1
|
Bai Y, He J, Gao Y, Zhang M, Zhou D, Tang Y, Liu J, Bian H, Fang Y. Dynamics of Formamide-Water Mixtures Investigated by Linear and Nonlinear Infrared Spectroscopy. J Phys Chem B 2024. [PMID: 38417258 DOI: 10.1021/acs.jpcb.3c07850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Formamide (FA) exhibits complete miscibility with water, offering a simplified model for exploring the solvation dynamics of peptide linkages in biophysical processes. Its liquid state demonstrates a three-dimensional hydrogen bonding network akin to water, reflecting solvent-like behavior. Analyzing the microscopic structure and dynamics of FA-water mixtures is expected to provide crucial insights into hydrogen bonding dynamics─a key aspect of various biophysical phenomena. This study is focused on the dynamics of FA-water mixtures using linear and femtosecond infrared spectroscopies. By using the intrinsic OD stretch and extrinsic probe SCN-, the local vibrational behaviors across various FA-water compositions were systematically investigated. The vibrational relaxation of OD stretch revealed a negligible impact of FA addition on the vibrational lifetime of water molecules, underscoring the mixture's water-like behavior. However, the reorientational dynamics of OD stretch slowed with increasing FA mole fraction (XFA), plateauing beyond XFA > 0.5. This suggests a correlation between OD's reorientational time and the strength of the hydrogen bond network, likely tied to the solution's changing dielectric constant. Conversely, the vibrational relaxation dynamics of SCN- was strongly correlated with XFA, highlighting a competition between water and FA molecules in solvating SCN-. Moreover, a linear relationship between rising viscosity and the prolonged correlation time of SCN-'s slow dynamics indicates that the solution's macroscopic viscosity is dictated by the extended structures formed between FA and water molecules. The relation between the reorientation dynamics of the SCN- and the macroscopic viscosity in aqueous FA-water mixture solutions was analyzed by using the Stokes-Einstein-Debye equations. The direct viscosity-diffusion coupling is observed, which can be attributed to the homogeneous dynamics feature in FA-water mixture solutions. The inclusion of these intrinsic and extrinsic probes not only enhances the comprehensiveness of our analysis but also provides valuable insights into various aspects of the dynamics within the FA-water system. This investigation sheds light on the fundamental dynamics of FA-water mixtures, emphasizing their molecular-level homogeneity in this binary mixture solution.
Collapse
Affiliation(s)
- Yimin Bai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jiman He
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yuting Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Miaomiao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Dexia Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
2
|
Bai Y, Zhou D, Mukherjee S, Liu J, Bian H, Fang Y. Distinct Hydrogen Bonding Dynamics Underlies the Microheterogeneity in DMF-Water Mixtures. J Phys Chem B 2022; 126:9663-9672. [PMID: 36351006 DOI: 10.1021/acs.jpcb.2c06335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The hydrogen bonding interaction between the amide functional group and water is fundamental to understanding the liquid-liquid heterogeneity in biological systems. Herein, the structure and dynamics of the N,N-dimethylformamide (DMF)-water mixtures have been investigated by linear and nonlinear IR spectroscopies, using the hydroxyl stretch and extrinsic probe of thiocyanate as local vibrational reporters. According to vibrational relaxation dynamics measurements, the orientational dynamics of water is not directly tied to those of DMF molecules. Wobbling-in-a-cone analysis demonstrates that the water molecules have varying degrees of angular restriction depending on their composition due to the formation of specific water-DMF networks. Because of the preferential solvation by DMF molecules, the rotational dynamics of the extrinsic probe is slowed significantly, and its rotational time constants are correlated to the change of solution viscosity. The unique structural dynamics observed in the DMF-water mixtures is expected to provide important insights into the underlying mechanism of microscopic heterogeneity in binary mixtures.
Collapse
Affiliation(s)
- Yimin Bai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an710119, China
| | - Dexia Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an710119, China
| | - Somnath Mukherjee
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an710119, China
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an710119, China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an710119, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an710119, China
| |
Collapse
|
3
|
Gong SY, Wang P, Wei ZY, Xu HG, Xu XL, Zheng WJ. Structures of (NaSCN) 2(H 2O) n -/0 (n = 0-7) and solvation induced ion pair separation: Gas phase anion photoelectron spectroscopy and theoretical calculations. J Chem Phys 2021; 154:204301. [PMID: 34241176 DOI: 10.1063/5.0049567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We studied (NaSCN)2(H2O)n - clusters in the gas phase using size-selected anion photoelectron spectroscopy. The photoelectron spectra and vertical detachment energies of (NaSCN)2(H2O)n - (n = 0-5) were obtained in the experiment. The structures of (NaSCN)2(H2O)n -/0 up to n = 7 were investigated with density functional theory calculations. Two series of peaks are observed in the spectra, indicating that two types of structures coexist, the high electron binding energy peaks correspond to the chain style structures, and the low electron binding energy peaks correspond to the Na-N-Na-N rhombic structures or their derivatives. For the (NaSCN)2(H2O)n - clusters at n = 3-5, the Na-N-Na-N rhombic structures are the dominant structures, the rhombic four-membered rings start to open at n = 4, and the solvent separated ion pair (SSIP) type of structures start to appear at n = 6. For the neutral (NaSCN)2(H2O)n clusters, the Na-N-Na-N rhombic isomers become the dominant starting at n = 3, and the SSIP type of structures start to appear at n = 5 and become dominant at n = 6. The structural evolution of (NaSCN)2(H2O)n -/0 (n = 0-7) confirms the possible existence of ionic clusters such as Na(SCN)2 - and Na2(SCN)+ in NaSCN aqueous solutions.
Collapse
Affiliation(s)
- Shi-Yan Gong
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-You Wei
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Guang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-Ling Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Jun Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Fernández-Terán R, Hamm P. A closer look into the distance dependence of vibrational energy transfer on surfaces using 2D IR spectroscopy. J Chem Phys 2020; 153:154706. [PMID: 33092354 DOI: 10.1063/5.0025787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vibrational energy transfer (VET) between two isotopologues of [Re(dcb)(CO)3Br] immobilized on a TiO2 surface is studied with the help of 2D IR spectroscopy in dependence of surface coverage. To dilute the molecules on the surface, and thereby control the intermolecular distances, two different diluents have been used: a third isotopologue of the same molecule and 4-cyanobenzoic acid. As expected, the VET rate decreases with dilution. For a quantitative investigation of the distance dependence of the VET rate, we analyze the data based on an excitonic model. This model reveals the typical 1/r6-distance dependence for a dimer of a donor and acceptor, similar to the nuclear Overhauser effect in NMR spectroscopy or Förster resonant energy transfer in electronic spectroscopy. However, VET becomes a collective phenomenon on the surface, with the existence of a network of coupled molecules and its disappearance below a percolation threshold, dominating the concentration dependence of the VET rate.
Collapse
Affiliation(s)
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| |
Collapse
|
5
|
Gong S, Wang P, Wei Z, Yang B, Xu X, Xu H, Zheng W. Microsolvation of Sodium Thiocyanate in Water: Gas Phase Anion Photoelectron Spectroscopy and Theoretical Calculations. J Phys Chem A 2020; 124:7816-7826. [DOI: 10.1021/acs.jpca.0c07071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shiyan Gong
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyou Wei
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiling Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongguang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijun Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Hao H, Xie Q, Ai J, Wang Y, Bian H. Specific counter-cation effect on the molecular orientation of thiocyanate anions at the aqueous solution interface. Phys Chem Chem Phys 2020; 22:10106-10115. [PMID: 32342973 DOI: 10.1039/d0cp00974a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Understanding the interfacial structure of aqueous electrolyte solutions is important and relevant to a wide range of systems, ranging from atmospheric aerosols to electrochemistry, and biological environments. Though significant efforts have been made to unravel the interfacial structure of water molecules, the structure and dynamics of ions at the interface have not yet been fully elucidated. Here, the interfacial structure of the aqueous solution was investigated directly by monitoring the thiocyanate (SCN-) anions using surface-specific sum frequency generation (SFG) vibrational spectroscopy. The molecular orientation of the SCN- anions and their adsorption behavior at the air/water interface were systematically determined by quantitative polarization analysis. The transition dipole of the CN stretching of the SCN- anion is oriented around 44° from the surface normal of the NaSCN aqueous solution surface and remained unchanged with the bulk concentration varying from 1 mol kg-1 to 13 mol kg-1. The free energy of adsorption of SCN- anions at the air/water interface was determined to be -1.53 ± 0.04 kcal mol-1. Furthermore, a new SFG peak positioned at 2080 cm-1 in the ppp polarization combination was observed at the air/15.0 mol kg-1 NaSCN aqueous solution interface for the first time. Concentration-dependent SFG analysis and density functional theory (DFT) calculation further revealed that the SCN- anions form an ion clustering structure at the air/water interface. The subtle and specific Na+ and K+ counter-cation effects on the interfacial structure of the SCN- anions at the aqueous solution interface were also observed, which showed that ion cooperativity plays an important role in affecting the interfacial structure of ions at the air/water interface. The results are expected to yield significant insights into the understanding of the structure of aqueous solution surfaces and the molecular level mechanism of the cationic Hofmeister effect.
Collapse
Affiliation(s)
- Hongxing Hao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| | - Qing Xie
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| | - Jingwen Ai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| | - Yuan Wang
- Institute of Science and Technology, University of Sanya, Sanya, Hainan 572022, China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
7
|
Shen YN, Jiang B, Ge CQ, Deng GH, Chen HL, Yang XM, Yuan KJ, Zheng JR. Intermolecular Vibrational Energy Transfers in Melts and Solutions. CHINESE J CHEM PHYS 2016. [DOI: 10.1063/1674-0068/29/cjcp1602028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
8
|
van der Vegt NFA, Haldrup K, Roke S, Zheng J, Lund M, Bakker HJ. Water-Mediated Ion Pairing: Occurrence and Relevance. Chem Rev 2016; 116:7626-41. [DOI: 10.1021/acs.chemrev.5b00742] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nico F. A. van der Vegt
- Eduard-Zintl-Institut
für Anorganische und Physikalische Chemie and Center of Smart
Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Strasse
10, 64287 Darmstadt, Germany
| | - Kristoffer Haldrup
- Physics
Department, NEXMAP Section, Technical University of Denmark, Fysikvej
307, 2800 Kongens
Lyngby, Denmark
| | - Sylvie Roke
- Laboratory
for Fundamental BioPhotonics, Institute of Bioengineering, and Institute
of Materials Science, School of Engineering, and Lausanne Centre for
Ultrafast Science, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Junrong Zheng
- College
of Chemistry and Molecular Engineering, Beijing National Laboratory
for Molecular Sciences, Peking University, Beijing 100871, China
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005-1892, United States
| | - Mikael Lund
- Division
of Theoretical Chemistry, Department of Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Huib J. Bakker
- FOM Institute AMOLF, Science
Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
9
|
Pan Z, Wu T, Jin T, Liu Y, Nagata Y, Zhang R, Zhuang W. Low frequency 2D Raman-THz spectroscopy of ionic solution: A simulation study. J Chem Phys 2015; 142:212419. [DOI: 10.1063/1.4917260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhijun Pan
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Tianmin Wu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Tan Jin
- State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yong Liu
- State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yuki Nagata
- Department for Molecular Spectroscopy, Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ruiting Zhang
- State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wei Zhuang
- State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
10
|
Chen H, Bian H, Li J, Wen X, Zhang Q, Zhuang W, Zheng J. Vibrational Energy Transfer: An Angstrom Molecular Ruler in Studies of Ion Pairing and Clustering in Aqueous Solutions. J Phys Chem B 2015; 119:4333-49. [DOI: 10.1021/jp512320a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hailong Chen
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005-1892, United States
| | - Hongtao Bian
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005-1892, United States
| | - Jiebo Li
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005-1892, United States
| | - Xiewen Wen
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005-1892, United States
| | - Qiang Zhang
- Institute of Chemistry,
Chemical Engineering and Food Safety, Bohai University, Jinzhou 121000, People’s Republic of China
| | - Wei Zhuang
- State Key Laboratory
of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, People’s Republic of China
| | - Junrong Zheng
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005-1892, United States
| |
Collapse
|
11
|
Abstract
Infrared spectroscopy has played an instrumental role in the study of a wide variety of biological questions. However, in many cases, it is impossible or difficult to rely on the intrinsic vibrational modes of biological molecules of interest, such as proteins, to reveal structural and environmental information in a site-specific manner. To overcome this limitation, investigators have dedicated many recent efforts to the development and application of various extrinsic vibrational probes that can be incorporated into biological molecules and used to site-specifically interrogate their structural or environmental properties. In this review, we highlight recent advancements in this rapidly growing research area.
Collapse
|
12
|
Czurlok D, von Domaros M, Thomas M, Gleim J, Lindner J, Kirchner B, Vöhringer P. Femtosecond 2DIR spectroscopy of the nitrile stretching vibration of thiocyanate anions in liquid-to-supercritical heavy water. Spectral diffusion and libration-induced hydrogen-bond dynamics. Phys Chem Chem Phys 2015; 17:29776-85. [DOI: 10.1039/c5cp05237h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Femtosecond two-dimensional infrared (2DIR) spectroscopy was carried out to study the dynamics of vibrational spectral diffusion of the nitrile stretching vibration of thiocyanate.
Collapse
Affiliation(s)
- Denis Czurlok
- Institut für Physikalische und Theoretische Chemie
- Rheinische Friedrich-Wilhelms-Universität
- 53115 Bonn
- Germany
| | - Michael von Domaros
- Institut für Physikalische und Theoretische Chemie
- Rheinische Friedrich-Wilhelms-Universität
- 53115 Bonn
- Germany
| | - Martin Thomas
- Institut für Physikalische und Theoretische Chemie
- Rheinische Friedrich-Wilhelms-Universität
- 53115 Bonn
- Germany
| | - Jeannine Gleim
- Institut für Physikalische und Theoretische Chemie
- Rheinische Friedrich-Wilhelms-Universität
- 53115 Bonn
- Germany
| | - Jörg Lindner
- Institut für Physikalische und Theoretische Chemie
- Rheinische Friedrich-Wilhelms-Universität
- 53115 Bonn
- Germany
| | - Barbara Kirchner
- Institut für Physikalische und Theoretische Chemie
- Rheinische Friedrich-Wilhelms-Universität
- 53115 Bonn
- Germany
| | - Peter Vöhringer
- Institut für Physikalische und Theoretische Chemie
- Rheinische Friedrich-Wilhelms-Universität
- 53115 Bonn
- Germany
| |
Collapse
|
13
|
De Marco L, Thämer M, Reppert M, Tokmakoff A. Direct observation of intermolecular interactions mediated by hydrogen bonding. J Chem Phys 2014; 141:034502. [DOI: 10.1063/1.4885145] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Luigi De Marco
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
- Department of Chemistry, James Frank Institute and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | - Martin Thämer
- Department of Chemistry, James Frank Institute and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | - Mike Reppert
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
- Department of Chemistry, James Frank Institute and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | - Andrei Tokmakoff
- Department of Chemistry, James Frank Institute and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
14
|
Chen H, Wen X, Guo X, Zheng J. Intermolecular vibrational energy transfers in liquids and solids. Phys Chem Chem Phys 2014; 16:13995-4014. [DOI: 10.1039/c4cp01300j] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Resonant and nonresonant intermolecular vibrational energy transfers in liquids and solids are measured and elucidated using two competing mechanisms.
Collapse
Affiliation(s)
- Hailong Chen
- Department of Chemistry
- Rice University
- Houston, USA
| | - Xiewen Wen
- Department of Chemistry
- Rice University
- Houston, USA
| | - Xunmin Guo
- Department of Chemistry
- Rice University
- Houston, USA
| | | |
Collapse
|
15
|
Chen H, Bian H, Li J, Guo X, Wen X, Zheng J. Molecular conformations of crystalline L-cysteine determined with vibrational cross angle measurements. J Phys Chem B 2013; 117:15614-24. [PMID: 23981130 DOI: 10.1021/jp406232k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The molecular conformations of crystalline L-cysteine prepared in its orthorhombic form were determined by the vibrational cross angle measurements. Its major dihedral angles of chemical bonds determined by this method are consistent with the results from diffraction experiments. In addition, the relative orientations of the chemical bonds associated with the hydrogen atoms of the NH3(+) group and the thiol group are also determined. The results demonstrate that the vibrational cross angle method based on the multiple-mode approach can potentially become a structural tool for determining molecular conformations. The major challenges for the method to become a general molecular structural tool are discussed, and some approaches to address them are proposed.
Collapse
Affiliation(s)
- Hailong Chen
- Department of Chemistry, Rice University , Houston, Texas 77005, United States
| | | | | | | | | | | |
Collapse
|
16
|
Zhang R, Zhuang W. Effect of Ion Pairing on the Solution Dynamics Investigated by the Simulations of the Optical Kerr Effect and the Dielectric Relaxation Spectra. J Phys Chem B 2013; 117:15395-406. [DOI: 10.1021/jp404923y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ruiting Zhang
- State Key
Lab of Molecular Reaction Dynamics, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wei Zhuang
- State Key
Lab of Molecular Reaction Dynamics, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
17
|
Bian H, Chen H, Zhang Q, Li J, Wen X, Zhuang W, Zheng J. Cation effects on rotational dynamics of anions and water molecules in alkali (Li+, Na+, K+, Cs+) thiocyanate (SCN-) aqueous solutions. J Phys Chem B 2013; 117:7972-84. [PMID: 23763605 DOI: 10.1021/jp4016646] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Waiting time dependent rotational anisotropies of SCN(-) anions and water molecules in alkali thiocyanate (XSCN, X = Li, Na, K, Cs) aqueous solutions at various concentrations were measured with ultrafast infrared spectroscopy. It was found that cations can significantly affect the reorientational motions of both water molecules and SCN(-) anions. The dynamics are slower in a solution with a smaller cation. The reorientational time constants follow the order of Li(+) > Na(+) > K(+) ~/= Cs(+). The changes of rotational time constants of SCN(-) at various concentrations scale almost linearly with the changes of solution viscosity, but those of water molecules do not. In addition, the concentration-dependent amplitudes of dynamical changes are much more significant in the Li(+) and Na(+) solutions than those in the K(+) and Cs(+) solutions. Further investigations on the systems with the ultrafast vibrational energy exchange method and molecular dynamics simulations provide an explanation for the observations: the observed rotational dynamics are the balanced results of ion clustering and cation/anion/water direct interactions. In all the solutions at high concentrations (>5 M), substantial amounts of ions form clusters. The structural inhomogeneity in the solutions leads to distinct rotational dynamics of water and anions. The strong interactions of Li(+) and Na(+) because of their relatively large charge densities with water molecules and SCN(-) anions, in addition to the likely geometric confinements because of ion clustering, substantially slow down the rotations of SCN(-) anions and water molecules inside the ion clusters. The interactions of K(+) and Cs(+) with water or SCN(-) are much weaker. The rotations of water molecules inside ion clusters of K(+) and Cs(+) solutions are not significantly different from those of other water species so that the experimentally observed rotational relaxation dynamics are only slightly affected by the ion concentrations.
Collapse
Affiliation(s)
- Hongtao Bian
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Chen H, Bian H, Li J, Wen X, Zheng J. Relative Intermolecular Orientation Probed via Molecular Heat Transport. J Phys Chem A 2013; 117:6052-65. [DOI: 10.1021/jp312604v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hailong Chen
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Hongtao Bian
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Jiebo Li
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Xiewen Wen
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Junrong Zheng
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
19
|
Zhang Q, Xie W, Bian H, Gao YQ, Zheng J, Zhuang W. Microscopic Origin of the Deviation from Stokes–Einstein Behavior Observed in Dynamics of the KSCN Aqueous Solutions: A MD Simulation Study. J Phys Chem B 2013; 117:2992-3004. [DOI: 10.1021/jp400441e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Molecular
Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning,
People’s Republic of China
- Department of Chemistry, Bohai University, Jinzhou 121000, China
| | - Wenjun Xie
- College of Chemistry and Molecular
Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - HongTao Bian
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Yi Qin Gao
- College of Chemistry and Molecular
Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Junrong Zheng
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Wei Zhuang
- State Key Laboratory of Molecular
Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning,
People’s Republic of China
| |
Collapse
|
20
|
Tesar SL, Kasyanenko VM, Rubtsov IV, Rubtsov GI, Burin AL. Theoretical Study of Internal Vibrational Relaxation and Energy Transport in Polyatomic Molecules. J Phys Chem A 2013; 117:315-23. [DOI: 10.1021/jp309481u] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sarah L. Tesar
- Department
of Chemistry, Tulane University, New Orleans
Louisiana 70118, United
States
| | - Valeriy M. Kasyanenko
- Department
of Chemistry, Tulane University, New Orleans
Louisiana 70118, United
States
| | - Igor V. Rubtsov
- Department
of Chemistry, Tulane University, New Orleans
Louisiana 70118, United
States
| | - Grigory I. Rubtsov
- Institute for Nuclear Research of RAS, 60th October Anniversary st. 7a, Moscow,
Russia 117312
| | - Alexander L. Burin
- Department
of Chemistry, Tulane University, New Orleans
Louisiana 70118, United
States
| |
Collapse
|