1
|
Kharbanda Y, Mailhiot S, Mankinen O, Urbańczyk M, Telkki VV. Monitoring cheese ripening by single-sided nuclear magnetic resonance. J Dairy Sci 2023; 106:1586-1595. [PMID: 36710190 PMCID: PMC9947740 DOI: 10.3168/jds.2022-22458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/22/2022] [Indexed: 01/31/2023]
Abstract
The noninvasive, longitudinal study of products and food processing is of interest for the dairy industry. Here, we demonstrated that single-sided nuclear magnetic resonance (NMR) can be used for noninvasive monitoring of the cheese ripening process. The maturation of soft-ripened Camembert-like molded cheese samples was monitored for 20 d measuring 1-dimensional and 2-dimensional NMR relaxation and diffusion data at various depths, ranging from the hard surface layer to the soft center. Gelation and gel shrinkage were observed throughout ripening, and a complete loss of free water signal was observed at the cheese rind. Transversal (T2) relaxation distributions include 3 components that evolve with ripening time and position, corresponding to water inside the casein gel network, water trapped in casein, and fat. Two-dimensional T1-T2 relaxation experiments provided enhanced resolution of the 3 components, allowing quantification of the relative proportions of each phase. Furthermore, diffusion (D)-T2 relaxation correlation experiments revealed the bimodal size distribution of fat globules. The study demonstrated that single-sided NMR can provide spatially resolved signal intensity, relaxation, and diffusion parameters that reflect structural changes during the ripening process and can be exploited to understand and monitor the ripening of cheeses.
Collapse
Affiliation(s)
- Y. Kharbanda
- NMR Research Unit, University of Oulu, 90570 Oulu, Finland
| | - S. Mailhiot
- NMR Research Unit, University of Oulu, 90570 Oulu, Finland
| | - O. Mankinen
- NMR Research Unit, University of Oulu, 90570 Oulu, Finland
| | - M. Urbańczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland,Corresponding authors
| | - V.-V. Telkki
- NMR Research Unit, University of Oulu, 90570 Oulu, Finland,Corresponding authors
| |
Collapse
|
2
|
Lalitha S, Srivastava V, Schmidt LE, Deshpande AP, Varughese S. Multiscale Approach to Studying Biomolecular Interactions in Cellulose-Casein Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15077-15087. [PMID: 36455281 DOI: 10.1021/acs.langmuir.2c02006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Casein finds application as an eco-friendly adhesive for paper, wood, glass, etc. Casein being a protein can undergo conformational and microstructural changes during various processing steps involved in interfacial bonding. This study aims at understanding the multiscale contributions of these changes in casein to its adhesion to cellulose pressboards. Investigations spanning from molecular structure to macroscopic adhesion characteristics have been used in this work. The lap shear strength of casein bonded cellulose pressboards is found to increase with the increase in casein concentration. It was observed from Fourier transform infrared spectroscopy (FTIR) investigations along with microscopy and rheological studies that casein dispersions result in more α-helical conformations during the preconcentration process of casein dispersions. This results in increased hydrophobicity of the casein particles/aggregates, which in turn affects the wetting characteristics and the adhesion behavior. Casein compositions lacking α-helices were found to enhance the bonding strength of casein with cellulose. The present study shows that the adhesion between casein and microporous cellulose substrate has contributions at the multiscale originating from the polar-polar interactions of casein and cellulose molecules, conformational changes in the protein structure of casein during drying, microstructure of casein particles in the dispersion, and the microporous nature of the cellulose boards. These interactions at multiple scales can be tuned to suit different adhesive applications using casein.
Collapse
Affiliation(s)
- Sruthi Lalitha
- Department of Chemical Engineering, Indian Institute of Technology Madras, 600036 Chennai, India
| | | | | | - Abhijit P Deshpande
- Department of Chemical Engineering, Indian Institute of Technology Madras, 600036 Chennai, India
| | - Susy Varughese
- Department of Chemical Engineering, Indian Institute of Technology Madras, 600036 Chennai, India
| |
Collapse
|
3
|
Sruthi L, Srivastava V, Schmidt LE, Deshpande AP, Varughese S. Contributions from microstructural changes to the rheological behavior of casein dispersions during drying. SOFT MATTER 2020; 16:10954-10968. [PMID: 33146222 DOI: 10.1039/d0sm00992j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In several applications, a protein such as casein in dispersion form undergoes multiple processing steps including drying. In this work, the rheological and microstructural features of casein dispersions concentrated by evaporation of the solvent (drying dispersions) were studied in comparison with those of equal concentrations of the as-prepared dispersions without drying. The molecular assembly of casein is affected by drying along with the conformational composition changes in the secondary structures such as α-helix, β-sheets, turns and random structures of the protein. Modeling of the rheological data indicates that these changes also affect the packing of casein molecular assemblies and these molecular assemblies in alkaline dispersions can behave as soft deformable particles. During drying, casein dispersions show prominent shear thinning for concentrations higher than 20 wt% along with the prevalence of α-helices and β-sheets. In comparison, the as-prepared dispersions show different microstructural features, and therefore different rheological responses. A detailed analysis shows that alkalinity changes during drying is the crucial factor controlling the microstructural changes of the soft casein particles and hence the rheology.
Collapse
Affiliation(s)
- Lalitha Sruthi
- Department of Chemical Engineering, Indian Institute of Technology, Madras, India.
| | | | | | | | | |
Collapse
|
4
|
Siemons I, Boom R, van der Sman R, Schutyser M. Moisture diffusivity in concentrated and dry protein-carbohydrate films. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
Abstract
AbstractThe dynamics of proteins in solution includes a variety of processes, such as backbone and side-chain fluctuations, interdomain motions, as well as global rotational and translational (i.e. center of mass) diffusion. Since protein dynamics is related to protein function and essential transport processes, a detailed mechanistic understanding and monitoring of protein dynamics in solution is highly desirable. The hierarchical character of protein dynamics requires experimental tools addressing a broad range of time- and length scales. We discuss how different techniques contribute to a comprehensive picture of protein dynamics, and focus in particular on results from neutron spectroscopy. We outline the underlying principles and review available instrumentation as well as related analysis frameworks.
Collapse
|
6
|
Boire A, Renard D, Bouchoux A, Pezennec S, Croguennec T, Lechevalier V, Le Floch-Fouéré C, Bouhallab S, Menut P. Soft-Matter Approaches for Controlling Food Protein Interactions and Assembly. Annu Rev Food Sci Technol 2019; 10:521-539. [PMID: 30633568 DOI: 10.1146/annurev-food-032818-121907] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Animal- and plant-based proteins are present in a wide variety of raw and processed foods. They play an important role in determining the final structure of food matrices. Food proteins are diverse in terms of their biological origin, molecular structure, and supramolecular assembly. This diversity has led to segmented experimental studies that typically focus on one or two proteins but hinder a more general understanding of food protein structuring as a whole. In this review, we propose a unified view of how soft-matter physics can be used to control food protein assembly. We discuss physical models from polymer and colloidal science that best describe and predict the phase behavior of proteins. We explore the occurrence of phase transitions along two axes: increasing protein concentration and increasing molecular attraction. This review provides new perspectives on the link between the interactions, phase transitions, and assembly of proteins that can help in designing new food products and innovative food processing operations.
Collapse
Affiliation(s)
- Adeline Boire
- Biopolymères Interactions Assemblages, INRA UR1268, F-44300 Nantes, France;
| | - Denis Renard
- Biopolymères Interactions Assemblages, INRA UR1268, F-44300 Nantes, France;
| | - Antoine Bouchoux
- LISBP, Université de Toulouse, CNRS, INRA, INSA, F-31077 Toulouse, France
| | | | | | | | | | - Saïd Bouhallab
- STLO, INRA UMR1253, Agrocampus Ouest, F-35042 Rennes, France
| | - Paul Menut
- Montpellier SupAgro, 34060 Montpellier, France; .,Ingénierie Procédés Aliments, AgroParisTech, INRA, Université Paris-Saclay, 91300 Massy, France
| |
Collapse
|
7
|
Janc T, Lukšič M, Vlachy V, Rigaud B, Rollet AL, Korb JP, Mériguet G, Malikova N. Ion-specificity and surface water dynamics in protein solutions. Phys Chem Chem Phys 2018; 20:30340-30350. [PMID: 30488933 PMCID: PMC6318450 DOI: 10.1039/c8cp06061d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ion-specific effects at the protein surface are investigated here in light of the changes they infer to surface water dynamics, as observed by 1H NMR relaxation (at 20 MHz). Two well-known proteins, hen egg-white lysozyme (LZM) and bovine serum albumin (BSA), show qualitatively opposite trends in the transverse relaxation rate, R2(1H), along a series of different monovalent salt anions in the solution. Presence of salt ions increases R2(1H) in the case of lysozyme and diminishes it in the case of BSA. The effect magnifies for larger and more polarizable ions. The same contrasting effect between the two proteins is observed for protein-solvent proton exchange. This hints at subtle effects ion-binding might have on the accessibility of water surface sites on the protein. We suggest that the combination of the density of surface charge residues and surface roughness, at the atomic scale, dictates the response to the presence of salt ions and is proper to each protein. Further, a dramatic increase in R2(1H) is found to correlate closely with the formation of protein aggregates. The same ordering of salts in their ability to aggregate lysozyme, as seen previously by cloud point measurements, is reproduced here by R2(1H). 1H NMR relaxation data is supplemented by 35Cl and 14N NMR relaxation for selected salt ions to probe the ion-binding itself.
Collapse
Affiliation(s)
- Tadeja Janc
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Sadek C, Schuck P, Fallourd Y, Pradeau N, Jeantet R, Le Floch-Fouéré C. Buckling and collapse during drying of a single aqueous dispersion of casein micelle droplet. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Qu P, Bouchoux A, Gésan-Guiziou G. On the cohesive properties of casein micelles in dense systems. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Vinceković M, Curlin M, Jurašin D. Impact of cationic surfactant on the self-assembly of sodium caseinate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8543-8554. [PMID: 25078419 DOI: 10.1021/jf5016472] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The impact of a cationic surfactant, dodecylammonium chloride (DDACl), on the self-assembly of sodium caseinate (SC) has been investigated by light scattering, zeta potential, and rheological measurements as well as by microscopy (transmission electron and confocal laser scanning microscopy). In SC dilute solutions concentration-dependent self-assembly proceeds through the formation of spherical associates and their aggregation into elongated structures composed of connected spheres. DDACl interacts with SC via its hydrophilic and hydrophobic groups, inducing changes in SC self-assembled structures. These changes strongly depend on the surfactant aggregation states (monomeric or micellar) as well as concentration ratio of both components, leading to the formation of soluble and insoluble complexes of nano- to microdimensions. DDACl monomers interact with SC self-assembled entities in a different way compared to their micelles. Surfactant monomers form soluble complexes (similar to surfactant mixed micelles) at lower SC concentration but insoluble gelatinous complexes at higher SC concentration. At surfactant micellar concentration soluble complexes with casein chains wrapped around surfactant micelles are formed. This study suggests that the use of proper cationic surfactant concentration will allow modification and control of structural changes of SC self-assembled entities.
Collapse
Affiliation(s)
- Marko Vinceković
- Department of Chemistry, Faculty of Agriculture, and ‡Department of Histology and Embryology, School of Medicine, University of Zagreb , Zagreb, Croatia
| | | | | |
Collapse
|
11
|
Salami S, Rondeau-Mouro C, Barhoum M, van Duynhoven J, Mariette F. Translational and rotational diffusion of flexible PEG and rigid dendrimer probes in sodium caseinate dispersions and acid gels. Biopolymers 2014; 101:959-65. [DOI: 10.1002/bip.22492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/21/2014] [Accepted: 04/01/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Souad Salami
- Irstea, UR TERE; 17 avenue de Cucillé, CS 64427 35044 Rennes France
- Université européenne de Bretagne; France
| | - Corinne Rondeau-Mouro
- Irstea, UR TERE; 17 avenue de Cucillé, CS 64427 35044 Rennes France
- Université européenne de Bretagne; France
| | - Myriam Barhoum
- Irstea, UR TERE; 17 avenue de Cucillé, CS 64427 35044 Rennes France
- Université européenne de Bretagne; France
| | - John van Duynhoven
- Unilever R&D; Olivier van Noortlaan 120 P.O. Box 3130 Vlaardingen The Netherlands
- Laboratory of Biophysics; Wageningen University; Dreijenlaan 3 6703 Wageningen The Netherlands
| | - François Mariette
- Irstea, UR TERE; 17 avenue de Cucillé, CS 64427 35044 Rennes France
- Université européenne de Bretagne; France
| |
Collapse
|
12
|
Sadek C, Tabuteau H, Schuck P, Fallourd Y, Pradeau N, Le Floch-Fouéré C, Jeantet R. Shape, shell, and vacuole formation during the drying of a single concentrated whey protein droplet. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15606-15613. [PMID: 24261716 DOI: 10.1021/la404108v] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The drying of milk concentrate droplets usually leads to specific particle morphology influencing their properties and their functionality. Understanding how the final shape of the particle is formed therefore represents a key issue for industrial applications. In this study, a new approach to the investigation of droplet-particle conversion is proposed. A single droplet of concentrated globular proteins extracted from milk was deposited onto a hydrophobic substrate and placed in a dry environment. Complementary methods (high-speed camera, confocal microscopy, and microbalance) were used to record the drying behavior of the concentrated protein droplets. Our results showed that whatever the initial concentration, particle formation included three dynamic stages clearly defined by the loss of mass and the evolution of the internal and external shapes of the droplet. A new and reproducible particle shape was related in this study. It was observed after drying a smooth, hemispherical cap-shaped particle, including a uniform protein shell and the nucleation of an internal vacuole. The particle morphology was strongly influenced by the drying environment, the contact angle, and the initial protein concentration, all of which governed the duration of the droplet shrinkage, the degree of buckling, and the shell thickness. These results are discussed in terms of specific protein behaviors in forming a predictable and a characteristic particle shape. The way the shell is formed may be the starting point in shaping particle distortion and thus represents a potential means of tuning the particle morphology.
Collapse
|
13
|
Sun LH, Sun YL, Yang LJ, Zhang J, Chen ZX. Controllable self-assembly of sodium caseinate with a zwitterionic vitamin-derived bolaamphiphile. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10582-10589. [PMID: 24107219 DOI: 10.1021/jf403538y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The control of self-assembly of sodium caseinate (SC) including the formation of mixed layers, microspheres, or nanoparticles is highly relevant to the microstructure of food and the design of promising drug delivery systems. In this paper, we designed a structure-switchable zwitterionic bolaamphiphile, 1,12-diaminododecanediorotate (DDO), from orotic acid, which has special binding sites and can guide the self-assembly of SC. Complexation between SC and DDO was investigated using dynamic light scattering, transmission electron microscopy, differential scanning calorimetry, and fluorescence spectra measurements. Monomeric DDO was bound to the negatively charged sites on the SC micelle and made the structure of SC more compact with decreased electrostatic repulsion between the head groups. Vesicular DDO led to reassociation of vesicles with enlarged size via preferable hydrophobic interactions. Moreover, the aggregation between SC and DDO was found to be temperature-dependent and reversible. This research provides an effective way to control the reversible self-assembly of SC by the zwitterionic vitamin-derived bolaamphiphile.
Collapse
Affiliation(s)
- Li-Hui Sun
- Department of Food Quality and Safety and ‡Department of Applied Chemistry, College of Food & Biology Engineering, Zhejiang Gongshang University , Hangzhou, Zhejiang 310035, People's Republic of China
| | | | | | | | | |
Collapse
|