1
|
Krueger TD, Henderson JN, Breen IL, Zhu L, Wachter RM, Mills JH, Fang C. Capturing excited-state structural snapshots of evolutionary green-to-red photochromic fluorescent proteins. Front Chem 2023; 11:1328081. [PMID: 38144887 PMCID: PMC10748491 DOI: 10.3389/fchem.2023.1328081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Photochromic fluorescent proteins (FPs) have proved to be indispensable luminous probes for sophisticated and advanced bioimaging techniques. Among them, an interplay between photoswitching and photoconversion has only been observed in a limited subset of Kaede-like FPs that show potential for discovering the key mechanistic steps during green-to-red photoconversion. Various spectroscopic techniques including femtosecond stimulated Raman spectroscopy (FSRS), X-ray crystallography, and femtosecond transient absorption were employed on a set of five related FPs with varying photoconversion and photoswitching efficiencies. A 3-methyl-histidine chromophore derivative, incorporated through amber suppression using orthogonal aminoacyl tRNA synthetase/tRNA pairs, displays more dynamic photoswitching but greatly reduced photoconversion versus the least-evolved ancestor (LEA). Excitation-dependent measurements of the green anionic chromophore reveal that the varying photoswitching efficiencies arise from both the initial transient dynamics of the bright cis state and the final trans-like photoswitched off state, with an exocyclic bridge H-rocking motion playing an active role during the excited-state energy dissipation. This investigation establishes a close-knit feedback loop between spectroscopic characterization and protein engineering, which may be especially beneficial to develop more versatile FPs with targeted mutations and enhanced functionalities, such as photoconvertible FPs that also feature photoswitching properties.
Collapse
Affiliation(s)
- Taylor D. Krueger
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - J. Nathan Henderson
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Isabella L. Breen
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Rebekka M. Wachter
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Jeremy H. Mills
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
2
|
Krueger TD, Chen C, Fang C. Targeting Ultrafast Spectroscopic Insights into Red Fluorescent Proteins. Chem Asian J 2023; 18:e202300668. [PMID: 37682793 DOI: 10.1002/asia.202300668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2023]
Abstract
Red fluorescent proteins (RFPs) represent an increasingly popular class of genetically encodable bioprobes and biomarkers that can advance next-generation breakthroughs across the imaging and life sciences. Since the rational design of RFPs with improved functions or enhanced versatility requires a mechanistic understanding of their working mechanisms, while fluorescence is intrinsically an ultrafast event, a suitable toolset involving steady-state and time-resolved spectroscopic techniques has become powerful in delineating key structural features and dynamic steps which govern irreversible photoconverting or reversible photoswitching RFPs, and large Stokes shift (LSS)RFPs. The pertinent cis-trans isomerization and protonation state change of RFP chromophores in their local environments, involving key residues in protein matrices, lead to rich and complicated spectral features across multiple timescales. In particular, ultrafast excited-state proton transfer in various LSSRFPs showcases the resolving power of wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in mapping a photocycle with crucial knowledge about the red-emitting species. Moreover, recent progress in noncanonical RFPs with a site-specifically modified chromophore provides an appealing route for efficient engineering of redder and brighter RFPs, highly desirable for bioimaging. Such an effective feedback loop involving physical chemists, protein engineers, and biomedical microscopists will enable future successes to expand fundamental knowledge and improve human health.
Collapse
Affiliation(s)
- Taylor D Krueger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| | - Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon, 97331-4003, USA
| |
Collapse
|
3
|
Willeford K. The Luminescence Hypothesis of Olfaction. SENSORS (BASEL, SWITZERLAND) 2023; 23:1333. [PMID: 36772376 PMCID: PMC9919928 DOI: 10.3390/s23031333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
A new hypothesis for the mechanism of olfaction is presented. It begins with an odorant molecule binding to an olfactory receptor. This is followed by the quantum biology event of inelastic electron tunneling as has been suggested with both the vibration and swipe card theories. It is novel in that it is not concerned with the possible effects of the tunneled electrons as has been discussed with the previous theories. Instead, the high energy state of the odorant molecule in the receptor following inelastic electron tunneling is considered. The hypothesis is that, as the high energy state decays, there is fluorescence luminescence with radiative emission of multiple photons. These photons pass through the supporting sustentacular cells and activate a set of olfactory neurons in near-simultaneous timing, which provides the temporal basis for the brain to interpret the required complex combinatorial coding as an odor. The Luminescence Hypothesis of Olfaction is the first to present the necessity of or mechanism for a 1:3 correspondence of odorant molecule to olfactory nerve activations. The mechanism provides for a consistent and reproducible time-based activation of sets of olfactory nerves correlated to an odor. The hypothesis has a biological precedent: an energy feasibility assessment is included, explaining the anosmia seen with COVID-19, and can be confirmed with existing laboratory techniques.
Collapse
Affiliation(s)
- Kenneth Willeford
- Coastal Carolinas Integrated Medicine, 10 Doctors Circle, STE 2, Supply, NC 28462, USA
| |
Collapse
|
4
|
Krueger TD, Tang L, Chen C, Zhu L, Breen IL, Wachter RM, Fang C. To twist or not to twist: From chromophore structure to dynamics inside engineered photoconvertible and photoswitchable fluorescent proteins. Protein Sci 2023; 32:e4517. [PMID: 36403093 PMCID: PMC9793981 DOI: 10.1002/pro.4517] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Green-to-red photoconvertible fluorescent proteins (FPs) are vital biomimetic tools for powerful techniques such as super-resolution imaging. A unique Kaede-type FP named the least evolved ancestor (LEA) enables delineation of the evolutionary step to acquire photoconversion capability from the ancestral green fluorescent protein (GFP). A key residue, Ala69, was identified through several steady-state and time-resolved spectroscopic techniques that allows LEA to effectively photoswitch and enhance the green-to-red photoconversion. However, the inner workings of this functional protein have remained elusive due to practical challenges of capturing the photoexcited chromophore motions in real time. Here, we implemented femtosecond stimulated Raman spectroscopy and transient absorption on LEA-A69T, aided by relevant crystal structures and control FPs, revealing that Thr69 promotes a stronger π-π stacking interaction between the chromophore phenolate (P-)ring and His193 in FP mutants that cannot photoconvert or photoswitch. Characteristic time constants of ~60-67 ps are attributed to P-ring twist as the onset for photoswitching in LEA (major) and LEA-A69T (minor) with photoconversion capability, different from ~16/29 ps in correlation with the Gln62/His62 side-chain twist in ALL-GFP/ALL-Q62H, indicative of the light-induced conformational relaxation preferences in various local environments. A minor subpopulation of LEA-A69T capable of positive photoswitching was revealed by time-resolved electronic spectroscopies with targeted light irradiation wavelengths. The unveiled chromophore structure and dynamics inside engineered FPs in an aqueous buffer solution can be generalized to improve other green-to-red photoconvertible FPs from the bottom up for deeper biophysics with molecular biology insights and powerful bioimaging advances.
Collapse
Affiliation(s)
| | - Longteng Tang
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| | - Cheng Chen
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| | - Liangdong Zhu
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| | - Isabella L. Breen
- School of Molecular Sciences, Center for Bioenergy and Photosynthesis, Biodesign Center for Applied Structural DiscoveryArizona State UniversityTempeArizonaUSA
| | - Rebekka M. Wachter
- School of Molecular Sciences, Center for Bioenergy and Photosynthesis, Biodesign Center for Applied Structural DiscoveryArizona State UniversityTempeArizonaUSA
| | - Chong Fang
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
5
|
S A, Joshi P, Mondal PP. Detection of fortunate molecules induce particle resolution shift (PAR-shift) toward single-molecule limit in SMLM: A technique for resolving molecular clusters in cellular system. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:093704. [PMID: 36182464 DOI: 10.1063/5.0101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Molecules capable of emitting a large number of photons (also known as fortunate molecules) are crucial for achieving a resolution close to single molecule limit (the actual size of a single molecule). We propose a long-exposure single molecule localization microscopy (leSMLM) technique that enables detection of fortunate molecules, which is based on the fact that detecting a relatively small subset of molecules with large photon emission increases its localization precision (∼r0/N). Fortunate molecules have the ability to emit a large burst of photons over a prolonged time (> average blinking lifetime). So, a long exposure time allows the time window necessary to detect these elite molecules. The technique involves the detection of fortunate molecules to generate enough statistics for a quality reconstruction of the target protein distribution in a cellular system. Studies show a significant PArticle Resolution Shift (PAR-shift) of about 6 and 11 nm toward single-molecule-limit (far from diffraction-limit) for an exposure time window of 60 and 90 ms, respectively. In addition, a significant decrease in the fraction of fortunate molecules (single molecules with small localization precision) is observed. Specifically, 8.33% and 3.43% molecules are found to emit in 30-60 ms and >60 ms, respectively, when compared to single molecule localization microscopy (SMLM). The long exposure has enabled better visualization of the Dendra2HA molecular cluster, resolving sub-clusters within a large cluster. Thus, the proposed technique leSMLM facilitates a better study of cluster formation in fixed samples. Overall, leSMLM technique offers a spatial resolution improvement of ~ 10 nm compared to traditional SMLM at the cost of marginally poor temporal resolution.
Collapse
Affiliation(s)
- Aravinth S
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| | - Prakash Joshi
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| | - Partha Pratim Mondal
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
6
|
Gavshina AV, Marynich NK, Khrenova MG, Solovyev ID, Savitsky AP. The role of cysteine residues in the allosteric modulation of the chromophore phototransformations of biphotochromic fluorescent protein SAASoti. Sci Rep 2021; 11:24314. [PMID: 34934103 PMCID: PMC8692419 DOI: 10.1038/s41598-021-03634-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/02/2021] [Indexed: 11/09/2022] Open
Abstract
Biphotochromic fluorescent protein SAASoti contains five cysteine residues in its sequence and a V127T point mutation transforms it to the monomeric form, mSAASoti. These cysteine residues are located far from the chromophore and might control its properties only allosterically. The influence of individual, double and triple cysteine substitutions of mSAASoti on fluorescent parameters and phototransformation reactions (irreversible green-to-red photoconversion and reversible photoswitching) is studied. A set of mSAASoti mutant forms (C21N, C117S, C71V, C105V, C175A, C21N/C71V, C21N/C175A, C21N/C71G/C175A) is obtained by site-directed mutagenesis. We demonstrate that the C21N variant exists in a monomeric form up to high concentrations, the C71V substitution accelerates photoconversion to the red form and the C105V variant has the maximum photoswitching rate. All C175A-containing variants demonstrate different photoswitching kinetics and decreased photostability during subsequent switching cycles compared with other considered systems. Classical molecular dynamic simulations reveal that the F177 side chain located in the vicinity of the chromophore is considerably more flexible in the mSAASoti compared with its C175A variant. This might be the explanation of the experimentally observed slowdown the thermal relaxation rate, i.e., trans-cis isomerization of the chromophore in mSAASoti upon C175A substitution.
Collapse
Affiliation(s)
- A V Gavshina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - N K Marynich
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - M G Khrenova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - I D Solovyev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - A P Savitsky
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
7
|
Nienhaus K, Nienhaus GU. Fluorescent proteins of the EosFP clade: intriguing marker tools with multiple photoactivation modes for advanced microscopy. RSC Chem Biol 2021; 2:796-814. [PMID: 34458811 PMCID: PMC8341165 DOI: 10.1039/d1cb00014d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/27/2021] [Indexed: 02/04/2023] Open
Abstract
Optical fluorescence microscopy has taken center stage in the exploration of biological structure and dynamics, especially on live specimens, and super-resolution imaging methods continue to deliver exciting new insights into the molecular foundations of life. Progress in the field, however, crucially hinges on advances in fluorescent marker technology. Among these, fluorescent proteins (FPs) of the GFP family are advantageous because they are genetically encodable, so that live cells, tissues or organisms can produce these markers all by themselves. A subclass of them, photoactivatable FPs, allow for control of their fluorescence emission by light irradiation, enabling pulse-chase imaging and super-resolution microscopy. In this review, we discuss FP variants of the EosFP clade that have been optimized by amino acid sequence modification to serve as markers for various imaging techniques. In general, two different modes of photoactivation are found, reversible photoswitching between a fluorescent and a nonfluorescent state and irreversible green-to red photoconversion. First, we describe their basic structural and optical properties. We then summarize recent research aimed at elucidating the photochemical processes underlying photoactivation. Finally, we briefly introduce various advanced imaging methods facilitated by specific EosFP variants, and show some exciting sample applications.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology 76049 Karlsruhe Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology 76049 Karlsruhe Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology 76021 Karlsruhe Germany
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology 76021 Karlsruhe Germany
- Department of Physics, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
8
|
Sun Y, Heidary DK, Zhang Z, Richards CI, Glazer EC. Bacterial Cytological Profiling Reveals the Mechanism of Action of Anticancer Metal Complexes. Mol Pharm 2018; 15:3404-3416. [PMID: 29865789 PMCID: PMC6083414 DOI: 10.1021/acs.molpharmaceut.8b00407] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Target
identification and mechanistic studies of cytotoxic agents
are challenging processes that are both time-consuming and costly.
Here we describe an approach to mechanism of action studies for potential
anticancer compounds by utilizing the simple prokaryotic system, E. coli, and we demonstrate its utility with the characterization
of a ruthenium polypyridyl complex [Ru(bpy)2dmbpy2+]. Expression of the photoconvertible fluorescent protein Dendra2
facilitated both high throughput studies and single-cell imaging.
This allowed for simultaneous ratiometric analysis of inhibition of
protein production and phenotypic investigations. The profile of protein
production, filament size and population, and nucleoid morphology
revealed important differences between inorganic agents that damage
DNA vs more selective inhibitors of transcription and translation.
Trace metal analysis demonstrated that DNA is the preferred nucleic
acid target of the ruthenium complex, but further studies in human
cancer cells revealed altered cell signaling pathways compared to
the commonly administrated anticancer agent cisplatin. This study
demonstrates E. coli can be used to rapidly distinguish
between compounds with disparate mechanisms of action and also for
more subtle distinctions within in studies in mammalian cells.
Collapse
Affiliation(s)
- Yang Sun
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - David K Heidary
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - Zhihui Zhang
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - Christopher I Richards
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - Edith C Glazer
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| |
Collapse
|
9
|
Nienhaus K, Nienhaus GU. Chromophore photophysics and dynamics in fluorescent proteins of the GFP family. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:443001. [PMID: 27604321 DOI: 10.1088/0953-8984/28/44/443001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Proteins of the green fluorescent protein (GFP) family are indispensable for fluorescence imaging experiments in the life sciences, particularly of living specimens. Their essential role as genetically encoded fluorescence markers has motivated many researchers over the last 20 years to further advance and optimize these proteins by using protein engineering. Amino acids can be exchanged by site-specific mutagenesis, starting with naturally occurring proteins as templates. Optical properties of the fluorescent chromophore are strongly tuned by the surrounding protein environment, and a targeted modification of chromophore-protein interactions requires a profound knowledge of the underlying photophysics and photochemistry, which has by now been well established from a large number of structural and spectroscopic experiments and molecular-mechanical and quantum-mechanical computations on many variants of fluorescent proteins. Nevertheless, such rational engineering often does not meet with success and thus is complemented by random mutagenesis and selection based on the optical properties. In this topical review, we present an overview of the key structural and spectroscopic properties of fluorescent proteins. We address protein-chromophore interactions that govern ground state optical properties as well as processes occurring in the electronically excited state. Special emphasis is placed on photoactivation of fluorescent proteins. These light-induced reactions result in large structural changes that drastically alter the fluorescence properties of the protein, which enables some of the most exciting applications, including single particle tracking, pulse chase imaging and super-resolution imaging. We also present a few examples of fluorescent protein application in live-cell imaging experiments.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Straße 1, 76131 Karlsruhe, Germany
| | | |
Collapse
|
10
|
GRIFFITHS N, JAIPARGAS EA, WOZNY M, BARTON K, MATHUR N, DELFOSSE K, MATHUR J. Photo-convertible fluorescent proteins as tools for fresh insights on subcellular interactions in plants. J Microsc 2016; 263:148-57. [DOI: 10.1111/jmi.12383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 12/22/2015] [Indexed: 12/25/2022]
Affiliation(s)
- N. GRIFFITHS
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology; University of Guelph; Guelph ON Canada
| | - E.-A. JAIPARGAS
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology; University of Guelph; Guelph ON Canada
| | - M.R. WOZNY
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology; University of Guelph; Guelph ON Canada
| | - K.A. BARTON
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology; University of Guelph; Guelph ON Canada
| | - N. MATHUR
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology; University of Guelph; Guelph ON Canada
| | - K. DELFOSSE
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology; University of Guelph; Guelph ON Canada
| | - J. MATHUR
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology; University of Guelph; Guelph ON Canada
| |
Collapse
|
11
|
Berardozzi R, Adam V, Martins A, Bourgeois D. Arginine 66 Controls Dark-State Formation in Green-to-Red Photoconvertible Fluorescent Proteins. J Am Chem Soc 2016; 138:558-65. [PMID: 26675944 DOI: 10.1021/jacs.5b09923] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photoactivated localization microscopy (PALM) is a powerful technique to investigate cellular nanostructures quantitatively and dynamically. However, the use of PALM for molecular counting or single-particle tracking remains limited by the propensity of photoconvertible fluorescent protein markers (PCFPs) to repeatedly enter dark states. By designing the single mutants mEos2-A69T and Dendra2-T69A, we completely swapped the blinking behaviors of mEos2 and Dendra2, two popular PCFPs. We combined X-ray crystallography and single-molecule microscopy to show that blinking in mEos2 and Dendra2 is largely controlled by the orientation of arginine 66, a highly conserved residue in Anthozoan PCFPs. The Arg66 side-chain conformation affects the bleaching and the on-to-off transition quantum yields, as well as the fraction of molecules entering long-lived dark states, resulting in widely different apparent blinking behaviors that largely modulate the efficiency of current blinking correction procedures. The present work provides mechanistic insight into the complex photophysics of Anthozoan PCFPs and will facilitate future engineering of bright and low-blinking variants suitable for PALM.
Collapse
Affiliation(s)
- Romain Berardozzi
- Institut de Biologie Structurale, Université Grenoble Alpes , CEA, CNRS, 38044 Grenoble, France
| | - Virgile Adam
- Institut de Biologie Structurale, Université Grenoble Alpes , CEA, CNRS, 38044 Grenoble, France
| | - Alexandre Martins
- Institut de Biologie Structurale, Université Grenoble Alpes , CEA, CNRS, 38044 Grenoble, France
| | - Dominique Bourgeois
- Institut de Biologie Structurale, Université Grenoble Alpes , CEA, CNRS, 38044 Grenoble, France
| |
Collapse
|
12
|
Fron E, De Keersmaecker H, Rocha S, Baeten Y, Lu G, Uji-i H, Van der Auweraer M, Hofkens J, Mizuno H. Mechanism Behind the Apparent Large Stokes Shift in LSSmOrange Investigated by Time-Resolved Spectroscopy. J Phys Chem B 2015; 119:14880-91. [PMID: 26529379 DOI: 10.1021/acs.jpcb.5b09189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
LSSmOrange is a fluorescent protein with a large energy gap between the absorption and emission bands (5275 cm(-1)). The electronic structure of the LSSmOrange chromophore, 2-[(5-)-2-hydroxy-dihydrooxazole]-4-(p-hydroxybenzylidene)-5-imidazolinone, is affected by deprotonation of the p-hydroxybenzylidene group. We investigated LSSmOrange by time-resolved spectroscopy in the femtosecond and nanosecond range. The ground state chromophore was almost exclusively in the neutral form, which had a main absorption band at 437 nm with a small shoulder at 475 nm. The absorption at a wavelength within the former band promoted the protein to the excited state where excited state proton transfer (ESPT) could lead to deprotonation in 0.8 ps. Following ESPT, the chromophore emitted fluorescence with a maximum at 573 nm and a decay time of 3500 ps. Although deprotonation by ESPT occurs, we unexpectedly found a slow accumulation of the anionic form in the ground state upon repeated high intensity excitation. This accumulation of the anionic form was accompanied by a shift of the absorption band to 553 nm without changing the emission band. MALDI-MS revealed that this shift is accompanied by decarboxylation of E222, which is interacting with the imidazolinone ring of the chromophore. We concluded that the photoinduced decarboxylation induced a conformational change that affected local environment around the hydroxyl group, resulting in a stable deprotonated form of the chromophore.
Collapse
Affiliation(s)
- Eduard Fron
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Herlinde De Keersmaecker
- Laboratory of Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, Department of Chemistry, KU Leuven , Celestijnenlaan 200G, bus 2403, 3001 Heverlee, Belgium
| | - Susana Rocha
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Yannick Baeten
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Gang Lu
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Hiroshi Uji-i
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Mark Van der Auweraer
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Johan Hofkens
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Hideaki Mizuno
- Laboratory of Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, Department of Chemistry, KU Leuven , Celestijnenlaan 200G, bus 2403, 3001 Heverlee, Belgium
| |
Collapse
|
13
|
Stochastic approach to the molecular counting problem in superresolution microscopy. Proc Natl Acad Sci U S A 2014; 112:E110-8. [PMID: 25535361 DOI: 10.1073/pnas.1408071112] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Superresolution imaging methods--now widely used to characterize biological structures below the diffraction limit--are poised to reveal in quantitative detail the stoichiometry of protein complexes in living cells. In practice, the photophysical properties of the fluorophores used as tags in superresolution methods have posed a severe theoretical challenge toward achieving this goal. Here we develop a stochastic approach to enumerate fluorophores in a diffraction-limited area measured by superresolution microscopy. The method is a generalization of aggregated Markov methods developed in the ion channel literature for studying gating dynamics. We show that the method accurately and precisely enumerates fluorophores in simulated data while simultaneously determining the kinetic rates that govern the stochastic photophysics of the fluorophores to improve the prediction's accuracy. This stochastic method overcomes several critical limitations of temporal thresholding methods.
Collapse
|
14
|
Mellott AJ, Shinogle HE, Moore DS, Detamore MS. Fluorescent Photo-conversion: A second chance to label unique cells. Cell Mol Bioeng 2014; 8:187-196. [PMID: 25914756 DOI: 10.1007/s12195-014-0365-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Not all cells behave uniformly after treatment in tissue engineering studies. In fact, some treated cells display no signs of treatment or show unique characteristics not consistent with other treated cells. What if the "unique" cells could be isolated from a treated population, and further studied? Photo-convertible reporter proteins, such as Dendra2, allow for the ability to selectively identify unique cells with a secondary label within a primary labeled treated population. In the current study, select cells were identified and labeled through photo-conversion of Dendra2-transfected human Wharton's Jelly cells (hWJCs) for the first time. Robust photo-conversion of green-to-red fluorescence was achieved consistently in arbitrarily selected cells, allowing for precise cell identification of select hWJCs. The current study demonstrates a method that offers investigators the opportunity to selectively label and identify unique cells within a treated population for further study or isolation from the treatment population. Photo-convertible reporter proteins, such as Dendra2, offer the ability over non-photo-convertible reporter proteins, such as green fluorescent protein, to analyze unique individual cells within a treated population, which allows investigators to gain more meaningful information on how a treatment affects all cells within a target population.
Collapse
Affiliation(s)
- Adam J Mellott
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045
| | - Heather E Shinogle
- Microscopy and Analytical Imaging Laboratory, University of Kansas, Lawrence, Kansas 66045
| | - David S Moore
- Microscopy and Analytical Imaging Laboratory, University of Kansas, Lawrence, Kansas 66045
| | - Michael S Detamore
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045 ; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
15
|
Zhuo Y, Solntsev KM, Reddish F, Tang S, Yang JJ. Effect of Ca²⁺ on the steady-state and time-resolved emission properties of the genetically encoded fluorescent sensor CatchER. J Phys Chem B 2014; 119:2103-11. [PMID: 24836743 PMCID: PMC4329989 DOI: 10.1021/jp501707n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
We
previously designed a calcium sensor CatchER (a GFP-based Calcium
sensor for detecting high concentrations in the high calcium concentration
environment such as ER) with a capability for monitoring calcium ion
responses in various types of cells. Calcium binding to CatchER induces
the ratiometric changes in the absorption spectra, as well as an increase
in fluorescence emission at 510 nm upon excitation at both 395 and
488 nm. Here, we have applied the combination of the steady-state
and time-resolved optical methods and Hydrogen/Deuterium isotope exchange
to understand the origin of such calcium-induced optical property
changes of CatchER. We first demonstrated that calcium binding results
in a 44% mean fluorescence lifetime increase of the indirectly excited
anionic chromophore. Thus, CatchER is the first protein-based calcium
indicator with the single fluorescent moiety to show the direct correlation
between the lifetime and calcium binding. Calcium exhibits a strong
inhibition on the excited-state proton transfer nonadiabatic geminate
recombination in protic (vs deuteric) medium. Analysis of CatchER
crystal structures and the MD simulations reveal the proton transfer
mechanism in which the disrupted proton migration path in CatchER
is rescued by calcium binding. Our finding provides important insights
for a strategy to design calcium sensors and suggests that CatchER
could be a useful probe for FLIM imaging of calcium in situ.
Collapse
Affiliation(s)
- You Zhuo
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30303, United States
| | | | | | | | | |
Collapse
|
16
|
Adam V, Berardozzi R, Byrdin M, Bourgeois D. Phototransformable fluorescent proteins: Future challenges. Curr Opin Chem Biol 2014; 20:92-102. [DOI: 10.1016/j.cbpa.2014.05.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/19/2014] [Accepted: 05/22/2014] [Indexed: 01/28/2023]
|
17
|
Steady-state and time-resolved spectroscopic studies of green-to-red photoconversion of fluorescent protein Dendra2. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Moeyaert B, Nguyen Bich N, De Zitter E, Rocha S, Clays K, Mizuno H, van Meervelt L, Hofkens J, Dedecker P. Green-to-red photoconvertible Dronpa mutant for multimodal super-resolution fluorescence microscopy. ACS NANO 2014; 8:1664-73. [PMID: 24410188 DOI: 10.1021/nn4060144] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Advanced imaging techniques crucially depend on the labels used. In this work, we present the structure-guided design of a fluorescent protein that displays both reversibly photochromic and green-to-red photoconversion behavior. We first designed ffDronpa, a mutant of the photochromic fluorescent protein Dronpa that matures up to three times faster while retaining its interesting photochromic features. Using a combined evolutionary and structure-driven rational design strategy, we developed a green-to-red photoconvertible ffDronpa mutant, called pcDronpa, and explored different optimization strategies that resulted in its improved version, pcDronpa2. This fluorescent probe combines a high brightness with low photobleaching and photoblinking. We herein show that, despite its tetrameric nature, pcDronpa2 allows for multimodal subdiffraction imaging by sequentially imaging a given sample using both super-resolution fluctuation imaging and localization microscopy.
Collapse
Affiliation(s)
- Benjamien Moeyaert
- Department of Chemistry, KU Leuven , Celestijnenlaan 200F, bus 2404, 3001 Heverlee, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Adam V. Phototransformable fluorescent proteins: which one for which application? Histochem Cell Biol 2014; 142:19-41. [PMID: 24522394 DOI: 10.1007/s00418-014-1190-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2014] [Indexed: 01/10/2023]
Abstract
In these last two decades , fluorescent proteins (FPs) have become highly valued imaging tools for cell biology, owing to their compatibility with living samples, their low levels of invasiveness and the possibility to specifically fuse them to a variety of proteins of interest. Remarkably, the recent development of phototransformable fluorescent proteins (PTFPs) has made it possible to conceive optical imaging experiments that were unimaginable only a few years ago. For example, it is nowadays possible to monitor intra- or intercellular trafficking, to optically individualize single cells in tissues or to observe single molecules in live cells. The tagging specificity brought by these genetically encoded highlighters leads to constant progress in the engineering of increasingly powerful, versatile and non-cytotoxic FPs. This review is focused on the recent developments of PTFPs and highlights their contribution to studies within cells, tissues and even living organisms. The aspects of single-molecule localization microscopy, intracellular tracking of photoactivated molecules, applications of PTFPs in biotechnology/optobiology and complementarities between PTFPs and other microscopy techniques are particularly discussed.
Collapse
Affiliation(s)
- Virgile Adam
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, F-38000, Grenoble, France,
| |
Collapse
|
20
|
Fron E, Sliwa M, Adam V, Michiels J, Rocha S, Dedecker P, Hofkens J, Mizuno H. Excited state dynamics of the photoconvertible fluorescent protein Kaede revealed by ultrafast spectroscopy. Photochem Photobiol Sci 2014; 13:867-74. [DOI: 10.1039/c3pp50335f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|