1
|
Jooyan N, Mortazavi SMJ, Goliaei B, Faraji-Dana R. Indirect effects of interference of two emerging environmental contaminants on cell health: Radiofrequency radiation and gold nanoparticles. CHEMOSPHERE 2024; 349:140942. [PMID: 38092171 DOI: 10.1016/j.chemosphere.2023.140942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND The global need for wireless technologies is growing rapidly. So, we have been exposed to a new type of environmental pollution: radiofrequency radiation (RFR). Recent studies have shown that RFR can cause not only direct effects but also indirect or non-targeted effects such as the bystander effect (BE). In this study, we investigated the BE induced by RFR in the present of gold nanoparticles (GNP). Moreover, we studied the expression of cyclooxygenase-2 (COX-2). METHODS Non-toxic dose of 15-nm GNP was used to treat the Chinese Hamster Ovary (CHO) cells. After 48 h of incubation, cells were exposed to 900 MHz GSM RFR for 24 h. Then we collected the cell culture medium of these cells (conditioned culture medium, CCM) and transferred it to new cells (bystander cells). Cell deaths, DNA breaks, oxidative stress and COX-2 expression were analyzed in all groups. RESULTS The results showed that RFR increased metabolic death in cells treated with GNP. Inversely, the colony formation ability was reduced in bystander cells and RFR exposed cells either in the presence or absence of GNP. Also, the level of reactive oxygen species (ROS) in GNP treated cells showed a significant reduction compared to those of untreated cells. However, RFR-induced DNA breaks and the frequencies of micronuclei (MN) were not significantly affected by GNP. The expression of COX-2 mRNA increased in RFR GNP treated cells, but the difference was not significant. CONCLUSION Our results for the first time indicated that RFR induce indirect effects in the presence of GNP. However, the molecular mediators of these effects differ from those in the absence of GNP. Also, to our knowledge, this is the first study to show that COX-2 is not involved in the bystander effect induced by 900 MHz RFR.
Collapse
Affiliation(s)
- Najmeh Jooyan
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Department of Medical Physics and Biomedical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Javad Mortazavi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Bahram Goliaei
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Reza Faraji-Dana
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Kaur I, Tieu T, Deepagan VG, Ali MA, Alsunaydih F, Rudd D, Moghaddam MA, Bourgeois L, Adams TE, Thurecht KJ, Yuce M, Cifuentes-Rius A, Voelcker NH. Combination of Chemotherapy and Mild Hyperthermia Using Targeted Nanoparticles: A Potential Treatment Modality for Breast Cancer. Pharmaceutics 2023; 15:pharmaceutics15051389. [PMID: 37242631 DOI: 10.3390/pharmaceutics15051389] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Despite the clinical benefits that chemotherapeutics has had on the treatment of breast cancer, drug resistance remains one of the main obstacles to curative cancer therapy. Nanomedicines allow therapeutics to be more targeted and effective, resulting in enhanced treatment success, reduced side effects, and the possibility of minimising drug resistance by the co-delivery of therapeutic agents. Porous silicon nanoparticles (pSiNPs) have been established as efficient vectors for drug delivery. Their high surface area makes them an ideal carrier for the administration of multiple therapeutics, providing the means to apply multiple attacks to the tumour. Moreover, immobilising targeting ligands on the pSiNP surface helps direct them selectively to cancer cells, thereby reducing harm to normal tissues. Here, we engineered breast cancer-targeted pSiNPs co-loaded with an anticancer drug and gold nanoclusters (AuNCs). AuNCs have the capacity to induce hyperthermia when exposed to a radiofrequency field. Using monolayer and 3D cell cultures, we demonstrate that the cell-killing efficacy of combined hyperthermia and chemotherapy via targeted pSiNPs is 1.5-fold higher than applying monotherapy and 3.5-fold higher compared to using a nontargeted system with combined therapeutics. The results not only demonstrate targeted pSiNPs as a successful nanocarrier for combination therapy but also confirm it as a versatile platform with the potential to be used for personalised medicine.
Collapse
Affiliation(s)
- Ishdeep Kaur
- Monash Institute of Pharmacy and Pharmaceutical Sciences, Monash University, 381, Royal Parade, Parkville, VIC 3052, Australia
| | - Terence Tieu
- Monash Institute of Pharmacy and Pharmaceutical Sciences, Monash University, 381, Royal Parade, Parkville, VIC 3052, Australia
| | - Veerasikku G Deepagan
- Monash Institute of Pharmacy and Pharmaceutical Sciences, Monash University, 381, Royal Parade, Parkville, VIC 3052, Australia
| | - Muhammad A Ali
- Department of Electrical and Computer Systems Engineering, Monash University, Clayton Campus, Clayton, VIC 3168, Australia
| | - Fahad Alsunaydih
- Department of Electrical and Computer Systems Engineering, Monash University, Clayton Campus, Clayton, VIC 3168, Australia
| | - David Rudd
- Monash Institute of Pharmacy and Pharmaceutical Sciences, Monash University, 381, Royal Parade, Parkville, VIC 3052, Australia
| | - Maliheh A Moghaddam
- Centre of Polymer Systems, Tomas Bata University, 5678, 760 01 Zlin, Czech Republic
| | - Laure Bourgeois
- Monash Centre for Electron Microscopy, Clayton Campus, Monash University, Clayton, VIC 3168, Australia
| | - Timothy E Adams
- Commonwealth Scientific and Industrial Research Organization (CSIRO), 343, Royal Parade, Parkville, VIC 3052, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Rds, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mehmet Yuce
- Department of Electrical and Computer Systems Engineering, Monash University, Clayton Campus, Clayton, VIC 3168, Australia
| | - Anna Cifuentes-Rius
- Monash Institute of Pharmacy and Pharmaceutical Sciences, Monash University, 381, Royal Parade, Parkville, VIC 3052, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmacy and Pharmaceutical Sciences, Monash University, 381, Royal Parade, Parkville, VIC 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
| |
Collapse
|
3
|
Yasin D, Sami N, Afzal B, Husain S, Naaz H, Ahmad N, Zaki A, Rizvi MA, Fatma T. Prospects in the use of gold nanoparticles as cancer theranostics and targeted drug delivery agents. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Analytical and Numerical Models for TE-Wave Absorption in a Graded-Index GNP-Treated Cell Substrate Inserted in a Waveguide. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this paper, absorption phenomena in a hollow waveguide with an inserted graded dielectric layer are studied, for the case of transverse electric (TE) wave propagation. The waveguide model aims to be applicable to a study of a potential cancer treatment by heating of gold nanoparticles (GNPs) inside the cancer cells. In our previous work, general exact analytical fomulas for transmission, reflection, and absorption coefficients were derived. These fomulas are further developed here to be readily applicable to the calculation of the absorption coefficient within the inserted lossy layer only, quantifying the absorption in the GNP-fed cancer tissue. To this end, we define new exact analytic scale factors that eliminate unessential absorption in the surrounding lossy medium. In addition, a numerical model was developed using finite element method software. We compare the numerical results for power transmission, reflection and absorption coefficients to the corresponding results obtained from the new modified exact analytic fomulas. The study includes both a simple example of constant complex permittivities, and a more realistic example where a dispersive model of permittivity is used to describe human tissue and the electrophoretic motion of charged GNPs. The results of the numerical study with both non-dispersive and dispersive permittivities indicate an excellent agreement with the corresponding analytical results. Thus, the model provides a valuable analytical and numerical tool for future research on absorption phenomena in GNP-fed cancer tissue.
Collapse
|
5
|
Study on the Mechanism of the Reversible Color Change of Polyacrylic Acid Modified Gold Nanoparticles Responding to pH. MATERIALS 2021; 14:ma14133679. [PMID: 34279250 PMCID: PMC8269886 DOI: 10.3390/ma14133679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/06/2021] [Accepted: 06/24/2021] [Indexed: 11/29/2022]
Abstract
In view of various explanations regarding the pH response of the nanocomposite of gold nanoparticles (AuNPs) modified with polyacrylic acid (PAA) molecules in reported literature, in this work, AuNPs with a size of 20 nm saturatedly loaded with PAA molecules (AuNPs-PAAs) were used to investigate the following aspects of this issue. We investigated the effects of pH on the stability of AuNPs-PAAs in the presence of salt, CTAB, poly (sodium styrenesulfonate) (PSS), ethanol, and free PAA, respectively. Common techniques were undertaken to evaluate the stability, including UV-Vis spectroscopy, Zeta potential analysis, and TEM. The results show that AuNPs-PAAs could respond to pH variations, having a reversible aggregation-to-disaggregation, accompanying their Zeta potential change. The proposed corresponding mechanism was that this reversible change was attributes to the net charge variation of AuNPs-PAAs induced by a reversible protonation-to-deprotonation of PAA rather than the conformational change. It was found that salt, CTAB, PSS, and free PAA could strengthen the dispersity of AuNPs-PAAs, even though their absolute Zeta potential values were decreased to small values or dropped to nearly zero. This abnormal phenomenon was explained by solvation. It was also found that AuNPs-PAAs have an opposite pH response in aqueous and ethanol solutions, justifying the solvation effect. All these results revealed the conformational stability of PAAs immobilized on AuNPs. The methods and the findings of this investigation give some new insights to understand the pH-response of AuNPs-PAAs composites and the design of AuNPs-PAAs-based functional sensors.
Collapse
|
6
|
Rommelfanger NJ, Ou Z, Keck CH, Hong G. Differential heating of metal nanostructures at radio frequencies. PHYSICAL REVIEW APPLIED 2021; 15:054007. [PMID: 36268260 PMCID: PMC9581340 DOI: 10.1103/physrevapplied.15.054007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanoparticles with strong absorption of incident radio frequency (RF) or microwave irradiation are desirable for remote hyperthermia treatments. While controversy has surrounded the absorption properties of spherical metallic nanoparticles, other geometries such as prolate and oblate spheroids have not received sufficient attention for application in hyperthermia therapies. Here, we use the electrostatic approximation to calculate the relative absorption ratio of metallic nanoparticles in various biological tissues. We consider a broad parameter space, sweeping across frequencies from 1 MHz to 10 GHz, while also tuning the nanoparticle dimensions from spheres to high-aspect-ratio spheroids approximating nanowires and nanodiscs. We find that while spherical metallic nanoparticles do not offer differential heating in tissue, large absorption cross sections can be obtained from long prolate spheroids, while thin oblate spheroids offer minor potential for absorption. Our results suggest that metallic nanowires should be considered for RF- and microwave-based wireless hyperthermia treatments in many tissues going forward.
Collapse
Affiliation(s)
- Nicholas J. Rommelfanger
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Zihao Ou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Carl H.C. Keck
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
- Corresponding author:
| |
Collapse
|
7
|
Narasimh An AK, Chakaravarthi G, Rao MSR, Arunachalam K. Study of absorption of radio frequency field by gold nanoparticles and nanoclusters in biological medium. Electromagn Biol Med 2020; 39:183-195. [PMID: 32408843 DOI: 10.1080/15368378.2020.1762637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Gold nanoparticles (AuNPs) and gold nanoclusters (AuNCs) are gaining interest in medical diagnosis and therapy as they are bio-compatible and are easy to functionalize. Their interaction with radiofrequency (RF) field for hyperthermia treatment is ambiguous and needs further investigation. A systematic study of the absorption of capacitive RF field by AuNPs and AuNCs dispersed in phosphate-buffered saline (PBS) is reported here in tissue mimicking phantom. The stability of AuNPs and AuNCs dispersed in PBS was confirmed for a range of pH and temperature expected during RF hyperthermia treatment. Colloidal gold solutions with AuNPs (10 nm) and AuNCs (2 nm), and control, i.e. PBS without nanogold, were loaded individually in 3 ml wells in a tissue phantom. Phantom heating was carried out using 27 MHz short-wave diathermy equipment at 200 and 400 W for control and colloidal gold solutions. Experiments were conducted for colloidal gold at varying gold concentrations (10-100 µg/ml). Temperature rise measured in the phantom wells did not show dependence on the concentration and size of the AuNPs. Furthermore, temperature rise recorded in the control was comparable with the measurements recorded in both nanogold suspensions (2, 10 nm). Dielectric property measurements of control and colloidal gold showed <3% difference in electrical conductivity between the control and colloidal gold for both nanoparticle sizes. From the measurements, it is concluded that AuNPs and AuNCs do not enhance the absorption of RF-capacitive field and power absorption observed in the biological medium is due to the ions present in the medium.
Collapse
Affiliation(s)
- Ashwin Kumar Narasimh An
- Department of Biomedical Engineering, SRM Institute of Science and Technology , Kattankulathur, India
| | - Geetha Chakaravarthi
- Department of Instrumentation and Control Engineering, NIT Trichy , Tiruchirappalli, India
| | - M S Ramachandra Rao
- Nano Functional Materials Technology Centre, Department of Physics, Indian Institute of Technology Madras , Chennai, India
| | - Kavitha Arunachalam
- Department of Engineering Design, Indian Institute of Technology Madras , Chennai, India
| |
Collapse
|
8
|
Near IR responsive targeted integrated lipid polymer nanoconstruct for enhanced magnolol cytotoxicity in breast cancer. Sci Rep 2020; 10:8771. [PMID: 32472087 PMCID: PMC7260181 DOI: 10.1038/s41598-020-65521-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/29/2020] [Indexed: 11/12/2022] Open
Abstract
Advances in cancer nanotechnology aim at improving specificity and effectiveness for tumor treatment. Amalgamation of different treatment modalities is expected to provide better cancer combating. Herein, We developed a long circulating nanocarrier comprising trastuzumab (TZB) surface modified polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) co-encapsulating magnolol (Mag) and gold nanoparticles (GNPs). A modified single step nanoprecipitation method was adopted ensuring particle coating with D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) while co-encapsulating GNPs. TZB was then anchored on NPs surface using a carbodiimide chemistry. The cytotoxicity of the developed system was evaluated with and without photothermal irradiation. NPs cellular uptake was then followed using confocal microscopical imaging. A hybrid matrix composed of PLGA/TPGS and surface decorated with TZB with a conjugation efficiency of ˃65%, was confirmed via FTIR, 1HNMR. GNPs could only be included in the NPs, when placed in the organic phase as evidenced by the shifted GNPs surface plasmonic resonance and confirmed via imaging coupled with energy dispersive X-ray analysis. Optimized NPs (136.1 ± 1.3 nm, −8.2 ± 1 mV and Mag encapsulation efficiency of 81.4 ± 1.8%) were able to boost Mag cytotoxicity on breast cancer cells while providing a selective multifunctional therapy with an added photothermal effect.
Collapse
|
9
|
Ivanenko Y, Gustafsson M, Nordebo S. Optical theorems and physical bounds on absorption in lossy media. OPTICS EXPRESS 2019; 27:34323-34342. [PMID: 31878482 DOI: 10.1364/oe.27.034323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Two different versions of an optical theorem for a scattering body embedded inside a lossy background medium are derived in this paper. The corresponding fundamental upper bounds on absorption are then obtained in closed form by elementary optimization techniques. The first version is formulated in terms of polarization currents (or equivalent currents) inside the scatterer and generalizes previous results given for a lossless medium. The corresponding bound is referred to here as a variational bound and is valid for an arbitrary geometry with a given material property. The second version is formulated in terms of the T-matrix parameters of an arbitrary linear scatterer circumscribed by a spherical volume and gives a new fundamental upper bound on the total absorption of an inclusion with an arbitrary material property (including general bianisotropic materials). The two bounds are fundamentally different as they are based on different assumptions regarding the structure and the material property. Numerical examples including homogeneous and layered (core-shell) spheres are given to demonstrate that the two bounds provide complimentary information in a given scattering problem.
Collapse
|
10
|
Beyk J, Tavakoli H. Selective radiofrequency ablation of tumor by magnetically targeting of multifunctional iron oxide-gold nanohybrid. J Cancer Res Clin Oncol 2019; 145:2199-2209. [PMID: 31309302 DOI: 10.1007/s00432-019-02969-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/01/2019] [Indexed: 01/16/2023]
Abstract
PURPOSE Radiofrequency (RF) ablation therapy is of great interest in cancer therapy as it is non-ionizing radiation and can effectively penetrate into the tissue. However, the current RF ablation technique is invasive that requires RF probe insertion into the tissue and generates a non-specific heating. Recently, RF-responsive nanomaterials such as gold nanoparticles (AuNPs) and iron oxide nanoparticles (IONPs) have led to tremendous progress in this area. They have been found to be able to absorb the RF field and induce a localized heating within the target, thereby affording a non-invasive and tumor-specific RF ablation strategy. In the present study, for the first time, we used a hybrid core-shell nanostructure comprising IONPs as the core and AuNPs as the shell (IO@Au) for targeted RF ablation therapy. Due to the magnetic core, the nanohybrid can be directed toward the tumor through a magnet. Moreover, IONPs enable the nanohybrid to be used as a magnetic resonance imaging (MRI) contrast agent. RESULTS In vitro cytotoxicity experiment showed that the combination of IO@Au and 13.56-MHz RF field significantly reduced the viability of cancer cells. Next, during an in vivo experiment, we demonstrated that magnetically targeting of IO@Au to the tumor and subsequent RF exposure dramatically suppressed the tumor growth. CONCLUSION Therefore, the integration of targeting, imaging, and therapeutic performances into IO@Au nanohybrid could afford the promise to improve the effectiveness of RF ablation therapy.
Collapse
Affiliation(s)
- Jaber Beyk
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hassan Tavakoli
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran. .,Department of Physiology and Biophysics, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
|
12
|
Amini SM. Gold nanostructures absorption capacities of various energy forms for thermal therapy applications. J Therm Biol 2018; 79:81-84. [PMID: 30612690 DOI: 10.1016/j.jtherbio.2018.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/04/2018] [Accepted: 12/09/2018] [Indexed: 02/06/2023]
Abstract
This mini-review has investigated the recent progress regarding gold nanostructures capacities of energy absorption for thermal therapy applications. Unselective thermal therapy of malignant and normal tissues could lead to irreversible damage to healthy tissues without effective treatment on target malignant tissues. In recent years, there has been a considerable progress in the field of cancer thermal therapy for treating target malignant tissues using nanostructures. Due to the remarkable physical properties of the gold nanoparticle, it has been considered as an exceptional element for thermal therapy techniques. Different types of gold nanoparticles have been used as energy absorbent for thermal therapy applications under several types of energy exposures. Electromagnetic, ultrasound, electric and magnetic field are examples for these energy sources. Well-known plasmonic photothermal therapy which applies electromagnetic radiation is under clinical investigation for the treatment of various medical conditions. However, there are many other techniques in this regard which should be explored.
Collapse
Affiliation(s)
- Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Medical Nanotechnology Department, School of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
13
|
Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu JF, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao Y. Precise nanomedicine for intelligent therapy of cancer. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9397-5] [Citation(s) in RCA: 279] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Tamarov K, Gongalsky M, Osminkina L, Huang Y, Omar M, Yakunin V, Ntziachristos V, Razansky D, Timoshenko V. Electrolytic conductivity-related radiofrequency heating of aqueous suspensions of nanoparticles for biomedicine. Phys Chem Chem Phys 2018; 19:11510-11517. [PMID: 28425519 DOI: 10.1039/c7cp00728k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of suitable contrast agents can significantly enhance the efficiency of modern imaging and treatment techniques, such as thermoacoustic (TA) tomography and radio-frequency (RF) hyperthermia of cancer. Here, we examine the heating of aqueous suspensions of silicon (Si) and gold (Au) nanoparticles (NPs) under RF irradiation in the MHz frequency range. The heating rate of aqueous suspensions of Si NPs exhibited non-monotonic dependency on the electrical conductivity of the suspension. The experimental results were explained by the mathematical model considering oscillating solvated ions as the main source of Joule heating. These ions could be the product of the dissolution of Si NPs or organic coating of Au NPs. Thus, the ions governed the conductivity of the suspensions, which in turn governs both the heating rate and the near-field RF TA response. The model predicted the contrast in different tissues taking into account both Joule heating and dielectric losses.
Collapse
Affiliation(s)
- Konstantin Tamarov
- Faculty of Physics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia. and Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Maxim Gongalsky
- Faculty of Physics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia. and Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Liubov Osminkina
- Faculty of Physics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia. and National Research Nuclear University "MEPhI", International Laboratory "Bionanophotonics", 115409 Moscow, Russia
| | - Yuanhui Huang
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Chair of Biological Imaging, Technische Universität München, 80333 Munich, Germany
| | - Murad Omar
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Chair of Biological Imaging, Technische Universität München, 80333 Munich, Germany
| | - Valery Yakunin
- Faculty of Physics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Chair of Biological Imaging, Technische Universität München, 80333 Munich, Germany
| | - Daniel Razansky
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Chair of Biological Imaging, Technische Universität München, 80333 Munich, Germany
| | - Victor Timoshenko
- Faculty of Physics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia. and National Research Nuclear University "MEPhI", International Laboratory "Bionanophotonics", 115409 Moscow, Russia
| |
Collapse
|
15
|
Collins CB, Tofanelli MA, Noblitt SD, Ackerson CJ. Electrophoretic Mechanism of Au 25(SR) 18 Heating in Radiofrequency Fields. J Phys Chem Lett 2018; 9:1516-1521. [PMID: 29521094 PMCID: PMC5886805 DOI: 10.1021/acs.jpclett.8b00327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Gold nanoparticles in radiofrequency (RF) fields have been observed to heat. There is some debate over the mechanism of heating. Au25(SR)18 in RF is studied for the mechanistic insights obtainable from precise synthetic control over exact charge, size, and spin for this nanoparticle. An electrophoretic mechanism can adequately account for the observed heat. This study adds a new level of understanding to gold particle heating experiments, allowing for the first time a conclusive connection between theoretical and experimentally observed heating rates.
Collapse
Affiliation(s)
- Christian B. Collins
- Chemistry, Colorado State University, 1847 Campus Delivery, Fort Collins, CO 80523 (USA)
| | | | | | | |
Collapse
|
16
|
Jose A, Surendran M, Fazal S, Prasanth BP, Menon D. Multifunctional fluorescent iron quantum clusters for non-invasive radiofrequency ablationof cancer cells. Colloids Surf B Biointerfaces 2018. [PMID: 29525697 DOI: 10.1016/j.colsurfb.2018.02.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This work reports the potential of iron quantum clusters (FeQCs) as a hyperthermia agent for cancer, by testing its in-vitro response to shortwave (MHz range), radiofrequency (RF) waves non-invasively. Stable, fluorescent FeQCs of size ∼1 nm prepared by facile aqueous chemistry from endogenous protein haemoglobin were found to give a high thermal response, with a ΔT ∼50 °C at concentrationsas low as165 μg/mL. The as-prepared nanoclusters purified by lyophilization as well as dialysis showed a concentration, power and time-dependent RF response, with the lyophilized FeQCs exhibiting pronounced heating effects. FeQCs were found to be cytocompatible to NIH-3T3 fibroblast and 4T1 cancer cells treated at concentrations upto 1000 μg/mL for 24 h. Upon incubation with FeQCs and exposure to RF waves, significant cancer cell death was observed which proves its therapeutic ability. The fluorescent ability of the clusters could additionally be utilized for imaging cancer cells upon excitation at ∼450 nm. Further, to demonstrate the feasibility of imparting additional functionality such as drug/biomolecule/dye loading to FeQCs, they were self assembled with cationic polymers to form nanoparticles. Self assembly did not alter the RF heating potential of FeQCs and additionally enhanced its fluorescence. The multifunctional fluorescent FeQCs therefore show good promise as a novel therapeutic agent for RF hyperthermia and drug loading.
Collapse
Affiliation(s)
- Akhila Jose
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Mrudula Surendran
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Sajid Fazal
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Bindhu-Paul Prasanth
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Deepthy Menon
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| |
Collapse
|
17
|
Mironava T, Arachchilage VT, Myers KJ, Suchalkin S. Gold Nanoparticles and Radio Frequency Field Interactions: Effects of Nanoparticle Size, Charge, Aggregation, Radio Frequency, and Ionic Background. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13114-13124. [PMID: 29061042 DOI: 10.1021/acs.langmuir.7b03210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, we investigated experimentally the dependency of radio frequency (rf) absorption by gold nanoparticles (AuNPs) on frequency (10 kHz to 450 MHz), NP size (3.5, 17, and 36 nm), charge of the ligand shell (positive amino and negative carboxylic functional groups), aggregation state, and presence of electrolytes (0-1 M NaCl). In addition, we examined the effect of protein corona on the rf absorption by AuNPs. For the first time, rf energy absorption by AuNPs was analyzed in the 10 kHz to 450 MHz rf range. We have demonstrated that the previously reported rf heating of AuNPs can be solely attributed to the heating of the ionic background and AuNPs do not absorb noticeable rf energy regardless of the NP size, charge, aggregation, and presence of electrolytes. However, the formation of protein corona on the AuNP surface resulted in rf energy absorption by AuNP-albumin constructs, suggesting that protein corona might be partially responsible for the heating of AuNPs observed in vivo. The optimal frequency of rf absorption for the AuNP-albumin constructs is significantly higher than conventional 13.56 MHz, suggesting that the heating of AuNPs in rf field should be performed at considerably higher frequencies for better results in vivo.
Collapse
Affiliation(s)
- Tatsiana Mironava
- Materials Science and Engineering and ‡Electrical and Computer Engineering, Stony Brook University , Stony Brook, New York 11794, United States
| | - Visal T Arachchilage
- Materials Science and Engineering and ‡Electrical and Computer Engineering, Stony Brook University , Stony Brook, New York 11794, United States
| | - Kenneth J Myers
- Materials Science and Engineering and ‡Electrical and Computer Engineering, Stony Brook University , Stony Brook, New York 11794, United States
| | - Sergey Suchalkin
- Materials Science and Engineering and ‡Electrical and Computer Engineering, Stony Brook University , Stony Brook, New York 11794, United States
| |
Collapse
|
18
|
Amini SM, Kharrazi S, Rezayat SM, Gilani K. Radiofrequency electric field hyperthermia with gold nanostructures: role of particle shape and surface chemistry. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1452-1462. [PMID: 28891351 DOI: 10.1080/21691401.2017.1373656] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hyperthermia treatment of cancerous cells has been recently developed drastically with the help of nanostructures. Heating of gold nanoparticles in non-invasive radiofrequency electric field (RF-EF) is a promising and unique technique for cancer hyperthermia. However, because of differences between particles (i.e. their surface chemistry and dispersion medium) and between RF-EF sources, the research community has not reached a consensus yet. Here, we report the results of investigations on heating of gold nanoparticles and gold nanorods under RF-EF and feasibility of in-vitro cancer hyperthermia. The heating experiments were performed to investigate the role of particle shape and surface chemistry (CTAB, citrate and PEG molecules). In-vitro hyperthermia was performed on human pancreatic cancer cell (MIA Paca-2) with PEG-coated GNPs and GNRs at concentrations that were found non-toxic based on the results of cytotoxicity assay. Application of RF-EF on cells treated with PEG-GNPs and PEG-GNRs proved highly effective in killing cells.
Collapse
Affiliation(s)
- Seyed Mohammad Amini
- a Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM) , Tehran University of Medical Sciences (TUMS) , Tehran , Iran.,b Radiation Biology Research Center , Iran University of Medical Sciences (IUMS) , Tehran , Iran
| | - Sharmin Kharrazi
- a Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM) , Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Seyed Mahdi Rezayat
- a Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM) , Tehran University of Medical Sciences (TUMS) , Tehran , Iran.,c Department of Toxicology & Pharmacology, Faculty of Pharmacy , Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS) , Tehran , Iran.,d Department of Pharmacology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Kambiz Gilani
- e Department of Pharmaceutics, Aerosol Research Laboratory, School of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran.,f Medicinal Plants Research Center , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
19
|
Fazal S, Paul-Prasanth B, Nair SV, Menon D. Theranostic Iron Oxide/Gold Ion Nanoprobes for MR Imaging and Noninvasive RF Hyperthermia. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28260-28272. [PMID: 28789518 DOI: 10.1021/acsami.7b08939] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This work focuses on the development of a nanoparticulate system that can be used for magnetic resonance (MR) imaging and E-field noninvasive radiofrequency (RF) hyperthermia. For this purpose, an amine-functional gold ion complex (GIC), [Au(III)(diethylenetriamine)Cl]Cl2, which generates heat upon RF exposure, was conjugated to carboxyl-functional poly(acrylic acid)-capped iron-oxide nanoparticles (IO-PAA NPs) to form IO-GIC NPs of size ∼100 nm. The multimodal superparamagnetic IO-GIC NPs produced T2-contrast on MR imaging and unlike IO-PAA NPs generated heat on RF exposure. The RF heating response of IO-GIC NPs was found to be dependent on the RF power, exposure period, and particle concentration. IO-GIC NPs at a concentration of 2.5 mg/mL showed a high heating response (δT) of ∼40 °C when exposed to 100 W RF power for 1 min. In vitro cytotoxicity measurements on NIH-3T3 fibroblast cells and 4T1 cancer cells showed that IO-GIC NPs are cytocompatible at high NP concentrations for up to 72 h. Upon in vitro RF exposure (100 W, 1 min), a high thermal response leads to cell death of 4T1 cancer cells incubated with IO-GIC NPs (1 mg/mL). Hematoxylin and eosin imaging of rat liver tissues injected with 100 μL of 2.5 mg/mL IO-GIC NPs and exposed to low RF power of 20 W for 10 min showed significant loss of tissue morphology at the site of injection, as against RF-exposed or nanoparticle-injected controls. In vivo MR imaging and noninvasive RF exposure of 4T1-tumor-bearing mice after IO-GIC NP administration showed T2 contrast enhancement and a localized generation of high temperatures in tumors, leading to tumor tissue damage. Furthermore, the administration of IO-GIC NPs followed by RF exposure showed no adverse acute toxicity effects in vivo. Thus, IO-GIC NPs show good promise as a theranostic agent for magnetic resonance imaging and noninvasive RF hyperthermia for cancer.
Collapse
Affiliation(s)
- Sajid Fazal
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita University , Kochi 682041, Kerala, India
| | - Bindhu Paul-Prasanth
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita University , Kochi 682041, Kerala, India
| | - Shantikumar V Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita University , Kochi 682041, Kerala, India
| | - Deepthy Menon
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita University , Kochi 682041, Kerala, India
| |
Collapse
|
20
|
Mackeyev Y, Mark C, Kumar N, Serda RE. The influence of cell and nanoparticle properties on heating and cell death in a radiofrequency field. Acta Biomater 2017; 53:619-630. [PMID: 28179157 DOI: 10.1016/j.actbio.2017.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/27/2017] [Accepted: 02/02/2017] [Indexed: 02/08/2023]
Abstract
The use of non-invasive radiofrequency (RF) energy to induce mild thermal and non-thermal effects in cancer tissue is under study as an adjuvant to chemo, radio or immuno therapy. This study examines cell specific sensitivities to RF exposure and the potential of nanoparticles to elevate heating rates or enhance biological effects. Increases in the heating rate of water in an RF field operating at 13.56MHz (0.004-0.028°C/s) were positively correlated with concentration of hybrid nanoparticles (1-10mg/ml) consisting of water soluble malonodiserinolamide [60]fullerene (C60-ser) conjugated to the surface of mesoporous silica nanoparticles (SiO2-C60). The heating rate of highly conductive cell culture media (0.024°C/s) was similar to that of the highest concentration of nanoparticles in water, with no significant increase due to addition of nanoparticles at relevant doses (<100μg/ml). With respect to cell viability, anionic (SiO2 and SiO2-C60) or neutral (C60) nanoparticles did not influence RF-induced cell death, however, cationic nanoparticles (4-100μg/ml) caused dose-dependent increases in RF-induced cell death (24-42% compared to RF only). The effect of cell type, size and immortalization on sensitivity of cells to RF fields was examined in endothelial (HUVEC and HMVEC), fibroblast (primary dermal and L939) and cancer cells (HeLa and 4T1). While the state of cellular immortalization itself did not consistently influence the rate of RF-induced cell death compared to normal cell counter parts, cell size (ranging from 7 to 30μm) negatively correlated with cell sensitivity to RF (21-97% cell death following 6min irradiation). In summary, while nanoparticles do not alter the heating rate of biologically-relevant solutions, they can increase RF-induced cell death based on intrinsic cytotoxicity; and cells with smaller radii, and thereby greater surface membrane, are more susceptible to cell damage in an RF field than larger cells. STATEMENT OF SIGNIFICANCE The ability of nanoparticles to either direct heating or increase susceptibility of cancer cells to radiofrequency (RF) energy remains controversial, as is the impact of cell attributes on susceptibility of cells to RF-induced cell death. This manuscript examines the impact of nanoparticle charge, size, and cellular localization on RF-induced cell death and the influence of nanoparticles on the heating rates of water and biologically-relevant media. Susceptibility of immortalized or primary cells to RF energy and the impact of cell size are also examined. The ability to selectively modulate RF heating rates in specific biological locations or in specific cell populations would enhance the therapeutic potential of RF therapy.
Collapse
|
21
|
Bell G, Bogart LK, Southern P, Olivo M, Pankhurst QA, Parkin IP. Enhancing the Magnetic Heating Capacity of Iron Oxide Nanoparticles through Their Postproduction Incorporation into Iron Oxide-Gold Nanocomposites. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gavin Bell
- Materials Chemistry Research Centre; Department of Chemistry; University College London; 20 Gordon Street WC1H 0AJ London UK
- Bio-Optical Imaging Group; Singapore Bio-Imaging Consortium (SBIC), Agency for Science Technology and Research (A*STAR); Helios #01-02, 11 Biopolis Way 138667 Singapore Singapore
| | - Lara K. Bogart
- Healthcare Biomagnetics Laboratory; University College London; 21 Albemarle Street WS1 4BS London UK
| | - Paul Southern
- Healthcare Biomagnetics Laboratory; University College London; 21 Albemarle Street WS1 4BS London UK
| | - Malini Olivo
- Bio-Optical Imaging Group; Singapore Bio-Imaging Consortium (SBIC), Agency for Science Technology and Research (A*STAR); Helios #01-02, 11 Biopolis Way 138667 Singapore Singapore
| | - Quentin A. Pankhurst
- Healthcare Biomagnetics Laboratory; University College London; 21 Albemarle Street WS1 4BS London UK
| | - Ivan P. Parkin
- Materials Chemistry Research Centre; Department of Chemistry; University College London; 20 Gordon Street WC1H 0AJ London UK
| |
Collapse
|
22
|
Lara NC, Haider AA, Wilson LJ, Curley SA, Corr SJ. Unique heating curves generated by radiofrequency electric-field interactions with semi-aqueous solutions. APPLIED PHYSICS LETTERS 2017; 110:013701. [PMID: 28104923 PMCID: PMC5218968 DOI: 10.1063/1.4973218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/09/2016] [Indexed: 05/07/2023]
Abstract
Aqueous and nanoparticle-based solutions have been reported to heat when exposed to an alternating radiofrequency (RF) electric-field. Although the theoretical models have been developed to accurately model such a behavior given the solution composition as well as the geometrical constraints of the sample holder, these models have not been investigated across a wide-range of solutions where the dielectric properties differ, especially with regard to the real permittivity. In this work, we investigate the RF heating properties of non-aqueous solutions composed of ethanol, propylene glycol, and glycine betaine with and without varying amounts of NaCl and LiCl. This allowed us to modulate the real permittivity across the range 25-132, as well as the imaginary permittivity across the range 37-177. Our results are in excellent agreement with the previously developed theoretical models. We have shown that different materials generate unique RF heating curves that differ from the standard aqueous heating curves. The theoretical model previously described is robust and accounts for the RF heating behavior of materials with a variety of dielectric properties, which may provide applications in non-invasive RF cancer hyperthermia.
Collapse
Affiliation(s)
- Nadia C Lara
- Department of Chemistry and Smalley-Curl Institute, Rice University , Houston, Texas 77005, USA
| | - Asad A Haider
- Department of Chemistry and Smalley-Curl Institute, Rice University , Houston, Texas 77005, USA
| | - Lon J Wilson
- Department of Chemistry and Smalley-Curl Institute, Rice University , Houston, Texas 77005, USA
| | | | | |
Collapse
|
23
|
Lara NC, Haider AA, Ho JC, Wilson LJ, Barron AR, Curley SA, Corr SJ. Water-structuring molecules and nanomaterials enhance radiofrequency heating in biologically relevant solutions. Chem Commun (Camb) 2016; 52:12630-12633. [PMID: 27722511 PMCID: PMC5079531 DOI: 10.1039/c6cc06573b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
For potential applications in nano-mediated radiofrequency cancer hyperthermia, the nanomaterial under investigation must increase the heating of any aqueous solution in which it is suspended when exposed to radiofrequency electric fields. This should also be true for a broad range of solution conductivities, especially those that artificially mimic the ionic environment of biological systems. Herein we demonstrate enhanced heating of biologically relevant aqueous solutions using kosmotropes and a hexamalonoserinolamide fullerene.
Collapse
Affiliation(s)
- Nadia C Lara
- Department of Chemistry and Smalley-Curl Institute, Rice University, Houston, TX 77005, USA
| | - Asad A Haider
- Department of Chemistry and Smalley-Curl Institute, Rice University, Houston, TX 77005, USA
| | - Jason C Ho
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Lon J Wilson
- Department of Chemistry and Smalley-Curl Institute, Rice University, Houston, TX 77005, USA
| | - Andrew R Barron
- Department of Chemistry and Smalley-Curl Institute, Rice University, Houston, TX 77005, USA and Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA and Energy Safety Research Institute (ESRI), Swansea University Bay Campus, Swansea, SA1 8EN, UK and Centre for NanoHealth (CNH), Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Steven A Curley
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA. and Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA
| | - Stuart J Corr
- Department of Chemistry and Smalley-Curl Institute, Rice University, Houston, TX 77005, USA and Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA. and Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
24
|
Postnikov A, Moldosanov K. Phonon-Assisted Radiofrequency Absorption by Gold Nanoparticles Resulting in Hyperthermia. NATO SCIENCE FOR PEACE AND SECURITY SERIES B: PHYSICS AND BIOPHYSICS 2016. [DOI: 10.1007/978-94-017-7478-9_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Vasani RB, Janardanan N, Prieto-Simón B, Cifuentes-Rius A, Bradley SJ, Moore E, Kraus T, Voelcker NH. Microwave Heating of Poly(N-isopropylacrylamide)-Conjugated Gold Nanoparticles for Temperature-Controlled Display of Concanavalin A. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27755-27764. [PMID: 26629977 DOI: 10.1021/acsami.5b08765] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We demonstrate microwave-induced heating of gold nanoparticles and nanorods. An appreciably higher and concentration-dependent microwave-induced heating rate was observed with aqueous dispersions of the nanomaterials as opposed to pure water and other controls. Grafted with the thermoresponsive polymer poly(N-isopropylacrylamide), these gold nanomaterials react to microwave-induced heating with a conformational change in the polymer shell, leading to particle aggregation. We subsequently covalently immobilize concanavalin A (Con A) on the thermoresponsive gold nanoparticles. Con A is a bioreceptor commonly used in bacterial sensors because of its affinity for carbohydrates on bacterial cell surfaces. The microwave-induced thermal transitions of the polymer reversibly switch on and off the display of Con A on the particle surface and hence the interactions of the nanomaterials with carbohydrate-functionalized surfaces. This effect was determined using linear sweep voltammetry on a methyl-α-d-mannopyranoside-functionalized electrode.
Collapse
Affiliation(s)
- Roshan B Vasani
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Nayana Janardanan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Beatriz Prieto-Simón
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Anna Cifuentes-Rius
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Siobhan J Bradley
- Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Eli Moore
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Tobias Kraus
- INM-Leibniz Institute for New Materials , Campus D2 2, Saarbruecken, Saarland 66123, Germany
| | - Nicolas H Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
26
|
Corr SJ, Shamsudeen S, Vergara LA, Ho JCS, Ware MJ, Keshishian V, Yokoi K, Savage DJ, Meraz IM, Kaluarachchi W, Cisneros BT, Raoof M, Nguyen DT, Zhang Y, Wilson LJ, Summers H, Rees P, Curley SA, Serda RE. A New Imaging Platform for Visualizing Biological Effects of Non-Invasive Radiofrequency Electric-Field Cancer Hyperthermia. PLoS One 2015; 10:e0136382. [PMID: 26308617 PMCID: PMC4550384 DOI: 10.1371/journal.pone.0136382] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/03/2015] [Indexed: 12/25/2022] Open
Abstract
Herein, we present a novel imaging platform to study the biological effects of non-invasive radiofrequency (RF) electric field cancer hyperthermia. This system allows for real-time in vivo intravital microscopy (IVM) imaging of radiofrequency-induced biological alterations such as changes in vessel structure and drug perfusion. Our results indicate that the IVM system is able to handle exposure to high-power electric-fields without inducing significant hardware damage or imaging artifacts. Furthermore, short durations of low-power (< 200 W) radiofrequency exposure increased transport and perfusion of fluorescent tracers into the tumors at temperatures below 41°C. Vessel deformations and blood coagulation were seen for tumor temperatures around 44°C. These results highlight the use of our integrated IVM-RF imaging platform as a powerful new tool to visualize the dynamics and interplay between radiofrequency energy and biological tissues, organs, and tumors.
Collapse
Affiliation(s)
- Stuart J. Corr
- Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, United States of America
- Department of Chemistry, Rice University, Houston, TX, United States of America
- Department of Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States of America
| | - Sabeel Shamsudeen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States of America
- Department of Biomedical Engineering, University of Houston, TX, United States of America
| | - Leoncio A. Vergara
- Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, United States of America
| | - Jason Chak-Shing Ho
- Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, United States of America
| | - Matthew J. Ware
- Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, United States of America
| | - Vazrik Keshishian
- Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, United States of America
| | - Kenji Yokoi
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States of America
| | - David J. Savage
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States of America
| | - Ismail M. Meraz
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States of America
| | - Warna Kaluarachchi
- Department of Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States of America
| | - Brandon T. Cisneros
- Department of Chemistry, Rice University, Houston, TX, United States of America
- Department of Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States of America
| | - Mustafa Raoof
- Department of Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States of America
| | - Duy Trac Nguyen
- Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, United States of America
- Department of Biomedical Engineering, University of Houston, TX, United States of America
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, TX, United States of America
| | - Lon J. Wilson
- Department of Chemistry, Rice University, Houston, TX, United States of America
| | - Huw Summers
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States of America
- Centre for Nanohealth, College of Engineering, Swansea University, Swansea, Wales, United Kingdom
| | - Paul Rees
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States of America
- Centre for Nanohealth, College of Engineering, Swansea University, Swansea, Wales, United Kingdom
- The Broad Institute, Cambridge, MA, United States of America
| | - Steven A. Curley
- Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, United States of America
- Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX, United States of America
| | - Rita E. Serda
- Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, United States of America
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States of America
| |
Collapse
|
27
|
Sasidharan A, Sivaram AJ, Retnakumari AP, Chandran P, Malarvizhi GL, Nair S, Koyakutty M. Radiofrequency ablation of drug-resistant cancer cells using molecularly targeted carboxyl-functionalized biodegradable graphene. Adv Healthc Mater 2015; 4:679-84. [PMID: 25586821 DOI: 10.1002/adhm.201400670] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/18/2014] [Indexed: 12/12/2022]
Abstract
Under ultralow radiofrequency (RF) power, transferrin-conjugated graphene nanoparticles can thermally ablate drug- or radiation-resistant cancer cells very effectively. The results suggest that graphene-based RF hyperthermia can be an efficient method to manage drug-/radiation-resistant cancers.
Collapse
Affiliation(s)
- Abhilash Sasidharan
- Amrita Centre for Nanosciences and Molecular Medicine; Amrita Vishwa Vidyapeetham University; Cochin 682 041 Kerala India
| | - Amal J. Sivaram
- Amrita Centre for Nanosciences and Molecular Medicine; Amrita Vishwa Vidyapeetham University; Cochin 682 041 Kerala India
| | - Archana P. Retnakumari
- Amrita Centre for Nanosciences and Molecular Medicine; Amrita Vishwa Vidyapeetham University; Cochin 682 041 Kerala India
| | - Parwathy Chandran
- Amrita Centre for Nanosciences and Molecular Medicine; Amrita Vishwa Vidyapeetham University; Cochin 682 041 Kerala India
| | | | - Shantikumar Nair
- Amrita Centre for Nanosciences and Molecular Medicine; Amrita Vishwa Vidyapeetham University; Cochin 682 041 Kerala India
| | - Manzoor Koyakutty
- Amrita Centre for Nanosciences and Molecular Medicine; Amrita Vishwa Vidyapeetham University; Cochin 682 041 Kerala India
| |
Collapse
|
28
|
Radio frequency responsive nano-biomaterials for cancer therapy. J Control Release 2015; 204:85-97. [DOI: 10.1016/j.jconrel.2015.02.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/27/2015] [Accepted: 02/28/2015] [Indexed: 12/25/2022]
|
29
|
Efficient synthesis of a maghemite/gold hybrid nanoparticle system as a magnetic carrier for the transport of platinum-based metallotherapeutics. Int J Mol Sci 2015; 16:2034-51. [PMID: 25603182 PMCID: PMC4307347 DOI: 10.3390/ijms16012034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/13/2015] [Indexed: 11/24/2022] Open
Abstract
The preparation and thorough characterization of a hybrid magnetic carrier system for the possible transport of activated platinum-based anticancer drugs, as demonstrated for cisplatin (cis-[Pt(NH3)2Cl2], CDDP), are described. The final functionalized mag/Au–LA–CDDP* system consists of maghemite/gold nanoparticles (mag/Au) coated by lipoic acid (HLA; LA stands for deprotonated form of lipoic acid) and functionalized by activated cisplatin in the form of cis-[Pt(NH3)2(H2O)2]2+ (CDDP*). The relevant techniques (XPS, EDS, ICP-MS) proved the incorporation of the platinum-containing species on the surface of the studied hybrid system. HRTEM, TEM and SEM images showed the nanoparticles as spherical with an average size of 12 nm, while their superparamagnetic feature was proven by 57Fe Mössbauer spectroscopy. In the case of mag/Au, mag/Au–HLA and mag/Au–LA–CDDP*, weaker magnetic interactions among the Fe3+ centers of maghemite, as compared to maghemite nanoparticles (mag), were detected, which can be associated with the non-covalent coating of the maghemite surface by gold. The pH and time-dependent stability of the mag/Au–LA–CDDP* system in different media, represented by acetate (pH 5.0), phosphate (pH 7.0) and carbonate (pH 9.0) buffers and connected with the release of the platinum-containing species, showed the ability of CDDP* to be released from the functionalized nanosystem.
Collapse
|
30
|
Anti-cancer, pharmacokinetics and tumor localization studies of pH-, RF- and thermo-responsive nanoparticles. Int J Biol Macromol 2014; 74:249-62. [PMID: 25526695 DOI: 10.1016/j.ijbiomac.2014.11.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/22/2014] [Accepted: 11/25/2014] [Indexed: 11/21/2022]
Abstract
The curcumin-encapsulated chitosan-graft-poly(N-vinyl caprolactam) nanoparticles containing gold nanoparticles (Au-CRC-TRC-NPs) were developed by ionic cross-linking method. After "optimum RF exposure" at 40 W for 5 min, Au-CRC-TRC-NPs dissipated heat energy in the range of ∼42°C, the lower critical solution temperature (LCST) of chitosan-graft-poly(N-vinyl caprolactam), causing controlled curcumin release and apoptosis to cancer cells. Further, in vivo PK/PD studies on swiss albino mice revealed that Au-CRC-TRC-NPs could be sustained in circulation for a week with no harm to internal organs. The colon tumor localization studies revealed that Au-CRC-TRC-NPs were retained in tumor for a week. These results throw light on their feasibility as multi-responsive nanomedicine for RF-assisted cancer treatment modalities.
Collapse
|
31
|
Bogdanov AA, Gupta S, Koshkina N, Corr SJ, Zhang S, Curley SA, Han G. Gold nanoparticles stabilized with MPEG-grafted poly(l-lysine): in vitro and in vivo evaluation of a potential theranostic agent. Bioconjug Chem 2014; 26:39-50. [PMID: 25496453 PMCID: PMC4306512 DOI: 10.1021/bc5005087] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As the number of diagnostic and therapeutic applications utilizing gold nanoparticles (AuNPs) increases, so does the need for AuNPs that are stable in vivo, biocompatible, and suitable for bioconjugation. We investigated a strategy for AuNP stabilization that uses methoxypolyethylene glycol-graft-poly(l-lysine) copolymer (MPEG-gPLL) bearing free amino groups as a stabilizing molecule. MPEG-gPLL injected into water solutions of HAuCl4 with or without trisodium citrate resulted in spherical (Zav = 36 nm), monodisperse (PDI = 0.27), weakly positively charged nanoparticles (AuNP3) with electron-dense cores (diameter: 10.4 ± 2.5 nm) and surface amino groups that were amenable to covalent modification. The AuNP3 were stable against aggregation in the presence of phosphate and serum proteins and remained dispersed after their uptake into endosomes. MPEG-gPLL-stabilized AuNP3 exhibited high uptake and very low toxicity in human endothelial cells, but showed a high dose-dependent toxicity in epithelioid cancer cells. Highly stable radioactive labeling of AuNP3 with (99m)Tc allowed imaging of AuNP3 biodistribution and revealed dose-dependent long circulation in the blood. The minor fraction of AuGNP3 was found in major organs and at sites of experimentally induced inflammation. Gold analysis showed evidence of a partial degradation of the MPEG-gPLL layer in AuNP3 particles accumulated in major organs. Radiofrequency-mediated heating of AuNP3 solutions showed that AuNP3 exhibited heating behavior consistent with 10 nm core nanoparticles. We conclude that PEG-pPLL coating of AuNPs confers "stealth" properties that enable these particles to exist in vivo in a nonaggregating, biocompatible state making them suitable for potential use in biomedical applications such as noninvasive radiofrequency cancer therapy.
Collapse
Affiliation(s)
- Alexei A Bogdanov
- Departments of Radiology and ‡Cell Biology, University of Massachusetts Medical School , Worcester, Massachusetts 01655, United States
| | | | | | | | | | | | | |
Collapse
|
32
|
Collins CB, McCoy RS, Ackerson BJ, Collins GJ, Ackerson CJ. Radiofrequency heating pathways for gold nanoparticles. NANOSCALE 2014; 6:8459-72. [PMID: 24962620 PMCID: PMC4624276 DOI: 10.1039/c4nr00464g] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry which may affect thermal dissipation include the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell. Aspects of RF which may affect thermal dissipation include power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments.
Collapse
Affiliation(s)
- C B Collins
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | | | | | | | | |
Collapse
|
33
|
Sadeghi HR, Bahreyni-Toosi MH, Meybodi NT, Esmaily H, Soudmand S, Eshghi H, Soudmand S, Sazgarnia A. Gold-gold sulfide nanoshell as a novel intensifier for anti-tumor effects of radiofrequency fields. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2014; 17:516-21. [PMID: 25429343 PMCID: PMC4242922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 04/19/2014] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Several studies have been carried out to investigate the effect of various nanoparticles exposed to radiofrequency (RF) waves on cancerous tissues. In this study, a colon carcinoma tumor model was irradiated by RF in the presence of gold-gold sulfide (GGS) nanoshells. MATERIALS AND METHODS Synthesis and characterization of GGS nanoshells were initially performed. CT26 cells were subcutaneously injected into the flank of BALB/c mice to create the colon carcinoma tumor models. Then the tumors were subjected to different treatments. Treatment factors included intratumoral injection of GGS and RF radiation. Different groups were considered as control with no treatment, receiving GGS, RF irradiated and simultaneous administration of GGS and RF. Efficacy of the treatments was evaluated by daily monitoring of tumor volume and recording the relative changes in it, the time needed for a 5-fold increase in the volume of tumor (T5) and utilizing pathologic studies to determine the lost volume of the tumors. RESULTS In comparison with control group, tumor growth was not markedly inhibited in the groups receiving only GGS or RF, while in the group receiving GGS and RF, tumor growth was effectively inhibited compared with the other groups. In addition, the lost volume of the tumor and T5 was markedly higher in groups receiving GGS and RF compared with other groups. CONCLUSION This study showed that RF radiation can markedly reduce the tumor growth in presence of GGS. Hence, it can be predicted that GGS nanoshells convert sub-lethal effects of noninvasive RF fields into lethal damages.
Collapse
Affiliation(s)
- Hamid Reza Sadeghi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Naser Tayebi Meybodi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habibollah Esmaily
- Department of Pathology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Soudmand
- Department of Biostatistics, Faculty of Health Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Eshghi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Soudmand
- Department of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ameneh Sazgarnia
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
,Corresponding author: Ameneh Sazgarnia. Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-511-8002323; Fax: +98-511-8002320;
| |
Collapse
|
34
|
Webb JA, Bardhan R. Emerging advances in nanomedicine with engineered gold nanostructures. NANOSCALE 2014; 6:2502-30. [PMID: 24445488 DOI: 10.1039/c3nr05112a] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Gold nanostructures possess unique characteristics that enable their use as contrast agents, as therapeutic entities, and as scaffolds to adhere functional molecules, therapeutic cargo, and targeting ligands. Due to their ease of synthesis, straightforward surface functionalization, and non-toxicity, gold nanostructures have emerged as powerful nanoagents for cancer detection and treatment. This comprehensive review summarizes the progress made in nanomedicine with gold nanostructures (1) as probes for various bioimaging techniques including dark-field, one-photon and two-photon fluorescence, photothermal optical coherence tomography, photoacoustic tomography, positron emission tomography, and surface-enhanced Raman scattering based imaging, (2) as therapeutic components for photothermal therapy, gene and drug delivery, and radiofrequency ablation, and (3) as a theranostic platform to simultaneously achieve both cancer detection and treatment. Distinct from other published reviews, this article also discusses the recent advances of gold nanostructures as contrast agents and therapeutic actuators for inflammatory diseases including atherosclerotic plaque and arthritis. For each of the topics discussed above, the fundamental principles and progress made in the past five years are discussed. The review concludes with a detailed future outlook discussing the challenges in using gold nanostructures, cellular trafficking, and translational considerations that are imperative for rapid clinical viability of plasmonic nanostructures, as well as the significance of emerging technologies such as Fano resonant gold nanostructures in nanomedicine.
Collapse
Affiliation(s)
- Joseph A Webb
- Department of Chemical and Biomolecular Engineering Department, Vanderbilt University, Nashville, TN 37235, USA.
| | | |
Collapse
|
35
|
Corr SJ, Cisneros BT, Green L, Raoof M, Curley SA. Protocols for assessing radiofrequency interactions with gold nanoparticles and biological systems for non-invasive hyperthermia cancer therapy. J Vis Exp 2013. [PMID: 24022384 DOI: 10.3791/50480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Cancer therapies which are less toxic and invasive than their existing counterparts are highly desirable. The use of RF electric-fields that penetrate deep into the body, causing minimal toxicity, are currently being studied as a viable means of non-invasive cancer therapy. It is envisioned that the interactions of RF energy with internalized nanoparticles (NPs) can liberate heat which can then cause overheating (hyperthermia) of the cell, ultimately ending in cell necrosis. In the case of non-biological systems, we present detailed protocols relating to quantifying the heat liberated by highly-concentrated NP colloids. For biological systems, in the case of in vitro experiments, we describe the techniques and conditions which must be adhered to in order to effectively expose cancer cells to RF energy without bulk media heating artifacts significantly obscuring the data. Finally, we give a detailed methodology for in vivo mouse models with ectopic hepatic cancer tumors.
Collapse
Affiliation(s)
- Stuart J Corr
- Department of Surgical Oncology, University of Texas M.D. Anderson Cancer Center
| | | | | | | | | |
Collapse
|
36
|
Raoof M, Cisneros BT, Corr SJ, Palalon F, Curley SA, Koshkina NV. Tumor selective hyperthermia induced by short-wave capacitively-coupled RF electric-fields. PLoS One 2013; 8:e68506. [PMID: 23861912 PMCID: PMC3701653 DOI: 10.1371/journal.pone.0068506] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/05/2013] [Indexed: 01/12/2023] Open
Abstract
There is a renewed interest in developing high-intensity short wave capacitively-coupled radiofrequency (RF) electric-fields for nanoparticle-mediated tumor-targeted hyperthermia. However, the direct thermal effects of such high-intensity electric-fields (13.56 MHZ, 600 W) on normal and tumor tissues are not completely understood. In this study, we investigate the heating behavior and dielectric properties of normal mouse tissues and orthotopically-implanted human hepatocellular and pancreatic carcinoma xenografts. We note tumor-selective hyperthermia (relative to normal mouse tissues) in implanted xenografts that can be explained on the basis of differential dielectric properties. Furthermore, we demonstrate that repeated RF exposure of tumor-bearing mice can result in significant anti-tumor effects compared to control groups without detectable harm to normal mouse tissues.
Collapse
Affiliation(s)
- Mustafa Raoof
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Surgery, The University of Arizona Health Science Center, Tucson, Arizona, United States of America
| | - Brandon T. Cisneros
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Chemistry, Rice University, Houston, Texas, United States of America
| | - Stuart J. Corr
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Chemistry, Rice University, Houston, Texas, United States of America
| | - Flavio Palalon
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Steven A. Curley
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Mechanical Engineering and Materials Science, Rice University, Houston, Texas, United States of America
| | - Nadezhda V. Koshkina
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
37
|
McCoy RS, Choi S, Collins G, Ackerson BJ, Ackerson CJ. Superatom paramagnetism enables gold nanocluster heating in applied radiofrequency fields. ACS NANO 2013; 7:2610-2616. [PMID: 23390932 DOI: 10.1021/nn306015c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The Au102(pMBA)44 nanocluster becomes a superatom paramagnet after chemical oxidation. Solutions of paramagnetic Au102(pMBA)44 heat in an oscillating magnetic field component of an RF field, but not in the electric component. Combined, these experiments suggest that paramagnetic Au102(pMBA)44 heats through interactions of spin magnetic moment with an external oscillating magnetic field. These results may clarify some current controversy regarding gold nanoparticle heating in radiofrequency fields.
Collapse
Affiliation(s)
- Ruthanne S McCoy
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80521, United States
| | | | | | | | | |
Collapse
|