1
|
Bödecker M, Mihrin D, Suhm MA, Wugt Larsen R. Regularities and Anomalies in Neon Matrix Shifts of Hydrogen-Bonded O-H Stretching Fundamentals. J Phys Chem A 2024; 128:7124-7136. [PMID: 39155731 PMCID: PMC11372756 DOI: 10.1021/acs.jpca.4c03468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
O-H bond stretching vibrations in hydrogen-bonded complexes embedded into cryogenic neon matrices are subtly downshifted from cold gas phase reference wavenumbers. To the extent that this shift is systematic, it enables neon matrices as more universally applicable spectroscopic benchmark environments for quantum chemical predictions. Outliers are indicative of either an assignment problem in one of the two cryogenic experiments or they reveal interesting dynamics or structural effects on the complexes as a function of the environment. We compile 6 literature-known pairs of experimental data in jet and neon matrix expansions and realize a 6-fold expansion of that number through targeted matrix isolation and/or slit jet expansion spectroscopy presented in this work. In many cases, the neon matrix shift is less than the uncertainty of the currently best-performing blind quantum chemical predictions for the gas phase, but in specific cases, it may exceed the currently achievable theoretical accuracy. Some evidence for a positive correlation of the matrix shift with the hydrogen bond shift is found, similar to observations for helium nanodroplets. Outliers in particular for water acting as a donor are discussed, and in a few cases they call for a future reinvestigation. Substantial improvement in the correlation of the matrix shift with the hydrogen bond shift is achieved for ketone monohydrates by removing a vibrational resonance. New insights into nitrile hydration isomerism are obtained, and the linear OH stretching spectrum of the jet-cooled ammonia-water complex is presented for the first time. Vibrational spectroscopy in weakly perturbing solid rare gas quantum matrices for the benchmarking of gas phase theory and future explicit theoretical treatments of the quantum matrix environment to better understand the outliers are both encouraged.
Collapse
Affiliation(s)
- Margarethe Bödecker
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Dmytro Mihrin
- Department of Chemistry, Technical University of Denmark, Kemitorvet 206, 2800 Kgs. Lyngby, Denmark
| | - Martin A Suhm
- Institute of Physical Chemistry, University of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - René Wugt Larsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 206, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Vogt E, Simkó I, Császár AG, Kjaergaard HG. Quantum Chemical Investigation of the Cold Water Dimer Spectrum in the First OH-Stretching Overtone Region Provides a New Interpretation. J Phys Chem A 2023; 127:9409-9418. [PMID: 37930939 DOI: 10.1021/acs.jpca.3c03705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Intramolecular vibrational transition wavenumbers and intensities were calculated in the fundamental HOH-bending, fundamental OH-stretching, first OH-stretching-HOH-bending combination, and first OH-stretching overtone (ΔvOH = 2) regions of the water dimer's spectrum. Furthermore, the rotational-vibrational spectrum was calculated in the ΔvOH = 2 region at 10 K, corresponding to the temperature of the existing jet-expansion experiments. The calculated spectrum was obtained by combining results from a full-dimensional (12D) vibrational and a reduced-dimensional vibrational-rotational-tunneling model. The ΔvOH = 2 spectral region is rich in features due to contributions from multiple vibrational-rotational-tunneling sub-bands. Origins of the experimental vibrational bands depend on the assignment of the observed sub-bands. Based on our calculations, we assign the observed sub-bands, and our reassignment leads to new values for the vibrational band origins of the free donor and antisymmetric acceptor OH-stretching first overtones of ∼7227 and ∼7238 cm-1, respectively. The observed bands with origins at 7192.34 and ∼7366 cm-1 are assigned to the symmetric acceptor OH-stretching first overtone and the OH-stretching combination of the donor, respectively.
Collapse
Affiliation(s)
- Emil Vogt
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Irén Simkó
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest H-1117, Hungary
- HUN-REN-ELTE Complex Chemical Systems Research Group, P.O. Box 32, Budapest 112 H-1518, Hungary
| | - Attila G Császár
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest H-1117, Hungary
- HUN-REN-ELTE Complex Chemical Systems Research Group, P.O. Box 32, Budapest 112 H-1518, Hungary
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| |
Collapse
|
3
|
Camiruaga A, Saragi RT, Torres-Hernández F, Juanes M, Usabiaga I, Lesarri A, Fernández JA. The evolution towards cyclic structures in the aggregation of aromatic alcohols: the dimer, trimer and tetramer of 2-phenylethanol. Phys Chem Chem Phys 2022; 24:24800-24809. [PMID: 36214363 DOI: 10.1039/d2cp03485a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Gas-phase spectroscopic studies of alcohol clusters offer accurate information on the influence of non-covalent interactions on molecular recognition, and are of paramount importance to model supramolecular and biological chemical processes. Here, we examine the role of the aliphatic side chain in the self-aggregation of aromatic alcohols, using a multi-methodological gas-phase approach which combines microwave spectroscopy and mass-resolved electronic and vibrational laser spectroscopy. Spectroscopic and electronic structure computations were carried out for the dimer, trimer and tetramer of 2-phenylethanol, extending previous investigations on smaller aromatic alcohols. While the conformational flexibility of the ethyl group anticipates a variety of torsional isomers, the intra- and inter-molecular interactions restrict molecular conformations and favour particularly stable isomers. The conformational landscape of the clusters is very shallow and multiple competing isomers were rotationally and/or vibrationally detected, including three dimer species, two trimers and two tetramers. Cluster growth is associated with a tendency to form cyclic hydrogen bond structures.
Collapse
Affiliation(s)
- Ander Camiruaga
- Dep. of Physical Chemistry, Fac. of Science and Technology, University of the Basque Country (UPV/EHU), Bo̲ Sarriena S/N, Leioa, 48940, Spain.
| | - Rizalina Tama Saragi
- Dep. of Physical Chemistry and Inorganic Chemistry, Fac. of Sciences - I.U. CINQUIMA, University of Valladolid, Paseo de Belén, 7, 47011, Valladolid, Spain
| | - Fernando Torres-Hernández
- Dep. of Physical Chemistry, Fac. of Science and Technology, University of the Basque Country (UPV/EHU), Bo̲ Sarriena S/N, Leioa, 48940, Spain.
| | - Marcos Juanes
- Dep. of Physical Chemistry and Inorganic Chemistry, Fac. of Sciences - I.U. CINQUIMA, University of Valladolid, Paseo de Belén, 7, 47011, Valladolid, Spain
| | - Imanol Usabiaga
- Dep. of Physical Chemistry, Fac. of Science and Technology, University of the Basque Country (UPV/EHU), Bo̲ Sarriena S/N, Leioa, 48940, Spain.
| | - Alberto Lesarri
- Dep. of Physical Chemistry and Inorganic Chemistry, Fac. of Sciences - I.U. CINQUIMA, University of Valladolid, Paseo de Belén, 7, 47011, Valladolid, Spain
| | - José A Fernández
- Dep. of Physical Chemistry, Fac. of Science and Technology, University of the Basque Country (UPV/EHU), Bo̲ Sarriena S/N, Leioa, 48940, Spain.
| |
Collapse
|
4
|
Vogt E, Simkó I, Császár AG, Kjaergaard HG. Reduced-dimensional vibrational models of the water dimer. J Chem Phys 2022; 156:164304. [PMID: 35490001 DOI: 10.1063/5.0090013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A model based on the finite-basis representation of a vibrational Hamiltonian expressed in internal coordinates is developed. The model relies on a many-mode, low-order expansion of both the kinetic energy operator and the potential energy surface (PES). Polyad truncations and energy ceilings are used to control the size of the vibrational basis to facilitate accurate computations of the OH stretch and HOH bend intramolecular transitions of the water dimer (H2 16O)2. Advantages and potential pitfalls of the applied approximations are highlighted. The importance of choices related to the treatment of the kinetic energy operator in reduced-dimensional calculations and the accuracy of different water dimer PESs are discussed. A range of different reduced-dimensional computations are performed to investigate the wavenumber shifts in the intramolecular transitions caused by the coupling between the intra- and intermolecular modes. With the use of symmetry, full 12-dimensional vibrational energy levels of the water dimer are calculated, predicting accurately the experimentally observed intramolecular fundamentals. It is found that one can also predict accurate intramolecular transition wavenumbers for the water dimer by combining a set of computationally inexpensive reduced-dimensional calculations, thereby guiding future effective-Hamiltonian treatments.
Collapse
Affiliation(s)
- Emil Vogt
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Irén Simkó
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Attila G Császár
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
5
|
Vogt E, Kjaergaard HG. Vibrational Spectroscopy of the Water Dimer at Jet-Cooled and Atmospheric Temperatures. Annu Rev Phys Chem 2022; 73:209-231. [PMID: 35044791 DOI: 10.1146/annurev-physchem-082720-104659] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vibrational spectroscopy of the water dimer provides an understanding of basic hydrogen bonding in water clusters, and with about one water dimer for every 1,000 water molecules, it plays a critical role in atmospheric science. Here, we review how the experimental and theoretical progress of the past decades has improved our understanding of water dimer vibrational spectroscopy under both cold and warm conditions. We focus on the intramolecular OH-stretching transitions of the donor unit, because these are the ones mostly affected by dimer formation and because their assignment has proven a challenge. We review cold experimental results from early matrix isolation to recent mass-selected jet expansion techniques and, in parallel, the improvements in the theoretical anharmonic models. We discuss and illustrate changes in the vibrational spectra of complexes upon increasing temperature, and the difficulties in recording and calculating these spectra. In the atmosphere, water dimer spectra at ambient temperature are crucial. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Emil Vogt
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark;
| | | |
Collapse
|
6
|
León I, Montero R, Longarte A, Fernández JA. Revisiting the Spectroscopy of Water Dimer in Jets. J Phys Chem Lett 2021; 12:1316-1320. [PMID: 33535759 PMCID: PMC9157493 DOI: 10.1021/acs.jpclett.0c03001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Laser spectroscopy in jets is one of the main sources of structural data from molecular aggregates. Consequently, numerous and sophisticated experimental systems have been developed to extract precise information, which is usually interpreted in the light of quantum mechanical calculations. However, even with the most sophisticated experiments, it is sometimes difficult to interpret the experimental results. We present here the example of water dimer and how after almost 70 years, the assignment of its mass-resolved IR spectrum still generates controversy that extends toward the mechanism of ionization of water aggregates.
Collapse
Affiliation(s)
- Iker León
- Grupo
de Espectroscopía Molecular (GEM), Edificio Quifima, Unidad Asociada CSIC, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Raúl Montero
- SGIKER
Laser Facility, University of the Basque
Country (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Asier Longarte
- Department
of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Spain
| | - José A. Fernández
- Department
of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa 48940, Spain
| |
Collapse
|
7
|
Gloaguen E, Mons M, Schwing K, Gerhards M. Neutral Peptides in the Gas Phase: Conformation and Aggregation Issues. Chem Rev 2020; 120:12490-12562. [PMID: 33152238 DOI: 10.1021/acs.chemrev.0c00168] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Combined IR and UV laser spectroscopic techniques in molecular beams merged with theoretical approaches have proven to be an ideal tool to elucidate intrinsic structural properties on a molecular level. It offers the possibility to analyze structural changes, in a controlled molecular environment, when successively adding aggregation partners. By this, it further makes these techniques a valuable starting point for a bottom-up approach in understanding the forces shaping larger molecular systems. This bottom-up approach was successfully applied to neutral amino acids starting around the 1990s. Ever since, experimental and theoretical methods developed further, and investigations could be extended to larger peptide systems. Against this background, the review gives an introduction to secondary structures and experimental methods as well as a summary on theoretical approaches. Vibrational frequencies being characteristic probes of molecular structure and interactions are especially addressed. Archetypal biologically relevant secondary structures investigated by molecular beam spectroscopy are described, and the influences of specific peptide residues on conformational preferences as well as the competition between secondary structures are discussed. Important influences like microsolvation or aggregation behavior are presented. Beyond the linear α-peptides, the main results of structural analysis on cyclic systems as well as on β- and γ-peptides are summarized. Overall, this contribution addresses current aspects of molecular beam spectroscopy on peptides and related species and provides molecular level insights into manifold issues of chemical and biochemical relevance.
Collapse
Affiliation(s)
- Eric Gloaguen
- CEA, CNRS, Université Paris-Saclay, CEA Paris-Saclay, Bât 522, 91191 Gif-sur-Yvette, France
| | - Michel Mons
- CEA, CNRS, Université Paris-Saclay, CEA Paris-Saclay, Bât 522, 91191 Gif-sur-Yvette, France
| | - Kirsten Schwing
- TU Kaiserslautern & Research Center Optimas, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany
| | - Markus Gerhards
- TU Kaiserslautern & Research Center Optimas, Erwin-Schrödinger-Straße 52, D-67663 Kaiserslautern, Germany
| |
Collapse
|
8
|
Stamm A, Maué D, Gerhards M. Structural Rearrangement by Isomer-Specific Infrared Excitation in the Neutral Isolated Dihydrated Cluster of 3-Hydroxyflavone. J Phys Chem Lett 2018; 9:4360-4366. [PMID: 29991253 DOI: 10.1021/acs.jpclett.8b01680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Isomer-specific, IR-induced reactions in the electronic ground state (S0) can be of great interest to control reaction pathways. Here we show a first example of these reactions with isomer-specific excitation and formation of a new isomer under isolated conditions in a molecular beam experiment. The investigated dihydrated cluster of 3-hydroxyflavone forms two isomers, I and D, in the S0 state. We show that only a mode-specific excitation of isomer I leads to a structural rearrangement yielding an isomer that has not been identified so far. This isomer is assigned in comparison to quantum chemical calculations. The experiments are performed by applying an IR/IR method in combination with a mass-selective resonant two-photon ionization (R2PI) process. Usually these kinds of IR/IR/R2PI methods are chosen to discriminate isomers; here it is demonstrated that this powerful method can also be applied for analysis of IR-induced reactions probed by an IR/R2PI process.
Collapse
Affiliation(s)
- Anke Stamm
- Fachbereich Chemie & Research Center Optimas , TU Kaiserslautern , Erwin-Schroedinger-Straße 52 , D-67663 Kaiserslautern , Germany
| | - Dominique Maué
- Fachbereich Chemie & Research Center Optimas , TU Kaiserslautern , Erwin-Schroedinger-Straße 52 , D-67663 Kaiserslautern , Germany
| | - Markus Gerhards
- Fachbereich Chemie & Research Center Optimas , TU Kaiserslautern , Erwin-Schroedinger-Straße 52 , D-67663 Kaiserslautern , Germany
| |
Collapse
|
9
|
Schwing K, Gerhards M. Investigations on isolated peptides by combined IR/UV spectroscopy in a molecular beam – structure, aggregation, solvation and molecular recognition. INT REV PHYS CHEM 2016. [DOI: 10.1080/0144235x.2016.1229331] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Gloaguen E, Tardivel B, Mons M. Gas phase double-resonance IR/UV spectroscopy of an alanine dipeptide analogue using a non-covalently bound UV-tag: observation of a folded peptide conformation in the Ac-Ala-NH2–toluene complex. Struct Chem 2015. [DOI: 10.1007/s11224-015-0690-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Abstract
This chapter examines the structural characterisation of isolated neutral amino-acids and peptides. After a presentation of the experimental and theoretical state-of-the-art in the field, a review of the major structures and shaping interactions is presented. Special focus is made on conformationally-resolved studies which enable one to go beyond simple structural characterisation; probing flexibility and excited-state photophysics are given as examples of promising future directions.
Collapse
|
12
|
León I, Montero R, Longarte A, Fernández JA. Influence of dispersive forces on the final shape of a reverse micelle. Phys Chem Chem Phys 2015; 17:2241-5. [DOI: 10.1039/c4cp03667k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite that they are comparatively weaker, C–H⋯π interactions have a strong influence on the final shape of molecular aggregates.
Collapse
Affiliation(s)
- I. León
- Dep. of Physical Chemistry
- Fac. of Science and Technology
- The University of the Basque Country (UPV/EHU)
- B° Sarriena s/n
- Leioa 48940
| | - R. Montero
- Dep. of Physical Chemistry
- Fac. of Science and Technology
- The University of the Basque Country (UPV/EHU)
- B° Sarriena s/n
- Leioa 48940
| | - A. Longarte
- Dep. of Physical Chemistry
- Fac. of Science and Technology
- The University of the Basque Country (UPV/EHU)
- B° Sarriena s/n
- Leioa 48940
| | - José A. Fernández
- Dep. of Physical Chemistry
- Fac. of Science and Technology
- The University of the Basque Country (UPV/EHU)
- B° Sarriena s/n
- Leioa 48940
| |
Collapse
|
13
|
León I, Usabiaga I, Millán J, Cocinero EJ, Lesarri A, Fernández JA. Mimicking anesthetic-receptor interactions in jets: the propofol-isopropanol cluster. Phys Chem Chem Phys 2014; 16:16968-75. [PMID: 25005780 DOI: 10.1039/c4cp01702a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction of the general anesthetic propofol with an individual residue of threonine in the membrane receptors has been modeled in the gas phase by examining the adduct of propofol with the isopropanol side-chain. We determined the structural preferences of the cluster using a combination of mass-resolved laser spectroscopy and quantum mechanical calculations. The first electronic transition of propofol-isopropanol was recorded with vibrational resolution using resonant two-photon ionization (R2PI) and ion dip IR spectroscopy. The spectra obtained were compared with density-functional calculations (DFT) using the M06-2X functional in order to obtain the cluster's structure. Three isomers have been detected. The results suggest that propofol acts as a Brønsted acid, donating a proton to the isopropanol molecule in a conformation that resembles that of propofol-water, but displaced towards the aromatic ring, due to the interaction with the aliphatic side of isopropanol. The higher affinity of propofol for isopropanol compared to water may correlate with the biological role of propofol at the protein binding site. On the other hand, propofol shows a similar affinity for isopropanol and phenol, which could explain the mobility that propofol experiences inside the GABAA cavity.
Collapse
Affiliation(s)
- Iker León
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco-UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain.
| | | | | | | | | | | |
Collapse
|
14
|
Altnöder J, Oswald S, Suhm MA. Phenyl- vs Cyclohexyl-Substitution in Methanol: Implications for the OH Conformation and for Dispersion-Affected Aggregation from Vibrational Spectra in Supersonic Jets. J Phys Chem A 2014; 118:3266-79. [DOI: 10.1021/jp501763b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jonas Altnöder
- Institut
für Physikalische
Chemie, Georg-August-Universität Göttingen, Tammannstraße
6, 37077 Göttingen, Germany
| | - Sönke Oswald
- Institut
für Physikalische
Chemie, Georg-August-Universität Göttingen, Tammannstraße
6, 37077 Göttingen, Germany
| | - Martin A. Suhm
- Institut
für Physikalische
Chemie, Georg-August-Universität Göttingen, Tammannstraße
6, 37077 Göttingen, Germany
| |
Collapse
|
15
|
León I, González J, Millán J, Castaño F, Fernández JA. Behind the reactivity of lactones: a computational and spectroscopic study of phenol·γ-butyrolactone. J Phys Chem A 2014; 118:2568-75. [PMID: 24678986 DOI: 10.1021/jp4103417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, the intermolecular interaction between phenol and γ-butyrolactone (GBL) has been studied by a combination of spectroscopic and computational techniques. The electronic and vibrational transitions of phenol · GBL were measured in a supersonic jet expansion by resonant two-photon ionization (R2PI) and ion dip IR (IDIR) spectroscopy. The results obtained were compared with calculations carried out with both M06-2X and MP2 molecular orbital methods in order to characterize the intermolecular interactions. The singly detected conformer is stabilized by a relatively strong hydrogen bond in which phenol acts as a proton donor to the carbonyl group of GBL. The phenol · GBL2 cluster has also been studied, finding up to three populated conformers. Nevertheless, in the three species, the main interaction between the phenolic hydroxyl group and the GBL's carbonyl group remains similar to that of phenol · GBL. Furthermore, the C ═ O · · · H interaction is reinforced.
Collapse
Affiliation(s)
- Iker León
- Departamento de Quı́mica Fı́sica, Facultad de Ciencia y Tecnologı́a, Universidad del Paı́s Vasco-UPV/EHU , B. Sarriena s/n, Leioa 48940, Spain
| | | | | | | | | |
Collapse
|
16
|
León I, Millán J, Cocinero EJ, Lesarri A, Fernández JA. Molecular hydration of propofol dimers in supersonic expansions: formation of active centre-like structures. Phys Chem Chem Phys 2014; 16:23301-7. [DOI: 10.1039/c4cp03101f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solvation of propofol dimers is characterized by the formation of hydrogen bond networks attached to an active site-like centre.
Collapse
Affiliation(s)
- Iker León
- Department of Physical Chemistry
- Faculty of Science and Technology
- University of the Basque Country (UPV/EHU)
- Leioa 48940, Spain
| | - Judith Millán
- Department of Chemistry
- Faculty of Science
- Agricultural Studies and Informatics
- University of La Rioja
- Logroño 26006, Spain
| | - Emilio J. Cocinero
- Department of Physical Chemistry
- Faculty of Science and Technology
- University of the Basque Country (UPV/EHU)
- Leioa 48940, Spain
| | - Alberto Lesarri
- Department of Physical Chemistry and Inorganic Chemistry
- Faculty of Science
- University of Valladolid
- Valladolid 47011, Spain
| | - José A. Fernández
- Department of Physical Chemistry
- Faculty of Science and Technology
- University of the Basque Country (UPV/EHU)
- Leioa 48940, Spain
| |
Collapse
|
17
|
León I, Montero R, Longarte A, Fernández JA. IR mass-resolved spectroscopy of complexes without chromophore: Cyclohexanol·(H2O)n, n = 1–3 and cyclohexanol dimer. J Chem Phys 2013; 139:174312. [DOI: 10.1063/1.4827110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|