1
|
Stochastic Modelling of 13C NMR Spin Relaxation Experiments in Oligosaccharides. Molecules 2021; 26:molecules26092418. [PMID: 33919330 PMCID: PMC8122627 DOI: 10.3390/molecules26092418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/04/2022] Open
Abstract
A framework for the stochastic description of relaxation processes in flexible macromolecules including dissipative effects has been recently introduced, starting from an atomistic view, describing the joint relaxation of internal coordinates and global degrees of freedom, and depending on parameters recoverable from classic force fields (energetics) and medium modelling at the continuum level (friction tensors). The new approach provides a rational context for the interpretation of magnetic resonance relaxation experiments. In its simplest formulation, the semi-flexible Brownian (SFB) model has been until now shown to reproduce correctly correlation functions and spectral densities related to orientational properties obtained by direct molecular dynamics simulations of peptides. Here, for the first time, we applied directly the SFB approach to the practical evaluation of high-quality 13C nuclear magnetic resonance relaxation parameters, T1 and T2, and the heteronuclear NOE of several oligosaccharides, which were previously interpreted on the basis of refined ad hoc modelling. The calculated NMR relaxation parameters were in agreement with the experimental data, showing that this general approach can be applied to diverse classes of molecular systems, with the minimal usage of adjustable parameters.
Collapse
|
2
|
Polimeno A, Zerbetto M, Abergel D. Stochastic modeling of macromolecules in solution. I. Relaxation processes. J Chem Phys 2019; 150:184107. [PMID: 31091939 DOI: 10.1063/1.5077065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A framework for the stochastic description of relaxation processes in flexible macromolecules, including dissipative effects, is introduced from an atomistic point of view. Projection-operator techniques are employed to obtain multidimensional Fokker-Planck operators governing the relaxation of internal coordinates and global degrees of freedom and depending upon parameters fully recoverable from classic force fields (energetics) and continuum models (friction tensors). A hierarchy of approaches of different complexity is proposed in this unified context, aimed primarily at the interpretation of magnetic resonance relaxation experiments. In particular, a model based on a harmonic internal Hamiltonian is discussed as a test case.
Collapse
Affiliation(s)
- Antonino Polimeno
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, I-35131 Padova, Italy
| | - Mirco Zerbetto
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, I-35131 Padova, Italy
| | - Daniel Abergel
- Laboratoire des Biomolécules, LBM, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
3
|
NMR solution geometry of saccharides containing the 6-O-(α-D-glucopyranosyl)-α/β-D-glucopyranose (isomaltose) or 6-O-(α-D-galactopyranosyl)-α/β-D-glucopyranose (melibiose) core. Carbohydr Res 2019; 473:18-35. [DOI: 10.1016/j.carres.2018.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/26/2022]
|
4
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
5
|
Pendrill R, Engström O, Volpato A, Zerbetto M, Polimeno A, Widmalm G. Flexibility at a glycosidic linkage revealed by molecular dynamics, stochastic modeling, and (13)C NMR spin relaxation: conformational preferences of α-L-Rhap-α-(1 → 2)-α-L-Rhap-OMe in water and dimethyl sulfoxide solutions. Phys Chem Chem Phys 2016; 18:3086-96. [PMID: 26741055 DOI: 10.1039/c5cp06288h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The monosaccharide L-rhamnose is common in bacterial polysaccharides and the disaccharide α-L-Rhap-α-(1 → 2)-α-L-Rhap-OMe represents a structural model for a part of Shigella flexneri O-antigen polysaccharides. Utilization of [1'-(13)C]-site-specific labeling in the anomeric position at the glycosidic linkage between the two sugar residues facilitated the determination of transglycosidic NMR (3)JCH and (3)JCC coupling constants. Based on these spin-spin couplings the major state and the conformational distribution could be determined with respect to the ψ torsion angle, which changed between water and dimethyl sulfoxide (DMSO) as solvents, a finding mirrored by molecular dynamics (MD) simulations with explicit solvent molecules. The (13)C NMR spin relaxation parameters T1, T2, and heteronuclear NOE of the probe were measured for the disaccharide in DMSO-d6 at two magnetic field strengths, with standard deviations ≤1%. The combination of MD simulation and a stochastic description based on the diffusive chain model resulted in excellent agreement between calculated and experimentally observed (13)C relaxation parameters, with an average error of <2%. The coupling between the global reorientation of the molecule and the local motion of the spin probe is deemed essential if reproduction of NMR relaxation parameters should succeed, since decoupling of the two modes of motion results in significantly worse agreement. Calculation of (13)C relaxation parameters based on the correlation functions obtained directly from the MD simulation of the solute molecule in DMSO as solvent showed satisfactory agreement with errors on the order of 10% or less.
Collapse
Affiliation(s)
- Robert Pendrill
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden.
| | - Olof Engström
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden.
| | - Andrea Volpato
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova 35131, Italy.
| | - Mirco Zerbetto
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova 35131, Italy.
| | - Antonino Polimeno
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova 35131, Italy.
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden.
| |
Collapse
|
6
|
Piserchia A, Barone V. Toward a General Yet Effective Computational Approach for Diffusive Problems: Variable Diffusion Tensor and DVR Solution of the Smoluchowski Equation along a General One-Dimensional Coordinate. J Chem Theory Comput 2016; 12:3482-90. [PMID: 27403666 DOI: 10.1021/acs.jctc.6b00388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A generalization to arbitrary large amplitude motions of a recent approach to the evaluation of diffusion tensors [ J. Comput. Chem. , 2009 , 30 , 2 - 13 ] is presented and implemented in a widely available package for electronic structure computations. A fully black-box tool is obtained, which, starting from the generation of geometric structures along different kinds of paths, proceeds toward the evaluation of an effective diffusion tensor and to the solution of one-dimensional Smoluchowski equations by a robust numerical approach rooted in the discrete variable representation (DVR). Application to a number of case studies shows that the results issuing from our approach are identical to those delivered by previous software (in particular DiTe) for rigid scans along a dihedral angle, but can be improved by employing relaxed scans (i.e., constrained geometry optimizations) or even more general large amplitude paths. The theoretical and numerical background is robust and general enough to allow quite straightforward extensions in several directions (e.g., inclusion of reactive paths, solution of Fokker-Planck or stochastic Liouville equations, multidimensional problems, free-energy rather than electronic-energy driven processes).
Collapse
Affiliation(s)
- Andrea Piserchia
- Scuola Normale Superiore, piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
7
|
Zhang Z, Smith PES, Frydman L. Reducing acquisition times in multidimensional NMR with a time-optimized Fourier encoding algorithm. J Chem Phys 2015; 141:194201. [PMID: 25416883 DOI: 10.1063/1.4901561] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Speeding up the acquisition of multidimensional nuclear magnetic resonance (NMR) spectra is an important topic in contemporary NMR, with central roles in high-throughput investigations and analyses of marginally stable samples. A variety of fast NMR techniques have been developed, including methods based on non-uniform sampling and Hadamard encoding, that overcome the long sampling times inherent to schemes based on fast-Fourier-transform (FFT) methods. Here, we explore the potential of an alternative fast acquisition method that leverages a priori knowledge, to tailor polychromatic pulses and customized time delays for an efficient Fourier encoding of the indirect domain of an NMR experiment. By porting the encoding of the indirect-domain to the excitation process, this strategy avoids potential artifacts associated with non-uniform sampling schemes and uses a minimum number of scans equal to the number of resonances present in the indirect dimension. An added convenience is afforded by the fact that a usual 2D FFT can be used to process the generated data. Acquisitions of 2D heteronuclear correlation NMR spectra on quinine and on the anti-inflammatory drug isobutyl propionic phenolic acid illustrate the new method's performance. This method can be readily automated to deal with complex samples such as those occurring in metabolomics, in in-cell as well as in in vivo NMR applications, where speed and temporal stability are often primary concerns.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Pieter E S Smith
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lucio Frydman
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
8
|
Egidi F, Bloino J, Cappelli C, Barone V, Tomasi J. Tuning of NMR and EPR parameters by vibrational averaging and environmental effects: an integrated computational approach. Mol Phys 2013. [DOI: 10.1080/00268976.2013.796413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Franco Egidi
- a Scuola Normale Superiore , Piazza dei Cavalieri , Pisa , Italy
| | - Julien Bloino
- a Scuola Normale Superiore , Piazza dei Cavalieri , Pisa , Italy
- b CNR, Consiglio Nazionale delle Ricerche , Istituto di Chimica dei Composti Organometallici , UOS di Pisa, Via G. Moruzzi, Pisa , Italy
| | - Chiara Cappelli
- a Scuola Normale Superiore , Piazza dei Cavalieri , Pisa , Italy
- c Dipartimento di Chimica e Chimica Industriale , Università di Pisa , via Risorgimento, Pisa , Italy
| | - Vincenzo Barone
- a Scuola Normale Superiore , Piazza dei Cavalieri , Pisa , Italy
| | - Jacopo Tomasi
- c Dipartimento di Chimica e Chimica Industriale , Università di Pisa , via Risorgimento, Pisa , Italy
| |
Collapse
|
9
|
Toukach FV, Ananikov VP. Recent advances in computational predictions of NMR parameters for the structure elucidation of carbohydrates: methods and limitations. Chem Soc Rev 2013; 42:8376-415. [DOI: 10.1039/c3cs60073d] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Kotsyubynskyy D, Zerbetto M, Soltesova M, Engström O, Pendrill R, Kowalewski J, Widmalm G, Polimeno A. Stochastic modeling of flexible biomolecules applied to NMR relaxation. 2. Interpretation of complex dynamics in linear oligosaccharides. J Phys Chem B 2012. [PMID: 23185964 DOI: 10.1021/jp306627q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A computational stochastic approach is applied to the description of flexible molecules. By combining (i) molecular dynamics simulations, (ii) hydrodynamics approaches, and (iii) a multidimensional diffusive description for internal and global dynamics, it is possible to build an efficient integrated approach to the interpretation of relaxation processes in flexible systems. In particular, the model is applied to the interpretation of nuclear magnetic relaxation measurements of linear oligosaccharides, namely a mannose-containing trisaccharide and the pentasaccharide LNF-1. Experimental data are reproduced with sufficient accuracy without free model parameters.
Collapse
Affiliation(s)
- Dmytro Kotsyubynskyy
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova 35131, Italy
| | | | | | | | | | | | | | | |
Collapse
|