1
|
Yang C, Guo Y, Zhang H, Guo X. Utilization of Electric Fields to Modulate Molecular Activities on the Nanoscale: From Physical Properties to Chemical Reactions. Chem Rev 2025; 125:223-293. [PMID: 39621876 DOI: 10.1021/acs.chemrev.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
As a primary energy source, electricity drives broad fields from everyday electronic circuits to industrial chemical catalysis. From a chemistry viewpoint, studying electric field effects on chemical reactivity is highly important for revealing the intrinsic mechanisms of molecular behaviors and mastering chemical reactions. Recently, manipulating the molecular activity using electric fields has emerged as a new research field. In addition, because integration of molecules into electronic devices has the natural complementary metal-oxide-semiconductor compatibility, electric field-driven molecular devices meet the requirements for both electronic device miniaturization and precise regulation of chemical reactions. This Review provides a timely and comprehensive overview of recent state-of-the-art advances, including theoretical models and prototype devices for electric field-based manipulation of molecular activities. First, we summarize the main approaches to providing electric fields for molecules. Then, we introduce several methods to measure their strengths in different systems quantitatively. Subsequently, we provide detailed discussions of electric field-regulated photophysics, electron transport, molecular movements, and chemical reactions. This review intends to provide a technical manual for precise molecular control in devices via electric fields. This could lead to development of new optoelectronic functions, more efficient logic processing units, more precise bond-selective control, new catalytic paradigms, and new chemical reactions.
Collapse
Affiliation(s)
- Chen Yang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Yilin Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Heng Zhang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- Center of Single-Molecule Sciences, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| |
Collapse
|
2
|
Iv M, Rahav S, Peskin U. Emergence of Boltzmann Subspaces in Open Quantum Systems Far from Equilibrium. PHYSICAL REVIEW LETTERS 2024; 132:110401. [PMID: 38563930 DOI: 10.1103/physrevlett.132.110401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/05/2024] [Indexed: 04/04/2024]
Abstract
Single molecule junctions are important examples of complex out-of-equilibrium many-body quantum systems. We identify a nontrivial clustering of steady state populations into distinctive subspaces with Boltzmann-like statistics, which persist far from equilibrium. Such Boltzmann subspaces significantly reduce the information needed to describe the steady state, enabling modeling of high-dimensional systems that are otherwise beyond the reach of current computations. The emergence of Boltzmann subspaces is demonstrated analytically and numerically for fermionic transport systems of increasing complexity.
Collapse
Affiliation(s)
- Michael Iv
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Saar Rahav
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Uri Peskin
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
- The Helen Diller Quantum Center, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
3
|
Cohen G, Galperin M. Green’s function methods for single molecule junctions. J Chem Phys 2020; 152:090901. [DOI: 10.1063/1.5145210] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Guy Cohen
- The Raymond and Beverley Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Galperin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
4
|
Obersteiner V, Huhs G, Papior N, Zojer E. Unconventional Current Scaling and Edge Effects for Charge Transport through Molecular Clusters. NANO LETTERS 2017; 17:7350-7357. [PMID: 29043825 PMCID: PMC5730946 DOI: 10.1021/acs.nanolett.7b03066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/17/2017] [Indexed: 05/16/2023]
Abstract
Metal-molecule-metal junctions are the key components of molecular electronics circuits. Gaining a microscopic understanding of their conducting properties is central to advancing the field. In the present contribution, we highlight the fundamental differences between single-molecule and ensemble junctions focusing on the fundamentals of transport through molecular clusters. In this way, we elucidate the collective behavior of parallel molecular wires, bridging the gap between single molecule and large-area monolayer electronics, where even in the latter case transport is usually dominated by finite-size islands. On the basis of first-principles charge-transport simulations, we explain why the scaling of the conductivity of a junction has to be distinctly nonlinear in the number of molecules it contains. Moreover, transport through molecular clusters is found to be highly inhomogeneous with pronounced edge effects determined by molecules in locally different electrostatic environments. These effects are most pronounced for comparably small clusters, but electrostatic considerations show that they prevail also for more extended systems.
Collapse
Affiliation(s)
- Veronika Obersteiner
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Georg Huhs
- Barcelona
Supercomputing Center (BSC), C/Jordi Girona 29, 08034 Barcelona, Spain
- Humboldt-Universität
zu Berlin, Zum Großen
Windkanal 6, 12489 Berlin, Germany
| | - Nick Papior
- Department
of Micro- and Nanotechnology (DTU Nanotech) and Center for Nanostructured
Graphene, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Institut Català
de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Spain
| | - Egbert Zojer
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
| |
Collapse
|
5
|
Nachman N, Selzer Y. Thermometry of Plasmonic Heating by Inelastic Electron Tunneling Spectroscopy (IETS). NANO LETTERS 2017; 17:5855-5861. [PMID: 28834435 DOI: 10.1021/acs.nanolett.7b03153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The electronic and lattice heating accompanying plasmonic structures under illumination is suggested to be utilized in a broad range of thermoplasmonic applications. Specifically, in molecular electronics precise determination of the temperature of illuminated junctions is crucial, because the temperature-dependent energy distribution of charge carriers in the leads affects the possibility to steer various light-controlled conductance processes. Existing optical methods to characterize the local temperature in all these applications lack the spatial resolution to probe the few nanometers in size hot spots and therefore typically report average values over a diffraction limited length scale. Here we demonstrate that inelastic electron tunneling spectroscopy of molecular junctions based on thiol-alkyl chains can be used to precisely measure the temperature of metal nanoscale gaps under illumination. The nature of this measurement guarantees that the reported temperature indeed characterizes the confined volume in which heat is produced by the relaxation of hot carriers. Using a simple model, we suggest that the accuracy of the method enables also one to semiquantify the energy distribution of the hot carriers.
Collapse
Affiliation(s)
- Nirit Nachman
- School of Chemistry, Tel Aviv University , Tel Aviv 69978, Israel
| | - Yoram Selzer
- School of Chemistry, Tel Aviv University , Tel Aviv 69978, Israel
| |
Collapse
|
6
|
Obersteiner V, Egger D, Zojer E. Impact of Anchoring Groups on Ballistic Transport: Single Molecule vs Monolayer Junctions. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2015; 119:21198-21208. [PMID: 26401191 PMCID: PMC4568541 DOI: 10.1021/acs.jpcc.5b06110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/31/2015] [Indexed: 05/20/2023]
Abstract
Tuning the transport properties of molecular junctions by chemically modifying the molecular structure is one of the key challenges for advancing the field of molecular electronics. In the present contribution, we investigate current-voltage characteristics of differently linked metal-molecule-metal systems that comprise either a single molecule or a molecular assembly. This is achieved by employing density functional theory in conjunction with a Green's function approach. We show that the conductance of a molecular system with a specific anchoring group is fundamentally different depending on whether a single molecule or a continuous monolayer forms the junction. This is a consequence of collective electrostatic effects that arise from dipolar elements contained in the monolayer and from interfacial charge rearrangements. As a consequence of these collective effects, the "ideal" choice for an anchoring group is clearly different for monolayer and single molecule devices. A particularly striking effect is observed for pyridine-docked systems. These are subject to Fermi-level pinning at high molecular packing densities, causing an abrupt increase of the junction current already at small voltages.
Collapse
Affiliation(s)
- Veronika Obersteiner
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - David
A. Egger
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
- Department
of Materials and Interfaces, Weizmann Institute
of Science, Rehovoth 76100, Israel
| | - Egbert Zojer
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
- E-mail:
| |
Collapse
|
7
|
Ochoa MA, Galperin M, Ratner MA. A non-equilibrium equation-of-motion approach to quantum transport utilizing projection operators. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:455301. [PMID: 25318540 DOI: 10.1088/0953-8984/26/45/455301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We consider a projection operator approach to the non-equilibrium Green function equation-of-motion (PO-NEGF EOM) method. The technique resolves problems of arbitrariness in truncation of an infinite chain of EOMs and prevents violation of symmetry relations resulting from the truncation (equivalence of left- and right-sided EOMs is shown and symmetry with respect to interchange of Fermi or Bose operators before truncation is preserved). The approach, originally developed by Tserkovnikov (1999 Theor. Math. Phys. 118 85) for equilibrium systems, is reformulated to be applicable to time-dependent non-equilibrium situations. We derive a canonical form of EOMs, thus explicitly demonstrating a proper result for the non-equilibrium atomic limit in junction problems. A simple practical scheme applicable to quantum transport simulations is formulated. We perform numerical simulations within simple models and compare results of the approach to other techniques and (where available) also to exact results.
Collapse
Affiliation(s)
- Maicol A Ochoa
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|