1
|
Zazubovich V, Jankowiak R. High-Resolution Frequency-Domain Spectroscopic and Modeling Studies of Photosystem I (PSI), PSI Mutants and PSI Supercomplexes. Int J Mol Sci 2024; 25:3850. [PMID: 38612659 PMCID: PMC11011720 DOI: 10.3390/ijms25073850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Photosystem I (PSI) is one of the two main pigment-protein complexes where the primary steps of oxygenic photosynthesis take place. This review describes low-temperature frequency-domain experiments (absorption, emission, circular dichroism, resonant and non-resonant hole-burned spectra) and modeling efforts reported for PSI in recent years. In particular, we focus on the spectral hole-burning studies, which are not as common in photosynthesis research as the time-domain spectroscopies. Experimental and modeling data obtained for trimeric cyanobacterial Photosystem I (PSI3), PSI3 mutants, and PSI3-IsiA18 supercomplexes are analyzed to provide a more comprehensive understanding of their excitonic structure and excitation energy transfer (EET) processes. Detailed information on the excitonic structure of photosynthetic complexes is essential to determine the structure-function relationship. We will focus on the so-called "red antenna states" of cyanobacterial PSI, as these states play an important role in photochemical processes and EET pathways. The high-resolution data and modeling studies presented here provide additional information on the energetics of the lowest energy states and their chlorophyll (Chl) compositions, as well as the EET pathways and how they are altered by mutations. We present evidence that the low-energy traps observed in PSI are excitonically coupled states with significant charge-transfer (CT) character. The analysis presented for various optical spectra of PSI3 and PSI3-IsiA18 supercomplexes allowed us to make inferences about EET from the IsiA18 ring to the PSI3 core and demonstrate that the number of entry points varies between sample preparations studied by different groups. In our most recent samples, there most likely are three entry points for EET from the IsiA18 ring per the PSI core monomer, with two of these entry points likely being located next to each other. Therefore, there are nine entry points from the IsiA18 ring to the PSI3 trimer. We anticipate that the data discussed below will stimulate further research in this area, providing even more insight into the structure-based models of these important cyanobacterial photosystems.
Collapse
Affiliation(s)
- Valter Zazubovich
- Department of Physics, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Ryszard Jankowiak
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
2
|
Mai M, Zazubovich V, Mansbach RA. Identification of Residues Potentially Involved in Optical Shifts in the Water-Soluble Chlorophyll a-Binding Protein through Molecular Dynamics Simulations. J Phys Chem B 2024; 128:1371-1384. [PMID: 38299975 PMCID: PMC10876061 DOI: 10.1021/acs.jpcb.3c06889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
Reversible light and thermally induced spectral shifts are universally observed in a wide variety of pigment-protein complexes at temperatures ranging from cryogenic to ambient. In this paper, we employed large-scale molecular dynamics (MD) simulations of a prototypical pigment-protein complex to better understand these shifts at a molecular scale. Although multiple mechanisms have been proposed over the years, no verification of these proposals via MD simulations has thus far been performed; our work represents the first step in this direction. From simulations of the water-soluble chlorophyll-binding protein complex, we determined that rearrangements of long hydrogen bonds were unlikely to be the origin of the multiwell landscape features necessary to explain observed spectral shifts. We also assessed small motions of amino acid residues and identified side chain rotations of some of these residues as likely candidates for the origin of relevant multiwell landscape features. The protein free-energy landscapes associated with side chain rotations feature energy barriers of around 1100-1600 cm-1, in agreement with optical spectroscopy results, with the most promising residue type associated with experimental signatures being serine, which possesses a symmetric triple-well landscape and moment of inertia of a relevant magnitude.
Collapse
Affiliation(s)
- Martina Mai
- Department of Physics, Concordia
University, Montréal, Quebec H4B 1R6, Canada
| | - Valter Zazubovich
- Department of Physics, Concordia
University, Montréal, Quebec H4B 1R6, Canada
| | - Rachael A. Mansbach
- Department of Physics, Concordia
University, Montréal, Quebec H4B 1R6, Canada
| |
Collapse
|
3
|
Trempe A, Levenberg A, Ortega ADG, Lujan MA, Picorel R, Zazubovich V. Effects of Chlorophyll Triplet States on the Kinetics of Spectral Hole Growth. J Phys Chem B 2021; 125:3278-3285. [PMID: 33764072 DOI: 10.1021/acs.jpcb.0c09042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spectral hole burning has been employed for decades to study various amorphous solids and proteins. Triplet states and respective transient holes were incorporated into theoretical models and software simulating nonphotochemical spectral hole burning (NPHB) and including all relevant distributions, in particular the distribution of the angle between the electric field of light E and transient dipole moment of the chromophore μ. The presence of a chlorophyll a triplet state with a lifetime of several milliseconds explains the slowdown of NPHB (on the depth vs illumination dose scale) with the increase of the light intensity, as well as larger hole depths observed in weak probe beam experiments, compared to those deduced from the hole growth kinetics (HGK) measurements (signal collected at a fixed wavelength while a stronger burning beam is on) in cytochrome b6f and chemically modified LH2. We also considered the solvent deuteration effects on triplet lifetime and concluded that both triplet states and local heating likely play a role in slowing down the HGK with increasing burn intensity.
Collapse
Affiliation(s)
- Alexandra Trempe
- Department of Physics, Concordia University, 7141 Sherbrooke Str. West, Montreal, Quebec H4B 1R6, Canada
| | - Alexander Levenberg
- Department of Physics, Concordia University, 7141 Sherbrooke Str. West, Montreal, Quebec H4B 1R6, Canada
| | | | - Maria A Lujan
- Estacion Experimental de Aula Dei (CSIC), Avda. Montañana 1005, Zaragoza 50059, Spain
| | - Rafael Picorel
- Estacion Experimental de Aula Dei (CSIC), Avda. Montañana 1005, Zaragoza 50059, Spain
| | - Valter Zazubovich
- Department of Physics, Concordia University, 7141 Sherbrooke Str. West, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
4
|
Reinot T, Khmelnitskiy A, Kell A, Jassas M, Jankowiak R. Exciton Lifetime Distributions and Population Dynamics in the FMO Protein Complex from Prosthecochloris aestuarii. ACS OMEGA 2021; 6:5990-6008. [PMID: 33681637 PMCID: PMC7931385 DOI: 10.1021/acsomega.1c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Significant protein rearrangement upon excitation and energy transfer in Fenna-Matthews-Olson protein of Prosthecochloris aestuarii results in a modified energy landscape, which induces more changes in pigment site energies than predicted by the "standard" hole-burning theory. The energy changes are elucidated by simulations while investigating the effects of site-dependent disorder, both static (site-energy distribution widths) and dynamic (spectral density shapes). The resulting optimized site energies and their fluctuations are consistent with relative differences observed in inhomogeneous widths calculated by recent molecular dynamic simulations. Two sets of different spectral densities reveal how their shapes affect the population dynamics and distribution of exciton lifetimes. Calculations revealed the wavelength-dependent distributions of exciton lifetimes (T 1) in the femtosecond to picosecond time frame. We suggest that the calculated multimodal and asymmetric wavelength-dependent T 1 distributions offer more insight into the interpretation of resonant hole-burned (HB) spectra, kinetic traces in two-dimensional (2D) electronic spectroscopy experiments, and widely used global analyses in fitting data from transient absorption experiments.
Collapse
Affiliation(s)
- Tonu Reinot
- Department
of Chemistry, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Anton Khmelnitskiy
- Department
of Chemistry, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Adam Kell
- Department
of Chemistry, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Mahboobe Jassas
- Department
of Chemistry, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Ryszard Jankowiak
- Department
of Chemistry, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
5
|
Reinot T, Jassas M, Kell A, Casazza AP, Santabarbara S, Jankowiak R. On wavelength-dependent exciton lifetime distributions in reconstituted CP29 antenna of the photosystem II and its site-directed mutants. J Chem Phys 2021; 154:085101. [PMID: 33639775 DOI: 10.1063/5.0038217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To provide more insight into the excitonic structure and exciton lifetimes of the wild type (WT) CP29 complex of photosystem II, we measured high-resolution (low temperature) absorption, emission, and hole burned spectra for the A2 and B3 mutants, which lack chlorophylls a612 and b614 (Chls), respectively. Experimental and modeling results obtained for the WT CP29 and A2/B3 mutants provide new insight on the mutation-induced changes at the molecular level and shed more light on energy transfer dynamics. Simulations of the A2 and B3 optical spectra, using the second-order non-Markovian theory, and comparison with improved fits of WT CP29 optical spectra provide more insight into their excitonic structure, mutation induced changes, and frequency-dependent distributions of exciton lifetimes (T1). A new Hamiltonian obtained for WT CP29 reveals that deletion of Chls a612 or b614 induces changes in the site energies of all remaining Chls. Hamiltonians obtained for A2 and B3 mutants are discussed in the context of the energy landscape of chlorophylls, excitonic structure, and transfer kinetics. Our data suggest that the lowest exciton states in A2 and B3 mutants are contributed by a611(57%), a610(17%), a615(15%) and a615(58%), a611(20%), a612(15%) Chls, respectively, although other compositions of lowest energy states are also discussed. Finally, we argue that the calculated exciton decay times are consistent with both the hole-burning and recent transient absorption measurements. Wavelength-dependent T1 distributions offer more insight into the interpretation of kinetic traces commonly described by discrete exponentials in global analysis/global fitting of transient absorption experiments.
Collapse
Affiliation(s)
- Tonu Reinot
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Mahboobe Jassas
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Adam Kell
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, C.N.R., Via Bassini 15, 20133 Milano, Italy
| | - Stefano Santabarbara
- Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, C.N.R., Milano, Italy
| | - Ryszard Jankowiak
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
6
|
Khmelnitskiy A, Toporik H, Mazor Y, Jankowiak R. On the Red Antenna States of Photosystem I Mutants from Cyanobacteria Synechocystis PCC 6803. J Phys Chem B 2020; 124:8504-8515. [DOI: 10.1021/acs.jpcb.0c05201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anton Khmelnitskiy
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Hila Toporik
- School of Molecular Sciences and The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Yuval Mazor
- School of Molecular Sciences and The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Ryszard Jankowiak
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
- Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
7
|
Korsakas S, Bučinskas J, Abramavicius D. Long memory effects in excitonic systems dynamics: Spectral relations and excitation transport. J Chem Phys 2020; 152:244114. [DOI: 10.1063/5.0009926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- S. Korsakas
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Sauletekio 9-III, 10222 Vilnius, Lithuania
| | - J. Bučinskas
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Sauletekio 9-III, 10222 Vilnius, Lithuania
| | - D. Abramavicius
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Sauletekio 9-III, 10222 Vilnius, Lithuania
| |
Collapse
|
8
|
Shafiei G, Levenberg A, Lujan MA, Picorel R, Zazubovich V. Evidence of Simultaneous Spectral Hole Burning Involving Two Tiers of the Protein Energy Landscape in Cytochrome b6f. J Phys Chem B 2019; 123:10930-10938. [PMID: 31763829 DOI: 10.1021/acs.jpcb.9b09515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome b6f, with one chlorophyll molecule per protein monomer, is a simple model system whose studies can help achieve a better understanding of nonphotochemical spectral hole burning (NPHB) and single-complex spectroscopy results obtained in more complicated photosynthetic chlorophyll-protein complexes. We are reporting new data and proposing an alternative explanation for spectral dynamics that was recently observed in cytochrome b6f using NPHB. The relevant distribution of the tunneling parameter λ is a superposition of two components that are nearly degenerate in terms of the resultant NPHB yield and represent two tiers of the energy landscape responsible for NPHB. These two components likely burn competitively; we present the first demonstration of modeling a competitive NPHB process. Similar values of the NPHB yield result from distinctly different combinations of barrier heights, shifts along the generalized coordinate d, and/or masses of the entities involved in conformational changes m, with md2 parameter different by a factor of 2.7. Consequently, in cytochrome b6f, the first (at least) 10 h of fixed-temperature recovery preferentially probe different components of the barrier- and λ-distributions encoded into the spectral holes than thermocycling experiments. Both components most likely represent dynamics of the protein and not of the surrounding buffer/glycerol glass.
Collapse
Affiliation(s)
- Golia Shafiei
- Department of Physics , Concordia University , 7141 Sherbrooke Str. West , Montreal , Quebec H4B 1R6 , Canada
| | - Alexander Levenberg
- Department of Physics , Concordia University , 7141 Sherbrooke Str. West , Montreal , Quebec H4B 1R6 , Canada
| | - Maria A Lujan
- Estacion Experimental de Aula Dei (CSIC) , Avda. Montañana 1005 , 50059 Zaragoza , Spain
| | - Rafael Picorel
- Estacion Experimental de Aula Dei (CSIC) , Avda. Montañana 1005 , 50059 Zaragoza , Spain
| | - Valter Zazubovich
- Department of Physics , Concordia University , 7141 Sherbrooke Str. West , Montreal , Quebec H4B 1R6 , Canada
| |
Collapse
|
9
|
Yamaguchi T, Yoshida N, Nishiyama K. Relation between Anharmonicity of Free-Energy Profile and Spectroscopy in Solvation Dynamics: Differences in Spectral Broadening and Peak Shift in Transient Hole-Burning Spectroscopy Studied by Equilibrium Molecular Dynamics Simulation. J Phys Chem B 2019; 123:7036-7042. [DOI: 10.1021/acs.jpcb.9b04711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tsuyoshi Yamaguchi
- Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Norio Yoshida
- Department of Chemistry, Graduate School of Science, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Katsura Nishiyama
- Department of Environmental Science and Technology, Meijo University, Tempaku, Nagoya 468-8502, Japan
| |
Collapse
|
10
|
Zazubovich V, Jankowiak R. How Well Does the Hole-Burning Action Spectrum Represent the Site-Distribution Function of the Lowest-Energy State in Photosynthetic Pigment-Protein Complexes? J Phys Chem B 2019; 123:6007-6013. [PMID: 31265294 DOI: 10.1021/acs.jpcb.9b03806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For the first time, we combined Monte Carlo and nonphotochemical hole burning (NPHB) master equation approaches to allow for ultrahigh-resolution (<0.005 cm-1, smaller than the typical homogeneous line widths at 5 K) simulations of the NPHB spectra of dimers and trimers of interacting pigments. These simulations reveal significant differences between the zero-phonon hole (ZPH) action spectrum and the site-distribution function (SDF) of the lowest-energy state. The NPHB of the lowest-energy pigment, following the excitation energy transfer (EET) from the higher-energy pigments which are excited directly, results in the shifts of all excited states. These shifts affect the ZPH action spectra and EET times derived from the widths of the spectral holes burned in the donor-dominated regions. The effect is present for a broad variety of realistic antihole functions, and it is maximal at relatively low values of interpigment coupling (V ≤ 5 cm-1) where the use of the Förster approximation is justified. These findings need to be considered in interpreting various optical spectra of photosynthetic pigment-protein complexes for which SDFs (describing the inhomogeneous broadening) are often obtained directly from the ZPH action spectra. Water-soluble chlorophyll-binding protein (WSCP) was considered as an example.
Collapse
Affiliation(s)
- Valter Zazubovich
- Department of Physics , Concordia University , 7141 Sherbrooke Street West , Montreal H4B 1R6 , Quebec , Canada
| | - Ryszard Jankowiak
- Department of Chemistry , Kansas State University , Manhattan , Kansas 66506 , United States
| |
Collapse
|
11
|
Levenberg A, Shafiei G, Lujan MA, Giannacopoulos S, Picorel R, Zazubovich V. Probing Energy Landscapes of Cytochrome b 6f with Spectral Hole Burning: Effects of Deuterated Solvent and Detergent. J Phys Chem B 2017; 121:9848-9858. [PMID: 28956922 DOI: 10.1021/acs.jpcb.7b07686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In non-photochemical spectral hole burning (NPHB) and spectral hole recovery experiments, cytochrome b6f protein exhibits behavior that is almost independent of the deuteration of the buffer/glycerol glassy matrix containing the protein, apart from some differences in heat dissipation. On the other hand, strong dependence of the hole burning properties on sample preparation procedures was observed and attributed to a large increase of the electron-phonon coupling and shortening of the excited-state lifetime occurring when n-dodecyl β-d-maltoside (DM) is used as a detergent instead of n-octyl β-d-glucopyranoside (OGP). The data was analyzed assuming that the tunneling parameter distribution or barrier distribution probed by NPHB and encoded into the spectral holes contains contributions from two nonidentical components with accidentally degenerate excited state λ-distributions. Both components likely reflect protein dynamics, although with some small probability one of them (with larger md2) may still represent the dynamics involving specifically the -OH groups of the water/glycerol solvent. Single proton tunneling in the water/glycerol solvent environment or in the protein can be safely excluded as the origin of observed NPHB and hole recovery dynamics. The intensity dependence of the hole growth kinetics in deuterated samples likely reflects differences in heat dissipation between protonated and deuterated samples. These differences are most probably due to the higher interface thermal resistivity between (still protonated) protein and deuterated water/glycerol outside environment.
Collapse
Affiliation(s)
- Alexander Levenberg
- Department of Physics, Concordia University , 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | - Golia Shafiei
- Department of Physics, Concordia University , 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | - Maria A Lujan
- Estacion Experimental de Aula Dei (CSIC) , Avda. Montañana 1005, 50059 Zaragoza, Spain
| | - Steven Giannacopoulos
- Department of Physics, Concordia University , 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | - Rafael Picorel
- Estacion Experimental de Aula Dei (CSIC) , Avda. Montañana 1005, 50059 Zaragoza, Spain
| | - Valter Zazubovich
- Department of Physics, Concordia University , 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
12
|
Kell A, Jassas M, Hacking K, Cogdell RJ, Jankowiak R. On Light-Induced Photoconversion of B800 Bacteriochlorophylls in the LH2 Antenna of the Purple Sulfur Bacterium Allochromatium vinosum. J Phys Chem B 2017; 121:9999-10006. [DOI: 10.1021/acs.jpcb.7b06185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Kirsty Hacking
- Institute
of Molecular, Cell and Systems Biology, College of Medical, Veterinary
and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland
| | - Richard J. Cogdell
- Institute
of Molecular, Cell and Systems Biology, College of Medical, Veterinary
and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland
| | | |
Collapse
|
13
|
Herascu N, Hunter MS, Shafiei G, Najafi M, Johnson TW, Fromme P, Zazubovich V. Spectral Hole Burning in Cyanobacterial Photosystem I with P700 in Oxidized and Neutral States. J Phys Chem B 2016; 120:10483-10495. [PMID: 27661089 DOI: 10.1021/acs.jpcb.6b07803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicoleta Herascu
- Department
of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, H4B 1R4, Quebec, Canada
| | - Mark S. Hunter
- Department
of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, United States
| | - Golia Shafiei
- Department
of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, H4B 1R4, Quebec, Canada
| | - Mehdi Najafi
- Department
of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, H4B 1R4, Quebec, Canada
| | - T. Wade Johnson
- Department
of Chemistry, Susquehanna University, Selinsgrove, Pennsylvania, United States
| | - Petra Fromme
- Department
of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, United States
| | - Valter Zazubovich
- Department
of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, H4B 1R4, Quebec, Canada
| |
Collapse
|
14
|
The quest for energy traps in the CP43 antenna of photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:286-300. [DOI: 10.1016/j.jphotobiol.2015.05.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/13/2015] [Accepted: 05/28/2015] [Indexed: 01/08/2023]
|
15
|
Najafi M, Zazubovich V. Monte Carlo Modeling of Spectral Diffusion Employing Multiwell Protein Energy Landscapes: Application to Pigment-Protein Complexes Involved in Photosynthesis. J Phys Chem B 2015; 119:7911-21. [PMID: 26020801 DOI: 10.1021/acs.jpcb.5b02764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We are reporting development and initial applications of the light-induced and thermally induced spectral diffusion modeling software, covering nonphotochemical spectral hole burning (NPHB), hole recovery, and single-molecule spectroscopy and involving random generation of the multiwell protein energy landscapes. The model includes tunneling and activated barrier-hopping in both ground and excited states of a protein-chromophore system. Evolution of such a system is predicted by solving the system of rate equations. Using the barrier parameters from the range typical for the energy landscapes of the pigment-protein complexes involved in photosynthesis, we (a) show that realistic cooling of the sample must result in proteins quite far from thermodynamic equilibrium, (b) demonstrate hole evolution in the cases of burning, fixed-temperature recovery and thermocycling that mostly agrees with the experiment and modeling based on the NPHB master equation, and (c) explore the effects of different protein energy landscapes on the antihole shape. Introducing the multiwell energy landscapes and starting the hole burning experiments in realistic nonequilibrium conditions are not sufficient to explain all experimental observations even qualitatively. Therefore, for instance, one is required to invoke the modified NPHB mechanism where a complex interplay of several small conformational changes is poising the energy landscape of the pigment-protein system for downhill tunneling.
Collapse
Affiliation(s)
- Mehdi Najafi
- Department of Physics, Concordia University, Montreal H4B 1R6, Quebec, Canada
| | - Valter Zazubovich
- Department of Physics, Concordia University, Montreal H4B 1R6, Quebec, Canada
| |
Collapse
|
16
|
Najafi M, Herascu N, Shafiei G, Picorel R, Zazubovich V. Conformational Changes in Pigment–Protein Complexes at Low Temperatures—Spectral Memory and a Possibility of Cooperative Effects. J Phys Chem B 2015; 119:6930-40. [PMID: 25985255 DOI: 10.1021/acs.jpcb.5b02845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mehdi Najafi
- Department
of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | - Nicoleta Herascu
- Department
of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | - Golia Shafiei
- Department
of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | - Rafael Picorel
- Estacion Experimental de Aula Dei (CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain
| | - Valter Zazubovich
- Department
of Physics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
17
|
Skandary S, Hussels M, Konrad A, Renger T, Müh F, Bommer M, Zouni A, Meixner A, Brecht M. Variation of exciton-vibrational coupling in photosystem II core complexes from Thermosynechococcus elongatus as revealed by single-molecule spectroscopy. J Phys Chem B 2015; 119:4203-10. [PMID: 25708355 PMCID: PMC4368080 DOI: 10.1021/jp510631x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/20/2015] [Indexed: 01/01/2023]
Abstract
The spectral properties and dynamics of the fluorescence emission of photosystem II core complexes are investigated by single-molecule spectroscopy at 1.6 K. The emission spectra are dominated by sharp zero-phonon lines (ZPLs). The sharp ZPLs are the result of weak to intermediate exciton-vibrational coupling and slow spectral diffusion. For several data sets, it is possible to surpass the effect of spectral diffusion by applying a shifting algorithm. The increased signal-to-noise ratio enables us to determine the exciton-vibrational coupling strength (Huang-Rhys factor) with high precision. The Huang-Rhys factors vary between 0.03 and 0.8. The values of the Huang-Rhys factors show no obvious correlation between coupling strength and wavelength position. From this result, we conclude that electrostatic rather than exchange or dispersive interactions are the main contributors to the exciton-vibrational coupling in this system.
Collapse
Affiliation(s)
| | - Martin Hussels
- IPTC
and Lisa+ Center, Universität Tübingen, Tübingen, Germany
| | | | - Thomas Renger
- Institut
für Theoretische Physik, Johannes
Kepler Universität, Linz, Austria
| | - Frank Müh
- Institut
für Theoretische Physik, Johannes
Kepler Universität, Linz, Austria
| | - Martin Bommer
- Institut
für Biologie, Humboldt Universität
zu Berlin, Berlin, Germany
| | - Athina Zouni
- Institut
für Biologie, Humboldt Universität
zu Berlin, Berlin, Germany
| | | | - Marc Brecht
- IPTC
and Lisa+ Center, Universität Tübingen, Tübingen, Germany
- Zurich University
of Applied Science Winterthur (ZHAW), Winterthur, Switzerland
| |
Collapse
|
18
|
|
19
|
Herascu N, Kell A, Acharya K, Jankowiak R, Blankenship RE, Zazubovich V. Modeling of Various Optical Spectra in the Presence of Slow Excitation Energy Transfer in Dimers and Trimers with Weak Interpigment Coupling: FMO as an Example. J Phys Chem B 2014; 118:2032-40. [DOI: 10.1021/jp410586f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Nicoleta Herascu
- Department
of Physics, Concordia University, Montreal, H4B 1R6 Quebec, Canada
| | | | | | | | | | - Valter Zazubovich
- Department
of Physics, Concordia University, Montreal, H4B 1R6 Quebec, Canada
| |
Collapse
|