.A.); (T.R.)
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Thomas Rodrigues
- Associate Laboratory i4HB, School of Science and Technology, Institute for Health and Bioeconomy, NOVA University Lisbon, 2819-516 Caparica, Portugal; (D.A.); (T.R.)
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Vítor D. Alves
- LEAF, Linking Landscape, Environment, Agriculture and Food Research Center, Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Filomena Freitas
- Associate Laboratory i4HB, School of Science and Technology, Institute for Health and Bioeconomy, NOVA University Lisbon, 2819-516 Caparica, Portugal; (D.A.); (T.R.)
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| |
Collapse
|
7
|
Srivastava B, Sen S, Bhakta S, Sen K. Effect of caffeine on the possible amelioration of diabetic neuropathy: A spectroscopic study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120322. [PMID: 34509062 DOI: 10.1016/j.saa.2021.120322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/07/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
IMPORTANCE One of the consequential and alarming complications of diabetes mellitus is diabetic neuropathy (DN). DN is assured to be caused chiefly by excess sorbitol levels in the body. The harmful consequences of DN alike peripheral nerve damage with extremity ulcers may be dodged with timely detection and treatment. The therapeutic methods for DN are scarce and expensive. Therefore economic and user friendly methodologies to prevent acquiring the disease need proper attention. OBJECTIVE The present research has been conducted (1) to analyse the levels of sorbitol in diabetic blood samples and compare them with non-diabetic ones and (2) to study the reduction in sorbitol levels upon addition of an important biochemical compounds caffeine in both sample groups. RESEARCH DESIGN, SETTING, PARTICIPANTS AND METHOD Sorbitol-caffeine interaction analysis of blood samples of 16 patients with type 2 diabetes from KPC Medical College, Kolkata, India was made. The spectroscopic analysis and their interpretations were compared with 16 healthy subjects. MAIN OUTCOMES AND MEASURES Present work describes that caffeine can be helpful in reducing the sorbitol level in diabetics, so the chances of development and progression of diabetic neuropathy can be controlled with the introduction of caffeine. RESULTS A total number of 32 blood samples of patients (aged 35-70 years); mean age ranges were 52.06 ± 2.68 and 53.50 ± 2.66 years for non-diabetic and diabetic ones respectively, glucose and sorbitol screening examination were done by enzymatic methodologies where concentrations were assessed by means of either absorption or fluorescence spectroscopy. The calibration range was 18.2-1119.3 mg/dL (Linear regression analysis r2 = 0.996). The sensitivity of this screening program in detecting DN with the healthy adults has been inquired and found efficient. Results of fasting insulin analyses have also been analysed for HOMA-IR (homeostasis model assessment - insulin resistance) and HOMA-B (homeostasis model assessment - pancreatic β cell function) values. Statistical significance of the results in non-diabetic and diabetic groups were performed and found to be statistically significant. CONCLUSIONS We have defined the relationship between blood glucose level, insulin level, sorbitol and caffeine in human body and utilized them in the plausible remediation of DN.
Collapse
Affiliation(s)
- Bhavya Srivastava
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Souvik Sen
- KPC Medical College and Hospital, 1F, Raja Subodh Chandra Mullick Road, Jadavpur, Kolkata 700032, India
| | - Santanu Bhakta
- KPC Medical College and Hospital, 1F, Raja Subodh Chandra Mullick Road, Jadavpur, Kolkata 700032, India
| | - Kamalika Sen
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
8
|
Abstract
Caffeine is not only a widely consumed active stimulant, but it is also a model molecule commonly used in pharmaceutical sciences. In this work, by performing quartz-crystal microbalance and neutron reflectometry experiments we investigate the interaction of caffeine molecules with a model lipid membrane. We determined that caffeine molecules are not able to spontaneously partition from an aqueous environment, enriched in caffeine, into a bilayer. Caffeine could be however included in solid-supported lipid bilayers if present with lipids during self-assembly. In this case, thanks to surface-sensitive techniques, we determined that caffeine molecules are preferentially located in the hydrophobic region of the membrane. These results are highly relevant for the development of new drug delivery vectors, as well as for a deeper understanding of the membrane permeation role of purine molecules.
Collapse
Affiliation(s)
- Letizia Tavagnacco
- CNR-ISC and Department of Physics, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy
| | - Giacomo Corucci
- Institut Laue-Langevin, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Yuri Gerelli
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60121 Ancona, Italy
| |
Collapse
|
9
|
Abstract
Caffeine is a verified bioactive substance suitable for wood protection against pests. Unlike studies of the biocidal effects of caffeine, caffeine-wood bonds and interactions with wood polymer structures have not been studied whatsoever thus far. For this reason, caffeine (1 g/L) interactions with the main wood components (cellulose; hemicellulose; lignin and its precursors conipheryl alcohol, sinapyl alcohol, coumaryl alcohol) were analyzed in the present study. Caffeine concentrations were analyzed using UV–VIS spectrometry at wavelength 287 nm. The results confirmed caffeine variable binding with wood components in comparison to controls (pure caffeine). Cellulose and sinapyl alcohol did not interact with caffeine. Caffeine was bonded with the rest of the wood components in an increasing rank: conipheryl alcohol = lignin < hemicellulose < coumaryl alcohol. These results have a significant role in the protection of wood depending on its chemical composition and the wood species.
Collapse
|
10
|
Srivastava B, Sen S, Sen K. Free serum sorbitol and its interaction with caffeine: A suggestive approach for plausible remediation of diabetic neuropathy. Biotechnol Appl Biochem 2020; 69:77-91. [PMID: 33264452 DOI: 10.1002/bab.2083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022]
Abstract
The measure of sorbitol in serum can act as a good indicator in the monitoring of the diabetic complications. To analyze the sorbitol level in serum medium, fluorometric enzymatic assay was performed. To remove the excess sorbitol from the body, proposed binding of sorbitol with caffeine was investigated. Their interaction in serum medium was studied and established by UV-Vis, fluorescence spectrophotometry, and time-correlated single photon counting (TCSPC). The linear calibration of sorbitol (in the range 10-50 mM) was done using UV-Vis spectrophotometry. Time scan experiments furnished the reaction rate of sorbitol assayed solution as well as sorbitol-caffeine complex as 0.021 min-1 and 0.018 min-1 , respectively. A sudden drop was observed in the fluorescence lifetime of reduced nicotinamide adenine dinucleotide (NADH) present in sorbitol assayed solution upon complexation with caffeine, that is, from 1.774 × 10-09 to 1.23 × 10-10 Sec, which indicates the hindrance in the formation of NADH and the probable formation of some other species. Isothermal titration calorimetric experiments clearly indicate the number of binding sites (i.e., 3.89, 1.40, and 2.07) that exist between sorbitol and caffeine at the complexation ratio of 1:1.2, 1:1.5, and 1:3. The present method can be helpful in pharmacological and therapeutic studies of sorbitol using caffeine for treating diabetic neuropathy.
Collapse
Affiliation(s)
- Bhavya Srivastava
- Department of Chemistry, University of Calcutta, 92, APC Road, Kolkata, West Bengal, 700009, India
| | - Souvik Sen
- KPC Medical College & Hospital, 1F, Raja Subodh Chandra Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Kamalika Sen
- Department of Chemistry, University of Calcutta, 92, APC Road, Kolkata, West Bengal, 700009, India
| |
Collapse
|
11
|
Reddy V, Saharay M. Solubility of Caffeine in Supercritical CO 2: A Molecular Dynamics Simulation Study. J Phys Chem B 2019; 123:9685-9691. [PMID: 31617358 DOI: 10.1021/acs.jpcb.9b08351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The extraction of caffeine from green tea leaves and cocoa beans is a common industrial process for the production of decaffeinated beverages and pharmaceuticals. The choice of the solvent critically determines the yield of this extraction process. Being an environmentally benign and recyclable solvent, supercritical carbon dioxide (scCO2) has emerged as the most desirable green solvent for caffeine extraction. The present study investigates the solvation properties of caffeine in scCO2 at two different temperatures (318 and 350 K) using molecular dynamics simulations. Unlike in water, the caffeine molecules in scCO2 do not aggregate to form clusters due to relatively stronger caffeine-CO2 interactions. A well-structured scCO2 solvent shell envelops each caffeine molecule as a result of strong electron-donor-acceptor (EDA) and hydrogen-bonding interactions between these two species. Upon heating, although marginal site-specific changes in the distribution of nearest CO2 around caffeine are observed, the overall distribution is retained. At a higher temperature, the caffeine-CO2 hydrogen-bonding interactions are weakened, while their EDA interactions become relatively stronger. The results underscore the importance of the interplay of these interactions in determining stable solvent structures and solubility of caffeine in scCO2.
Collapse
Affiliation(s)
- Vishwanath Reddy
- Department of Physics, University College of Science , Osmania University , Hyderabad 500007 , Telangana , India
| | - Moumita Saharay
- Department of Physics, University College of Science , Osmania University , Hyderabad 500007 , Telangana , India
| |
Collapse
|
12
|
Shumilin I, Allolio C, Harries D. How Sugars Modify Caffeine Self-Association and Solubility: Resolving a Mechanism of Selective Hydrotropy. J Am Chem Soc 2019; 141:18056-18063. [DOI: 10.1021/jacs.9b07056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ilan Shumilin
- Institute of Chemistry, The Fritz Haber Research Center, and The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, The Hebrew University, Jerusalem 9190401, Israel
| | - Christoph Allolio
- Institute of Chemistry, The Fritz Haber Research Center, and The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, The Hebrew University, Jerusalem 9190401, Israel
| | - Daniel Harries
- Institute of Chemistry, The Fritz Haber Research Center, and The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, The Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
13
|
Majidi R, Taghiyari HR, Abdolmaleki D. Molecular Dynamics Simulation Evaluating the Hydrophilicity of Nanowollastonite on Cellulose. J STRUCT CHEM+ 2019. [DOI: 10.1134/s0022476619090178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Redivo L, Anastasiadi RM, Pividori M, Berti F, Peressi M, Di Tommaso D, Resmini M. Prediction of self-assembly of adenosine analogues in solution: a computational approach validated by isothermal titration calorimetry. Phys Chem Chem Phys 2019; 21:4258-4267. [PMID: 30644470 DOI: 10.1039/c8cp05647a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recent discovery of the role of adenosine-analogues as neuroprotectants and cognitive enhancers has sparked interest in these molecules as new therapeutic drugs. Understanding the behavior of these molecules in solution and predicting their ability to self-assemble will accelerate new discoveries. We propose a computational approach based on density functional theory, a polarizable continuum solvation description of the aqueous environment, and an efficient search procedure to probe the potential energy surface, to determine the structure and thermodynamic stability of molecular clusters of adenosine analogues in solution, using caffeine as a model. The method was validated as a tool for the prediction of the impact of small structural variations on self-assembly using paraxanthine. The computational results were supported by isothermal titration calorimetry experiments. The thermodynamic parameters enabled the quantification of the actual percentage of dimer present in solution as a function of concentration. The data suggest that both caffeine and paraxanthine are present at concentrations comparable to the ones found in biological samples.
Collapse
Affiliation(s)
- Luca Redivo
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | | | | | | | | | | | | |
Collapse
|
15
|
Selected physicochemical and solubilization properties of pharmacopeal solutions of dry green tea leaf extract ( Ext. Camellia sinensis L. folium aqu. siccum). HERBA POLONICA 2018. [DOI: 10.2478/hepo-2018-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Introduction: Green tea offers not only pleasant, delicate flavor, but also provides health benefits. The extract contains, among others, polyphenols responsible for antioxidant and anti-inflammatory properties. They reduce the risk of cancer and their presence exerts preventive activity against cardiovascular diseases.
Objective: Analysis of selected physicochemical and solubilizing properties of pharmacopoeial-true solutions of dry green tea extract.
Methods: The caffeine content was determined in the extract and in dry residue after solubilization by high performance liquid chromatography. The process of micellar solubilization of cholesterol granules and ketoprofen was carried out in model solutions of green tea extract.
Results: The obtained results indicate that the prepared ‘ex tempore’ leaf green tea infusion subjected to short thermal exposure will be characterized by significant solubilization abilities.
Conclusions: The outcomes of the research pointed to the possibility of developing a solid oral dosage form with titrated dry green tea extract of expected pharmacotherapeutic profile.
Collapse
|
16
|
Tavagnacco L, Mason PE, Neilson GW, Saboungi ML, Cesàro A, Brady JW. Molecular Dynamics and Neutron Scattering Studies of Mixed Solutions of Caffeine and Pyridine in Water. J Phys Chem B 2018; 122:5308-5315. [PMID: 29092394 DOI: 10.1021/acs.jpcb.7b07798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Insight into the molecular interactions of homotactic and heterotactic association of caffeine and pyridine in aqueous solution is given on the basis of both experimental and simulation studies. Caffeine is about 5 times more soluble in a 3 m aqueous pyridine solution than it is in pure water (an increase from ∼0.1 m to 0.5 m). At this elevated concentration the system becomes suitable for neutron scattering study. Caffeine-pyridine interactions were studied by neutron scattering and molecular dynamics simulations, allowing a detailed characterization of the spatial and orientational structure of the solution. It was found that while pyridine-caffeine interactions are not as strong as caffeine-caffeine interactions, the pyridine-caffeine interactions still significantly disrupted caffeine-caffeine stacking. The alteration of the caffeine-caffeine stacking, occasioned by the presence of pyridine molecules in solution and the consequent formation of heterotactic interactions, leads to the experimentally detected increase in caffeine solubility.
Collapse
Affiliation(s)
- Letizia Tavagnacco
- Department of Food Science , Cornell University , Ithaca , New York 14853 , United States.,Department of Chemical and Pharmaceutical Sciences , University of Trieste , Via Giorgieri 1 , I-34127 Trieste , Italy
| | - Philip E Mason
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems , 16610 Prague 6 , Czech Republic
| | - George W Neilson
- H. H. Wills Physics Laboratory , University of Bristol , Bristol BS8 1TL , United Kingdom
| | - Marie-Louise Saboungi
- IMPMC-Université Pierre et Marie Curie and CNRS , 4 Place Jussieu , F-75252 Paris , France.,Functional Nano & Soft Materials Laboratory (FUNSOM) , Soochow University , Suzhou 215123 , China
| | - Attilio Cesàro
- Department of Chemical and Pharmaceutical Sciences , University of Trieste , Via Giorgieri 1 , I-34127 Trieste , Italy.,Elettra-Sincrotrone Trieste S.C.p.A ., Strada Statale 14 Km 163.5, Area Science Park , I-34149 Trieste , Italy
| | - John W Brady
- Department of Food Science , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
17
|
Physico-chemical properties of aqueous drug solutions: From the basic thermodynamics to the advanced experimental and simulation results. Int J Pharm 2018; 540:65-77. [PMID: 29412151 DOI: 10.1016/j.ijpharm.2018.01.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 11/20/2022]
Abstract
The physical chemical properties of aqueous solutions of model compounds are illustrated in relation to hydration and solubility issues by using three perspectives: thermodynamic, spectroscopic and molecular dynamics simulations. The thermodynamic survey of the fundamental backgrounds of concentration dependence and experimental solubility results show some peculiar behavior of aqueous solutions with several types of similar solutes. Secondly, the use of a variety of experimental spectroscopic devices, operating under different experimental conditions of dimension and frequency, has produced a large amount of structural and dynamic data on aqueous solutions showing the richness of the information produced, depending on where and how the experiment is carried out. Finally, the use of molecular dynamics computational work is presented to highlight how the different types of solute functional groups and surface topologies organize adjacent water molecules differently. The highly valuable contribution of computer simulation studies in providing molecular explanations for experimental deductions, either of a thermodynamic or spectroscopic nature, is shown to have changed the current knowledge of many aqueous solution processes. While this paper is intended to provide a collective view on the latest literature results, still the presentation aims at a tutorial explanation of the potentials of the three methodologies in the field of aqueous solutions of pharmaceutical molecules.
Collapse
|
18
|
Ghanadzadeh Gilani A, Poormohammadi-Ahandani Z, Kian R. Additive-induced aggregate changes of two structurally similar dyes in aqueous solutions: A comparative photophysical study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 189:543-555. [PMID: 28866410 DOI: 10.1016/j.saa.2017.08.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/01/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Absorption and emission spectral characteristics of the two structurally similar phenothiazine dyes, azure B and toluidine blue, in aqueous solutions of the two sets of molecular additives (ureas and monosaccharides) were studied as a function of the dye and additive concentrations. The absorption spectra of the dyes were also studied in pure tetramethylurea with an aprotic nature. The spectral data were analyzed using DECOM Program. The dimer structure of the interacting molecules in these dyes was discussed using the exciton model. The urea class of additives was found to act as water structure-breakers over the range of studied concentration. The carbohydrate additives were found to act as water structure-breakers at low concentrations. However, the water structure breaking process may be disfavored by the additive-additive interactions at higher concentrations. It can be concluded that at low additive concentrations, the main driving force for breaking the dye association is water-additive interaction, which disrupts the water hydrogen bonds induced by the additives. However, at the high additive concentrations, the different phenomena including additive-additive and additive-dye interactions can change the structure, strength, and aggregative properties of the dyes. Finally, the urea in water induces noticeably fluorescence quenching in emission spectra of both the dyes.
Collapse
Affiliation(s)
| | | | - R Kian
- Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz, Iran
| |
Collapse
|
19
|
Schnupf U, Brady JW. Water structuring above solutes with planar hydrophobic surfaces. Phys Chem Chem Phys 2017; 19:11851-11863. [PMID: 28435966 DOI: 10.1039/c7cp00179g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Many important biological solutes possess not only polar and hydrogen bonding functionalities, but also weakly-hydrating, or hydrophobic, surfaces. Theories of the hydration of such surfaces predict that their solvent interactions will change from a wetting type interaction to a dewetting regime as a function of the solute size, with a gradual transition in behavior taking place around characteristic lengths of ∼1 nm. Aggregations of non-polar species over this size range will undergo a transition from being dominated by entropy to being dominated by enthalpy. These transitions can be understood in part in terms of the geometries required of the solvating water molecules. We report here a series of simulations in aqueous solution of organic molecules with planar faces of increasing size, ranging from cyclopropane to circumcircumcoronene, in order to explore the transition in behavior for such solutes as their size increases. For this series, the dewetting transition occurred gradually, converging asymptotically to a limiting separation value for first layer water molecules of around 3.3 Å, while the transition in hydrogen bonding orientational structure occurred between cyclopropane and cyclopentadene. Water immediately adjacent to the largest planar hydrophobic surfaces oriented in ways that resembled on average the structural organization of the basal planes of ice.
Collapse
Affiliation(s)
- Udo Schnupf
- Department of Chemistry and Biochemistry, Bradley University, Peoria, IL 61625, USA
| | | |
Collapse
|
20
|
Trani A, Petrucci R, Marrosu G, Zane D, Curulli A. Selective electrochemical determination of caffeine at a gold-chitosan nanocomposite sensor: May little change on nanocomposites synthesis affect selectivity? J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.01.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Johnson NO, Light TP, MacDonald G, Zhang Y. Anion–Caffeine Interactions Studied by 13C and 1H NMR and ATR–FTIR Spectroscopy. J Phys Chem B 2017; 121:1649-1659. [DOI: 10.1021/acs.jpcb.6b12150] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nicolas O. Johnson
- Department of Chemistry and
Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| | - Taylor P. Light
- Department of Chemistry and
Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| | - Gina MacDonald
- Department of Chemistry and
Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| | - Yanjie Zhang
- Department of Chemistry and
Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| |
Collapse
|
22
|
Rogers BA, Thompson TS, Zhang Y. Hofmeister Anion Effects on Thermodynamics of Caffeine Partitioning between Aqueous and Cyclohexane Phases. J Phys Chem B 2016; 120:12596-12603. [DOI: 10.1021/acs.jpcb.6b07760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bradley A. Rogers
- Department of Chemistry and
Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| | - Tye S. Thompson
- Department of Chemistry and
Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| | - Yanjie Zhang
- Department of Chemistry and
Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| |
Collapse
|
23
|
Feng T, Zhu X, Campanella O. Molecular modeling tools to characterize the structure and complexation behavior of carbohydrates. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Abd E, Namjoshi S, Mohammed YH, Roberts MS, Grice JE. Synergistic Skin Penetration Enhancer and Nanoemulsion Formulations Promote the Human Epidermal Permeation of Caffeine and Naproxen. J Pharm Sci 2016; 105:212-20. [PMID: 26554868 DOI: 10.1002/jps.24699] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/18/2015] [Accepted: 09/30/2015] [Indexed: 11/07/2022]
Abstract
We examined the extent of skin permeation enhancement of the hydrophilic drug caffeine and lipophilic drug naproxen applied in nanoemulsions incorporating skin penetration enhancers. Infinite doses of fully characterized oil-in-water nanoemulsions containing the skin penetration enhancers oleic acid or eucalyptol as oil phases and caffeine (3%) or naproxen (2%) were applied to human epidermal membranes in Franz diffusion cells, along with aqueous control solutions. Caffeine and naproxen fluxes were determined over 8 h. Solute solubility in the formulations and in the stratum corneum (SC), as well as the uptake of product components into the SC were measured. The nanoemulsions significantly enhanced the skin penetration of caffeine and naproxen, compared to aqueous control solutions. Caffeine maximum flux enhancement was associated with a synergistic increase in both caffeine SC solubility and skin diffusivity, whereas a formulation-increased solubility in the SC was the dominant determinant for increased naproxen fluxes. Enhancements in SC solubility were related to the uptake of the formulation excipients containing the active compounds into the SC. Enhanced skin penetration in these systems is largely driven by uptake of formulation excipients containing the active compounds into the SC with impacts on SC solubility and diffusivity.
Collapse
|
25
|
Abstract
Sugars and salts strongly affect the dimerization of caffeine in water. Such a change of dimerization, considered to be crucial for bitter taste suppression, has long been rationalized by the change of "water structure" induced by the additives; "kosmotropic" (water structure enhancing) salts and sugars promote dimerization, whereas "chaotropic" (water structure breaking) salts suppress dimerization. Based on statistical thermodynamics, here we challenge this consensus; we combine the rigorous Kirkwood-Buff theory of solution with the classical isodesmic model of caffeine association. Instead of the change of water structure, we show that the enhancement of caffeine dimerization is due to the exclusion of additives from caffeine, and that the weakening of dimerization is due to the binding of additives on caffeine.
Collapse
Affiliation(s)
- Seishi Shimizu
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
26
|
Angles d’Ortoli T, Sjöberg NA, Vasiljeva P, Lindman J, Widmalm G, Bergenstråhle-Wohlert M, Wohlert J. Temperature Dependence of Hydroxymethyl Group Rotamer Populations in Cellooligomers. J Phys Chem B 2015; 119:9559-70. [DOI: 10.1021/acs.jpcb.5b02866] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Thibault Angles d’Ortoli
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106
91 Stockholm, Sweden
| | - Nils A. Sjöberg
- Wallenberg
Wood Science Center, and the Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Polina Vasiljeva
- Wallenberg
Wood Science Center, and the Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Jonas Lindman
- Wallenberg
Wood Science Center, and the Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Göran Widmalm
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106
91 Stockholm, Sweden
| | - Malin Bergenstråhle-Wohlert
- Wallenberg
Wood Science Center, and the Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Jakob Wohlert
- Wallenberg
Wood Science Center, and the Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
27
|
Alqus R, Eichhorn SJ, Bryce RA. Molecular Dynamics of Cellulose Amphiphilicity at the Graphene–Water Interface. Biomacromolecules 2015; 16:1771-83. [DOI: 10.1021/acs.biomac.5b00307] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rasha Alqus
- Manchester
Pharmacy School, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Stephen J. Eichhorn
- Centre
for Graphene Science, College of Engineering, Maths and Physical Sciences, University of Exeter, Physics Building, Stocker Road, Exeter, Devon, EX4 4QL, United Kingdom
| | - Richard A. Bryce
- Manchester
Pharmacy School, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
28
|
Sharma B, Paul S. Understanding the Role of Temperature Change and the Presence of NaCl Salts on Caffeine Aggregation in Aqueous Solution: From Structural and Thermodynamics Point of View. J Phys Chem B 2015; 119:6421-32. [DOI: 10.1021/jp512336n] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bhanita Sharma
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
29
|
Wilson KA, Wetmore SD. A Survey of DNA–Protein π–Interactions: A Comparison of Natural Occurrences and Structures, and Computationally Predicted Structures and Strengths. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2015. [DOI: 10.1007/978-3-319-14163-3_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
30
|
Miyamoto H, Schnupf U, Brady JW. Water structuring over the hydrophobic surface of cellulose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11017-11023. [PMID: 25365241 DOI: 10.1021/jf501763r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Many important biological solutes possess not only polar and hydrogen-bonding functionalities but also weakly hydrating, or hydrophobic, surfaces. While the aggregation of these hydrophobic surfaces has been shown to play an important role in the aggregation of individual chains of cellulose, it is not known whether the water structuring imposed by these hydrophobic surfaces more closely resembles that associated with small hydrophobic solutes like methane and fats or more closely resembles that associated with extended hydrophobic surfaces like mica or waxy planes. By using molecular dynamics simulations to characterize the water molecule orientations over different regions of the 100 surface of cellulose in contact with water, it was found that the hydrophobic strips of the cellulose crystal are sufficiently narrow that they hydrate like a fatty acid chain, rather than like a more extended surface, suggesting that their aggregation would be dominated by entropy rather than enthalpy.
Collapse
Affiliation(s)
- Hitomi Miyamoto
- Department of Food Science, Cornell University , Ithaca, New York 14853, United States
| | | | | |
Collapse
|
31
|
Carolina Torres A, Barsan MM, Brett CM. Simple electrochemical sensor for caffeine based on carbon and Nafion-modified carbon electrodes. Food Chem 2014; 149:215-20. [DOI: 10.1016/j.foodchem.2013.10.114] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 10/18/2013] [Accepted: 10/24/2013] [Indexed: 11/25/2022]
|
32
|
Senthilnithy R, Weerasingha M, Dissanayake D. Interaction of caffeine dimers with water molecules. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2013.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Sharma B, Paul S. Effects of dilute aqueous NaCl solution on caffeine aggregation. J Chem Phys 2013; 139:194504. [DOI: 10.1063/1.4830414] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Tavagnacco L, Brady JW, Cesàro A. The Interaction of Sorbitol with Caffeine in Aqueous Solution. FOOD BIOPHYS 2013; 8:216-222. [PMID: 24000279 DOI: 10.1007/s11483-013-9290-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular dynamics simulations were carried out on a system of caffeine interacting with the sugar alcohol sorbitol. The system examined had a caffeine concentration 0.083 m and a sugar concentration 1.08 m. The trajectories of all molecules in the system were collected over a period of 80 ns and analyzed to determine whether there is any tendency for sorbitol to bind to caffeine, and if so, by what mechanism. The results show that the sorbitol molecules have an affinity for the caffeine molecules and that the binding occurred by the interaction of the aliphatic hydrophobic protons of the sugar with the caffeine face. This intermolecular association via face-to-face stacking, as suggested by simulation studies, is similar to that found for sucrose and for D-glucose, which overwhelmingly exists in the pyranose ring chair form in aqueous solution, as well as for caffeine-caffeine association. The sorbitol molecules, however, exist as relatively extended chains and are, therefore, topologically quite different from the sugars sucrose and glucose. The comparison of the average conformation of sorbitol molecules bound to caffeine with that of molecules in the free state shows a substantial similarity.
Collapse
Affiliation(s)
- Letizia Tavagnacco
- Department of Food Science, Cornell University, Ithaca, NY 14853 ; Department of Life Sciences, University of Trieste, Trieste, ITALY
| | | | | |
Collapse
|
35
|
Peshev D, Vergauwen R, Moglia A, Hideg É, Van den Ende W. Towards understanding vacuolar antioxidant mechanisms: a role for fructans? JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1025-38. [PMID: 23349141 PMCID: PMC3580814 DOI: 10.1093/jxb/ers377] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Recent in vitro, in vivo, and theoretical experiments strongly suggest that sugar-(like) molecules counteract oxidative stress by acting as genuine reactive oxygen species (ROS) scavengers. A concept was proposed to include the vacuole as a part of the cellular antioxidant network. According to this view, sugars and sugar-like vacuolar compounds work in concert with vacuolar phenolic compounds and the 'classic' cytosolic antioxidant mechanisms. Among the biologically relevant ROS (H(2)O(2), O(2)·(-), and ·OH), hydroxyl radicals are the most reactive and dangerous species since there are no enzymatic systems known to neutralize them in any living beings. Therefore, it is important to study in more detail the radical reactions between ·OH and different biomolecules, including sugars. Here, Fenton reactions were used to compare the ·OH-scavenging capacities of a range of natural vacuolar compounds to establish relationships between antioxidant capacity and chemical structure and to unravel the mechanisms of ·OH-carbohydrate reactions. The in vitro work on the ·OH-scavenging capacity of sugars and phenolic compounds revealed a correlation between structure and ·OH-scavenging capacity. The number and position of the C=C type of linkages in phenolic compounds greatly influence antioxidant properties. Importantly, the splitting of disaccharides and oligosaccharides emerged as a predominant outcome of the ·OH-carbohydrate interaction. Moreover, non-enzymatic synthesis of new fructan oligosaccharides was found starting from 1-kestotriose. Based on these and previous findings, a working model is proposed describing the putative radical reactions involving fructans and secondary metabolites at the inner side of the tonoplast and in the vacuolar lumen.
Collapse
Affiliation(s)
- Darin Peshev
- KU Leuven, Laboratory of Molecular Plant Biology, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Rudy Vergauwen
- KU Leuven, Laboratory of Molecular Plant Biology, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Andrea Moglia
- University of Turin, DISAFA-Plant Genetics and Breeding, Via Leonardo da Vinci, 44, 10095 Grugliasco (TO), Italy
| | - Éva Hideg
- University of Pécs, Faculty of Science, Institute of Biology, Ifjusag u. 6. H-7624 Pecs, Hungary
| | - Wim Van den Ende
- KU Leuven, Laboratory of Molecular Plant Biology, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| |
Collapse
|