1
|
Nakata H, Kitoh-Nishioka H, Sakai W, Choi CH. Toward Accurate Prediction of Ion Mobility in Organic Semiconductors by Atomistic Simulation. J Chem Theory Comput 2023; 19:1517-1528. [PMID: 36757219 DOI: 10.1021/acs.jctc.2c01221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A multiscale scheme (MLMS: Multi-Level Multi-Scale) to predict the ion mobility (μ) of amorphous organic semiconductors is proposed, which was successfully applied to the hole mobility predictions of 14 organic systems. An inverse relationship between μ and reorganization energy is observed due to local polaronic distortions. Another moderate inverse correlation between μ and distribution of site energy change exists, representing the effects of geometric flexibility. The former and the latter represent the intramolecular and intermolecular geometric effects, respectively. In addition, a linear correlation between transfer coupling and μ is observed, showing the importance of orbital overlaps between monomers. Especially, the highest hole mobility of C6-2TTN is due to its large transfer coupling. On the other hand, another high hole mobility of CBP turned out to come from the high first neighbor density (ρFND) of its first self-solvation, emphasizing the proper description of amorphous structural configurations with a sufficiently large number of monomers. In general, systems with either unusually high transfer coupling or high first neighbor density can potentially have high μ regardless of geometric effects. Especially, the newly suggested design parameter, ρFND, is pointing to a new direction as opposed to the traditional π-conjugation strategy.
Collapse
Affiliation(s)
- Hiroya Nakata
- Research Institute for Advanced Materials and Devices, Kyocera Corporation, 3-5-3 Hikaridai Seika-cho, Soraku-gun, Kyoto 619-0237, Japan
| | - Hirotaka Kitoh-Nishioka
- Department of Energy and Materials, Faculty of Science and Engineering, Kindai University, 3 Chome-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Wakana Sakai
- Research Institute for Advanced Materials and Devices, Kyocera Corporation, 3-5-3 Hikaridai Seika-cho, Soraku-gun, Kyoto 619-0237, Japan
| | - Cheol Ho Choi
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| |
Collapse
|
2
|
Kitoh-Nishioka H, Shigeta Y, Ando K. Tunneling matrix element and tunneling pathways of protein electron transfer calculated with a fragment molecular orbital method. J Chem Phys 2020; 153:104104. [PMID: 32933280 DOI: 10.1063/5.0018423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Practical ways to calculate the tunneling matrix elements and analyze the tunneling pathways for protein electron-transfer (ET) reactions with a fragment molecular orbital (FMO) method are presented. The straightforward use of minimal basis sets only for the atoms involved in the covalent bond detachment in FMO can properly describe the ETs through the protein main-chains with the cost-effective two-body corrections (FMO2) without losing the quality of double-zeta basis sets. The current FMO codes have been interfaced with density functional theory, polarizable continuum model, and model core potentials, with which the FMO-based protein ET calculations can consider the effects of electron correlation, solvation, and transition-metal redox centers. The reasonable performance of the FMO-based ET calculations is demonstrated for three different sets of protein-ET model molecules: (1) hole transfer between two tryptophans covalently bridged by a polyalanine linker in the ideal α-helix and β-strand conformations, (2) ET between two plastoquinones covalently bridged by a polyalanine linker in the ideal α-helix and β-strand conformations, and (3) hole transfer between ruthenium (Ru) and copper (Cu) complexes covalently bridged by a stretch of a polyglycine linker as a model for Ru-modified derivatives of azurin.
Collapse
Affiliation(s)
- Hirotaka Kitoh-Nishioka
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Koji Ando
- Department of Information and Sciences, Tokyo Woman's Christian University, 2-6-1 Zenpukuji, Suginami-ku, Tokyo 167-8585, Japan
| |
Collapse
|
3
|
Śliwa P, Kurczab R, Kafel R, Drabczyk A, Jaśkowska J. Recognition of repulsive and attractive regions of selected serotonin receptor binding site using FMO-EDA approach. J Mol Model 2019; 25:114. [PMID: 30955095 DOI: 10.1007/s00894-019-3995-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/14/2019] [Indexed: 12/28/2022]
Abstract
The complexes of selected long-chain arylpiperazines with homology models of 5-HT1A, 5-HT2A, and 5-HT7 receptors were investigated using quantum mechanical methods. The molecular geometries of the ligand-receptor complexes were firstly optimized with the Our own N-layered Integrated molecular Orbital and molecular Mechanics (ONIOM) method. Next, the fragment molecular orbitals method with an energy decomposition analysis scheme (FMO-EDA) was employed to estimate the interaction energies in binding sites. The results clearly showed that orthosteric binding sites of studied serotonin receptors have both attractive and repulsive regions. In the case of 5-HT1A and 5-HT2A two repulsive areas, located in the lower part of the binding pocket, and one large area of attraction engaging many residues at the top of all helices were identified. Additionally, for the 5-HT7 receptor, the third area of destabilization located at the extracellular end of the helix 6 was found.
Collapse
Affiliation(s)
- Paweł Śliwa
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska, 31-155, Kraków, Poland.
| | - Rafał Kurczab
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smȩtna, 31-343, Kraków, Poland
| | - Rafał Kafel
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smȩtna, 31-343, Kraków, Poland
| | - Anna Drabczyk
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska, 31-155, Kraków, Poland
| | - Jolanta Jaśkowska
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska, 31-155, Kraków, Poland
| |
Collapse
|
4
|
Sato R, Kitoh-Nishioka H, Ando K, Yamato T. Electron Transfer Pathways of Cyclobutane Pyrimidine Dimer Photolyase Revisited. J Phys Chem B 2018; 122:6912-6921. [PMID: 29890068 DOI: 10.1021/acs.jpcb.8b04333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photoinduced electron transfer (ET) reaction of cyclobutane pyrimidine dimer (CPD) photolyase plays an essential role in its DNA repair reaction, and the molecular mechanism of the ET reaction has attracted a large number of experimental and theoretical studies. We investigated the quantum mechanical nature of their ET reactions, characterized by multiple ET pathways of the CPD photolyase derived from Anacystis nidulans. Using the generalized Mulliken-Hush (GMH) method and the bridge green function (GF) methods, we estimated the electronic coupling matrix element, TDA, to be 36 ± 30 cm-1 from the donor (FADH-) to the acceptor (CPD). The estimated ET time was 386 ps, in good agreement with the experimental value (250 ps) in the literature. Furthermore, we performed the molecular dynamics (MD) simulations and ab initio molecular orbital (MO) calculations, and explored the electron tunneling pathway. We examined 20 different structures during the MD trajectory and quantitatively evaluated the electron tunneling currents for each of them. As a result, we demonstrated that the ET route via Asn349 was the dominant pathway among the five major routes via (Adenine/Asn349), (Adenine/Glu283), (Adenine/Glu283/Asn349/Met353), (Met353/Asn349), and (Asn349), indicating that Asn349 is an essential amino acid residue in the ET reaction.
Collapse
Affiliation(s)
- Ryuma Sato
- Department of Physics, Graduate School of Science , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8602 , Japan
| | - Hirotaka Kitoh-Nishioka
- Center for Computational Sciences , University of Tsukuba 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8577 , Japan
| | - Koji Ando
- Department of Information and Sciences , Tokyo Woman's Christian University , 2-6-1 Zempukuji, Suginami-ku , Tokyo 167-8585 , Japan
| | - Takahisa Yamato
- Department of Physics, Graduate School of Science , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8602 , Japan.,Institute of Genetics and Molecular and Cellular Biology , University of Strasbourg , 1 rue Laurent Fries Parc d'Innovation 67404 Illkirch, Cedex, France
| |
Collapse
|
5
|
Fedorov DG, Kitaura K. Many-body expansion of the Fock matrix in the fragment molecular orbital method. J Chem Phys 2017; 147:104106. [DOI: 10.1063/1.5001018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
6
|
Sato R, Kitoh-Nishioka H, Yanai T, Shigeta Y. Theoretical Analyses of Triplet–Triplet Annihilation Process of 9,10-Diphenylanthracene in Solution. CHEM LETT 2017. [DOI: 10.1246/cl.170161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ryuma Sato
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585
| | - Hirotaka Kitoh-Nishioka
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585
| | - Takeshi Yanai
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585
| |
Collapse
|
7
|
Gillet N, Berstis L, Wu X, Gajdos F, Heck A, de la Lande A, Blumberger J, Elstner M. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level. J Chem Theory Comput 2016; 12:4793-4805. [DOI: 10.1021/acs.jctc.6b00564] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Natacha Gillet
- Institute
of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse
12, 76131 Karlsruhe, Germany
| | - Laura Berstis
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| | - Xiaojing Wu
- Laboratoire
de Chimie-Physique, Université Paris Sud, CNRS, Université Paris Saclay, Campus d’Orsay. 15, avenue Jean Perrin, 91405 Cedex Orsay, France
| | - Fruzsina Gajdos
- Department
of Physics and Astronomy, University College London, Gower Street, London WCIE 6BT, United Kingdom
| | - Alexander Heck
- Institute
of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse
12, 76131 Karlsruhe, Germany
| | - Aurélien de la Lande
- Laboratoire
de Chimie-Physique, Université Paris Sud, CNRS, Université Paris Saclay, Campus d’Orsay. 15, avenue Jean Perrin, 91405 Cedex Orsay, France
| | - Jochen Blumberger
- Department
of Physics and Astronomy, University College London, Gower Street, London WCIE 6BT, United Kingdom
| | - Marcus Elstner
- Institute
of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse
12, 76131 Karlsruhe, Germany
| |
Collapse
|
8
|
Kitoh-Nishioka H, Ando K. FMO3-LCMO study of electron transfer coupling matrix element and pathway: Application to hole transfer between two tryptophans through cis- and trans-polyproline-linker systems. J Chem Phys 2016. [DOI: 10.1063/1.4962626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hirotaka Kitoh-Nishioka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Koji Ando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
9
|
A theoretical multiscale treatment of protein-protein electron transfer: The ferredoxin/ferredoxin-NADP(+) reductase and flavodoxin/ferredoxin-NADP(+) reductase systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1530-8. [PMID: 26385068 DOI: 10.1016/j.bbabio.2015.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 11/21/2022]
Abstract
In the photosynthetic electron transfer (ET) chain, two electrons transfer from photosystem I to the flavin-dependent ferredoxin-NADP(+) reductase (FNR) via two sequential independent ferredoxin (Fd) electron carriers. In some algae and cyanobacteria (as Anabaena), under low iron conditions, flavodoxin (Fld) replaces Fd as single electron carrier. Extensive mutational studies have characterized the protein-protein interaction in FNR/Fd and FNR/Fld complexes. Interestingly, even though Fd and Fld share the interaction site on FNR, individual residues on FNR do not participate to the same extent in the interaction with each of the protein partners, pointing to different electron transfer mechanisms. Despite of extensive mutational studies, only FNR/Fd X-ray structures from Anabaena and maize have been solved; structural data for FNR/Fld remains elusive. Here, we present a multiscale modelling approach including coarse-grained and all-atom protein-protein docking, the QM/MM e-Pathway analysis and electronic coupling calculations, allowing for a molecular and electronic comprehensive analysis of the ET process in both complexes. Our results, consistent with experimental mutational data, reveal the ET in FNR/Fd proceeding through a bridge-mediated mechanism in a dominant protein-protein complex, where transfer of the electron is facilitated by Fd loop-residues 40-49. In FNR/Fld, however, we observe a direct transfer between redox cofactors and less complex specificity than in Fd; more than one orientation in the encounter complex can be efficient in ET.
Collapse
|
10
|
Martin DR, Matyushov DV. Photosynthetic diode: electron transport rectification by wetting the quinone cofactor. Phys Chem Chem Phys 2015; 17:22523-8. [PMID: 26171665 DOI: 10.1039/c5cp03397g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report 11 μs of molecular dynamics simulations of the electron-transfer reaction between primary and secondary quinone cofactors in the bacterial reaction center. The main question addressed here is the mechanistic reason for unidirectional electron transfer between chemically identical cofactors. We find that electron is trapped at the secondary quinone by wetting of the protein pocket following electron transfer on the time-scale shorter than the backward transition. This mechanism provides effective rectification of the electron transport, making the reaction center a molecular diode operating by cyclic charge-induced electrowetting.
Collapse
Affiliation(s)
- Daniel R Martin
- Department of Physics, Arizona State University, PO Box 871504, Tempe, Arizona 85287, USA
| | | |
Collapse
|
11
|
de la Lande A, Gillet N, Chen S, Salahub DR. Progress and challenges in simulating and understanding electron transfer in proteins. Arch Biochem Biophys 2015; 582:28-41. [PMID: 26116376 DOI: 10.1016/j.abb.2015.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 06/15/2015] [Accepted: 06/22/2015] [Indexed: 11/19/2022]
Abstract
This Review presents an overview of the most common numerical simulation approaches for the investigation of electron transfer (ET) in proteins. We try to highlight the merits of the different approaches but also the current limitations and challenges. The article is organized into three sections. Section 2 deals with direct simulation algorithms of charge migration in proteins. Section 3 summarizes the methods for testing the applicability of the Marcus theory for ET in proteins and for evaluating key thermodynamic quantities entering the reaction rates (reorganization energies and driving force). Recent studies interrogating the validity of the theory due to the presence of non-ergodic effects or of non-linear responses are also described. Section 4 focuses on the tunneling aspects of electron transfer. How can the electronic coupling between charge transfer states be evaluated by quantum chemistry approaches and rationalized? What interesting physics regarding the impact of protein dynamics on tunneling can be addressed? We will illustrate the different sections with examples taken from the literature to show what types of system are currently manageable with current methodologies. We also take care to recall what has been learned on the biophysics of ET within proteins thanks to the advent of atomistic simulations.
Collapse
Affiliation(s)
- Aurélien de la Lande
- Laboratoire de Chimie Physique, UMR 8000, CNRS, Université Paris Sud. 15, av. Jean Perrin, 91405 Orsay, France.
| | - Natacha Gillet
- Laboratoire de Chimie Physique, UMR 8000, CNRS, Université Paris Sud. 15, av. Jean Perrin, 91405 Orsay, France
| | - Shufeng Chen
- Laboratoire de Chimie Physique, UMR 8000, CNRS, Université Paris Sud. 15, av. Jean Perrin, 91405 Orsay, France
| | - Dennis R Salahub
- Department of Chemistry, CMS - Centre for Molecular Simulation and IQST - Institute for Quantum Science and Technology, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
12
|
Tanaka S, Mochizuki Y, Komeiji Y, Okiyama Y, Fukuzawa K. Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. Phys Chem Chem Phys 2015; 16:10310-44. [PMID: 24740821 DOI: 10.1039/c4cp00316k] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent developments in the fragment molecular orbital (FMO) method for theoretical formulation, implementation, and application to nano and biomolecular systems are reviewed. The FMO method has enabled ab initio quantum-mechanical calculations for large molecular systems such as protein-ligand complexes at a reasonable computational cost in a parallelized way. There have been a wealth of application outcomes from the FMO method in the fields of biochemistry, medicinal chemistry and nanotechnology, in which the electron correlation effects play vital roles. With the aid of the advances in high-performance computing, the FMO method promises larger, faster, and more accurate simulations of biomolecular and related systems, including the descriptions of dynamical behaviors in solvent environments. The current status and future prospects of the FMO scheme are addressed in these contexts.
Collapse
Affiliation(s)
- Shigenori Tanaka
- Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan.
| | | | | | | | | |
Collapse
|
13
|
Kitoh-Nishioka H, Ando K. Charge-transfer matrix elements by FMO-LCMO approach: Hole transfer in DNA with parameter tuned range-separated DFT. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2014.12.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Shimojo F, Hattori S, Kalia RK, Kunaseth M, Mou W, Nakano A, Nomura KI, Ohmura S, Rajak P, Shimamura K, Vashishta P. A divide-conquer-recombine algorithmic paradigm for large spatiotemporal quantum molecular dynamics simulations. J Chem Phys 2014; 140:18A529. [DOI: 10.1063/1.4869342] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Müh F, Zouni A. The nonheme iron in photosystem II. PHOTOSYNTHESIS RESEARCH 2013; 116:295-314. [PMID: 24077892 DOI: 10.1007/s11120-013-9926-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/17/2013] [Indexed: 06/02/2023]
Abstract
Photosystem II (PSII), the light-driven water:plastoquinone (PQ) oxidoreductase of oxygenic photosynthesis, contains a nonheme iron (NHI) at its electron acceptor side. The NHI is situated between the two PQs QA and QB that serve as one-electron transmitter and substrate of the reductase part of PSII, respectively. Among the ligands of the NHI is a (bi)carbonate originating from CO2, the substrate of the dark reactions of oxygenic photosynthesis. Based on recent advances in the crystallography of PSII, we review the structure of the NHI in PSII and discuss ideas concerning its function and the role of bicarbonate along with a comparison to the reaction center of purple bacteria and other enzymes containing a mononuclear NHI site.
Collapse
|
16
|
Kobori T, Sodeyama K, Otsuka T, Tateyama Y, Tsuneyuki S. Trimer effects in fragment molecular orbital-linear combination of molecular orbitals calculation of one-electron orbitals for biomolecules. J Chem Phys 2013; 139:094113. [DOI: 10.1063/1.4818599] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
17
|
Saen-Oon S, Lucas MF, Guallar V. Electron transfer in proteins: theory, applications and future perspectives. Phys Chem Chem Phys 2013; 15:15271-85. [DOI: 10.1039/c3cp50484k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|