1
|
Szkaradek K, Góra RW. Theoretical insight into photodeactivation mechanisms of adenine-uracil and adenine-thymine nucleobase pairs. Phys Chem Chem Phys 2024. [PMID: 39470622 DOI: 10.1039/d4cp02817a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
In this work, several plausible intra- and intermolecular photoinduced processes of the Watson-Crick base pairs of adenine with uracil (A-U) or thymine (A-T) according to the results of spin component scaling variant of algebraic diagrammatic construction up to the second order [SCS-ADC(2)] calculations are discussed. Although widely explored, these systems lack complete characterization of possible intramolecular relaxation channels perturbed by intermolecular interactions. In particular, we address the still open debate on photodeactivation via purine-ring puckering at the C2 or C6-atom position of adenine. We also show that the presence of low-lying, long-lived 1nπ* states can be a significant factor in hindering relaxation via an electron-driven proton transfer process, as the population of these states can lead to an efficient intersystem crossing to a triplet manifold, the estimated rate of which is 1.6 × 1010 s-1 which exceeds the corresponding internal conversion to the ground state by an order of magnitude. Additionally, the SCS variant of the ADC(2) method is shown to provide a more balanced description of valence and charge-transfer excited states.
Collapse
Affiliation(s)
- Kinga Szkaradek
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Robert W Góra
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
2
|
Ribeiro RB, Varella MTDN. Excited state properties of an A-D-A non-fullerene electron acceptor: a LC-TD-DFTB study. Phys Chem Chem Phys 2024; 26:12993-13005. [PMID: 38639076 DOI: 10.1039/d3cp06166c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Understanding charge transfer processes is essential to estimate the performance of organic photovoltaic technologies. Although experimental production is on the rise, predictability strongly relies on theoretical modeling, which is limited to the size of semiconductors. As a computationally favorable approach, we benchmarked the long-range corrected (LC) time-dependent (TD) formulation of the semi-empirical density functional-based tight-binding method (DFTB) for three polycyclic aromatic hydrocarbons (PAHs) and studied the DTP-IC-4Ph molecule, a PAH-based non-fullerene electron acceptor (NFA) with an A-D-A backbone structure. After a thorough investigation into the long-range parameter (ω) tuning for naphthalene, anthracene and pyrene, the excitation energies, oscillator strengths and Natural Transition Orbitals (NTOs) were compared with the standard ωB97X-D/6-31G(d,p) level of theory and the ADC2/6-31G(d,p) multiconfigurational method. We estimated mobility-related properties of the NFA and considered 1000 thermally accessible configurations to qualitatively reproduce the experimental absorption profile and investigate the energetic disorder. Finally, we conducted a fragment-based analysis using the one-electron transition density matrix (1TDM) to determine the character of the excited states and investigate the effect of side chains on exciton formation. Our results are sensitive to the level of theory and highly dependent on the long-range parameter but suggest that the presence of alkyl chains promotes a higher average charge delocalization and allows for additional hopping mechanisms, favoring the charge transfer dynamics.
Collapse
Affiliation(s)
- R B Ribeiro
- Rua do Matão, 1371 - Butantã, São Paulo, Brazil, 05508-090.
| | | |
Collapse
|
3
|
Green JA, Yaghoubi Jouybari M, Asha H, Santoro F, Improta R. Fragment Diabatization Linear Vibronic Coupling Model for Quantum Dynamics of Multichromophoric Systems: Population of the Charge-Transfer State in the Photoexcited Guanine-Cytosine Pair. J Chem Theory Comput 2021; 17:4660-4674. [PMID: 34270258 DOI: 10.1021/acs.jctc.1c00416] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We introduce a method (FrD-LVC) based on a fragment diabatization (FrD) for the parametrization of a linear vibronic coupling (LVC) model suitable for studying the photophysics of multichromophore systems. In combination with effective quantum dynamics (QD) propagations with multilayer multiconfigurational time-dependent Hartree (ML-MCTDH), the FrD-LVC approach gives access to the study of the competition between intrachromophore decays, like those at conical intersections, and interchromophore processes, like exciton localization/delocalization and the involvement of charge-transfer (CT) states. We used FrD-LVC parametrized with time-dependent density functional theory (TD-DFT) calculations, adopting either CAM-B3LYP or ωB97X-D functionals, to study the ultrafast photoexcited QD of a guanine-cytosine (GC) hydrogen-bonded pair, within a Watson-Crick arrangement, considering up to 12 coupled diabatic electronic states and the effect of all of the 99 vibrational coordinates. The bright excited states localized on C and, especially, on G are predicted to be strongly coupled to the G → C CT state, which is efficiently and quickly populated after an excitation to any of the four lowest energy bright local excited states. Our QD simulations show that more than 80% of the excited population on G and ∼50% of that on C decay to this CT state in less than 50 fs. We investigate the role of vibronic effects in the population of the CT state and show that it depends mainly on its large reorganization energy so that it can occur even when it is significantly less stable than the bright states in the Franck-Condon region. At the same time, we document that the formation of the GC pair almost suppresses the involvement of dark nπ* excited states in the photoactivated dynamics.
Collapse
Affiliation(s)
- James A Green
- Istituto di Biostrutture e Bioimmagini (IBB-CNR), Consiglio Nazionale delle Ricerche, via Mezzocannone 16, I-80136 Napoli, Italy
| | - Martha Yaghoubi Jouybari
- Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), Consiglio Nazionale delle Ricerche, SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Haritha Asha
- Istituto di Biostrutture e Bioimmagini (IBB-CNR), Consiglio Nazionale delle Ricerche, via Mezzocannone 16, I-80136 Napoli, Italy
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), Consiglio Nazionale delle Ricerche, SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini (IBB-CNR), Consiglio Nazionale delle Ricerche, via Mezzocannone 16, I-80136 Napoli, Italy
| |
Collapse
|
4
|
Loos PF, Comin M, Blase X, Jacquemin D. Reference Energies for Intramolecular Charge-Transfer Excitations. J Chem Theory Comput 2021; 17:3666-3686. [DOI: 10.1021/acs.jctc.1c00226] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, F-31400 Toulouse, France
| | | | - Xavier Blase
- Univ. Grenoble Alpes, CNRS, Inst NEEL, F-38042 Grenoble, France
| | - Denis Jacquemin
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
5
|
Mantela M, Morphis A, Lambropoulos K, Simserides C, Di Felice R. Effects of Structural Dynamics on Charge Carrier Transfer in B-DNA: A Combined MD and RT-TDDFT Study. J Phys Chem B 2021; 125:3986-4003. [PMID: 33857373 DOI: 10.1021/acs.jpcb.0c11489] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hole transfer along the axis of duplex DNA has been the focus of physical chemistry research for decades, with implications in diverse fields, from nanotechnology to cell oxidative damage. Computational approaches are particularly amenable for this problem, to complement experimental data for interpretation of transfer mechanisms. To be predictive, computational results need to account for the inherent mobility of biological molecules during the time frame of experimental measurements. Here, we address the structural variability of B-DNA and its effects on hole transfer in a combined molecular dynamics (MD) and real-time time-dependent density functional theory (RT-TDDFT) study. Our results show that quantities that characterize the charge transfer process, such as the time-dependent dipole moment and hole population at a specific site, are sensitive to structural changes that occur on the nanosecond time scale. We extend the range of physical properties for which such a correlation has been observed, further establishing the fact that quantitative computational data on charge transfer properties should include statistical averages. Furthermore, we use the RT-TDDFT results to assess an efficient tight-binding method suitable for high-throughput predictions. We demonstrate that charge transfer, although affected by structural variability, on average, remains strong in AA and GG dimers.
Collapse
Affiliation(s)
- Marilena Mantela
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos GR-15784, Athens, Greece
| | - Andreas Morphis
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos GR-15784, Athens, Greece
| | - Konstantinos Lambropoulos
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos GR-15784, Athens, Greece
| | - Constantinos Simserides
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos GR-15784, Athens, Greece
| | | |
Collapse
|
6
|
Feldt M, Brown A. Assessment of local coupled cluster methods for excited states of BODIPY/Aza-BODIPY families. J Comput Chem 2021; 42:144-155. [PMID: 33103817 DOI: 10.1002/jcc.26442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/28/2022]
Abstract
It was previously reported that Laplace transformed local CC2 (LCC2*) provided the best agreement (MAE = 0.145 eV) when comparing vertical excitation energies to experimental λmax for a benchmark set of 17 BODIPY/Aza-BODIPY molecules. However, these energies did not agree with values obtained from canonical CC2. Here we report LCC2* computations of vertical excitation energies on the same benchmark set of molecules using a newly implemented treatment of the ground state. Comparison with resolution-of-identity approximate coupled cluster to second-order (RI-CC2) results demonstrate that the new LCC2* results agree quantitatively. Furthermore, these values can easily be corrected empirically to also provide excellent agreement with the experiment. We show that the local algebraic diagrammatic construction to second-order (LADC(2)) method exhibits the same differences between implementations as seen for LCC2. The source of the difference is traced to an improved treatment of the ground state in the local methods, which decreases agreement with the experiment (as attributed to a fortuitous cancellation of errors) but significantly improves agreement with RI-CC2. While the absolute vertical excitation energies now show larger deviations, there remains a strong linear correlation between the LCC2* results and the experiment. For the 17 BODIPY/Aza-BODIPY molecules vertical excitation energies are determined using DLPNO-STEOM-CCSD and shown to have excellent agreement with experimental λmax (MAE = 0.145 eV), which is the best of all the single-reference methods. The vertical excitation energies are determined using LCC2*, empirically corrected LCC2*, and RI-CC2 for a series of eight large BODIPYs and Aza-BODIPYs.
Collapse
Affiliation(s)
- Milica Feldt
- Department of Chemistry, KU Leuven, Leuven, Belgium.,Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Alex Brown
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Tölle J, Cupellini L, Mennucci B, Neugebauer J. Electronic couplings for photo-induced processes from subsystem time-dependent density-functional theory: The role of the diabatization. J Chem Phys 2020; 153:184113. [PMID: 33187428 DOI: 10.1063/5.0022677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Subsystem time-dependent density-functional theory (sTDDFT) making use of approximate non-additive kinetic energy (NAKE) functionals is known to be capable of describing excitation energy transfer processes in a variety of applications. Here, we show that sTDDFT, especially when combined with projection-based embedding (PbE), can be employed for the entire range of photo-induced electronic couplings essential for modeling photophysical properties of complex chemical and biological systems and therefore represents a complete toolbox for this class of problems. This means that it is capable of capturing the interaction/coupling associated with local- and charge-transfer (CT) excitons. However, this requires the choice of a reasonable diabatic basis. We therefore propose different diabatization strategies of the virtual orbital space in PbE-sTDDFT and show how CT excitations can be included in sTDDFT using NAKE functionals via a phenomenological approach. Finally, these electronic couplings are compared to couplings from a multistate fragment excitation difference (FED)-fragment charge difference (FCD) diabatization procedure. We show that both procedures, multistate FED-FCD and sTDDFT (with the right diabatization procedure chosen), lead to an overall good agreement for the electronic couplings, despite differences in their general diabatization strategy. We conclude that the entire range of photo-induced electronic couplings can be obtained using sTDDFT (with the right diabatization procedure chosen) in a black-box manner.
Collapse
Affiliation(s)
- Johannes Tölle
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40, 48149 Münster, Germany
| | - Lorenzo Cupellini
- Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Benedetta Mennucci
- Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
8
|
do Casal MT, Cardozo TM. Impact of low-cost methods in the description of excimer and exciplex formation: pyrene–pyrene and pyrene–naphthalene case studies. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02658-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Kumar A, Sevilla MD. Excited States of One-Electron Oxidized Guanine-Cytosine Base Pair Radicals: A Time Dependent Density Functional Theory Study. J Phys Chem A 2019; 123:3098-3108. [PMID: 30896952 DOI: 10.1021/acs.jpca.9b00906] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One-electron oxidized guanine (G•+) in DNA generates several short-lived intermediate radicals via proton transfer reactions resulting in the formation of neutral guanine radicals. The identification of these radicals in DNA is of fundamental interest to understand the early stages of DNA damage. Herein, we used time-dependent density functional theory (TD-ωB97XD-PCM/6-31G(3df,p)) to calculate the vertical excitation energies of one-electron oxidized G and G-cytosine (C) base pair in various protonation states: G•+, G(N1-H)•, and G(N2-H)•, as well as G•+-C, G(N1-H)•-(H+)C, G(N1-H)•-(N4-H+)C), G(N1-H)•-C, and G(N2-H)•-C in aqueous phase. The calculated UV-vis spectra of these radicals are in good agreement with the experiment for the G radical species when the calculated values are red-shifted by 40-70 nm. The present calculations show that the lowest energy transitions of proton transfer species (G(N1-H)•-(H+)C, G(N1-H)•-(N4-H+)C, and G(N1-H)•-C) are substantially red-shifted in comparison to the spectrum of G•+-C. The calculated spectrum of G(N2-H)•-C shows intense absorption (high oscillator strength), which matches the strong absorption in the experimental spectra of G(N2-H)• at 600 nm. The present calculations predict the lowest charge transfer transition of C → G•+ is π → π* in nature and lies in the UV region (3.4-4.3 eV) with small oscillator strength.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry , Oakland University , Rochester , Michigan 48309 , United States
| | - Michael D Sevilla
- Department of Chemistry , Oakland University , Rochester , Michigan 48309 , United States
| |
Collapse
|
10
|
Gupta A, Mishra BK, Sathyamurthy N. Influence of stacking on the ground and excited states of 2-aminopyridine. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2018.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Khani SK, Faber R, Santoro F, Hättig C, Coriani S. UV Absorption and Magnetic Circular Dichroism Spectra of Purine, Adenine, and Guanine: A Coupled Cluster Study in Vacuo and in Aqueous Solution. J Chem Theory Comput 2018; 15:1242-1254. [DOI: 10.1021/acs.jctc.8b00930] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sarah Karbalaei Khani
- Arbeitsgruppe Quantenchemie, Ruhr-Universität, Bochum D-44780, Germany
- DTU Chemistry, Technical University of Denmark, Kemitorvet Build. 207, DK-2800 Kongens Lyngby, Denmark
| | - Rasmus Faber
- DTU Chemistry, Technical University of Denmark, Kemitorvet Build. 207, DK-2800 Kongens Lyngby, Denmark
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organo-Metallici, Consiglio Nazionale delle Ricerche (ICCOM-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Christof Hättig
- Arbeitsgruppe Quantenchemie, Ruhr-Universität, Bochum D-44780, Germany
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kemitorvet Build. 207, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
12
|
Lischka H, Nachtigallová D, Aquino AJA, Szalay PG, Plasser F, Machado FBC, Barbatti M. Multireference Approaches for Excited States of Molecules. Chem Rev 2018; 118:7293-7361. [DOI: 10.1021/acs.chemrev.8b00244] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Adélia J. A. Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Péter G. Szalay
- ELTE Eötvös Loránd University, Laboratory of Theoretical Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Felix Plasser
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Department of Chemistry, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | | |
Collapse
|
13
|
Saha S, Quiney HM. Solvent effects on the excited state characteristics of adenine–thymine base pairs. RSC Adv 2017. [DOI: 10.1039/c7ra03244g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A systematic analysis of the excited state characteristics of the DNA base pair adenine–thymine in stacked and Watson–Crick hydrogen bonded configurations has been carried out in this study.
Collapse
Affiliation(s)
- S. Saha
- ARC Centre of Excellence for Advanced Molecular Imaging
- Theoretical Condensed Matter Physics Group
- School of Physics
- The University of Melbourne
- Australia
| | - H. M. Quiney
- ARC Centre of Excellence for Advanced Molecular Imaging
- Theoretical Condensed Matter Physics Group
- School of Physics
- The University of Melbourne
- Australia
| |
Collapse
|
14
|
Marquetand P, Nogueira JJ, Mai S, Plasser F, González L. Challenges in Simulating Light-Induced Processes in DNA. Molecules 2016. [PMCID: PMC6155660 DOI: 10.3390/molecules22010049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In this contribution, we give a perspective on the main challenges in performing theoretical simulations of photoinduced phenomena within DNA and its molecular building blocks. We distinguish the different tasks that should be involved in the simulation of a complete DNA strand subject to UV irradiation: (i) stationary quantum chemical computations; (ii) the explicit description of the initial excitation of DNA with light; (iii) modeling the nonadiabatic excited state dynamics; (iv) simulation of the detected experimental observable; and (v) the subsequent analysis of the respective results. We succinctly describe the methods that are currently employed in each of these steps. While for each of them, there are different approaches with different degrees of accuracy, no feasible method exists to tackle all problems at once. Depending on the technique or combination of several ones, it can be problematic to describe the stacking of nucleobases, bond breaking and formation, quantum interferences and tunneling or even simply to characterize the involved wavefunctions. It is therefore argued that more method development and/or the combination of different techniques are urgently required. It is essential also to exercise these new developments in further studies on DNA and subsystems thereof, ideally comprising simulations of all of the different components that occur in the corresponding experiments.
Collapse
|
15
|
Kánnár D, Tajti A, Szalay PG. Accuracy of Coupled Cluster Excitation Energies in Diffuse Basis Sets. J Chem Theory Comput 2016; 13:202-209. [DOI: 10.1021/acs.jctc.6b00875] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dániel Kánnár
- Laboratory of Theoretical
Chemistry, Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518, Budapest 112, Hungary
| | - Attila Tajti
- Laboratory of Theoretical
Chemistry, Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518, Budapest 112, Hungary
| | - Péter G. Szalay
- Laboratory of Theoretical
Chemistry, Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518, Budapest 112, Hungary
| |
Collapse
|
16
|
Spata VA, Matsika S. Photophysical deactivation pathways in adenine oligonucleotides. Phys Chem Chem Phys 2016; 17:31073-83. [PMID: 26536353 DOI: 10.1039/c5cp04254b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this work we study deactivation processes in adenine oligomers after absorption of UV radiation using Quantum Mechanics combined with Molecular Mechanics (QM/MM). Correlated electronic structure methods appropriate for describing the excited states are used to describe a π-stacked dimer of adenine bases incorporated into (dA)20(dT)20. The results of these calculations reveal three different types of excited state minima which play a role in deactivation processes. Within this set of minima there are minima where the excited state is localized on one adenine (monomer-like) as well as minima where the excited state is delocalized on two adenines, forming different types of excimers and bonded excimers of varying but inter-related character. The proximity of their energies reveals that the minima can decay into one another along a flat potential energy surface dependent on the interbase separation. Additionally, analysis of the emissive energies and other physical properties, including theoretical anisotropy calculations, and comparison with fluorescence experiments, provides evidence that excimers play an important role in long-lived signals in adenine oligonucleotides while the subpicosecond decay is attributed to monomer-like minima. The necessity for a close approach of the nucleobases reveals that the deactivation mechanism is tied to macro-molecular motion.
Collapse
Affiliation(s)
- Vincent A Spata
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA.
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
17
|
Raeber AE, Wong BM. The Importance of Short- and Long-Range Exchange on Various Excited State Properties of DNA Monomers, Stacked Complexes, and Watson-Crick Pairs. J Chem Theory Comput 2016; 11:2199-209. [PMID: 26574420 DOI: 10.1021/acs.jctc.5b00105] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a detailed analysis of several time-dependent DFT (TD-DFT) methods, including conventional hybrid functionals and two types of nonempirically tuned range-separated functionals, for predicting a diverse set of electronic excitations in DNA nucleobase monomers and dimers. This large and extensive set of excitations comprises a total of 50 different transitions (for each tested DFT functional) that includes several n → π and π → π* valence excitations, long-range charge-transfer excitations, and extended Rydberg transitions (complete with benchmark calculations from high-level EOM-CCSD(T) methods). The presence of localized valence excitations as well as extreme long-range charge-transfer excitations in these systems poses a serious challenge for TD-DFT methods that allows us to assess the importance of both short- and long-range exchange contributions for simultaneously predicting all of these various transitions. In particular, we find that functionals that do not have both short- and full long-range exchange components are unable to predict the different types of nucleobase excitations with the same accuracy. Most importantly, the current study highlights the importance of both short-range exchange and a nonempirically tuned contribution of long-range exchange for accurately predicting the diverse excitations in these challenging nucleobase systems.
Collapse
Affiliation(s)
- Alexandra E Raeber
- Department of Chemical & Environmental Engineering and Materials Science & Engineering Program, University of California, Riverside , Riverside, California 92521, United States
| | - Bryan M Wong
- Department of Chemical & Environmental Engineering and Materials Science & Engineering Program, University of California, Riverside , Riverside, California 92521, United States
| |
Collapse
|
18
|
Benda Z, Szalay PG. Characterization of the excited states of DNA building blocks: a coupled cluster computational study. Phys Chem Chem Phys 2016; 18:23596-606. [PMID: 27506397 DOI: 10.1039/c6cp02969h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
DNA building blocks consisting of up to four nucleobases are investigated using the EOM-CCSD and CC2-LR methods in two B-DNA-like arrangements of a poly-adenine:poly-thymine (poly-A:poly-T) system. Excitation energies and oscillator strengths are presented and the characteristics of the excited states are discussed. Excited states of single-stranded poly-A systems are highly delocalized, especially the spectroscopically bright states, where delocalization over up to four fragments can be observed. In the case of poly-T systems, the states are somewhat less delocalized, extending to maximally about three fragments. A single A:T Watson-Crick pair has highly localized states, while delocalization over base pairs can be observed for some excited states of the (A)2:(T)2 system, but intrastrand delocalization is more pronounced in this case, as well. As for the characteristics of the simulated UV absorption spectra, a significant decrease of intensity can be observed in the case of single strands with increasing chain length; this is due to the stacking interactions and is in accordance with previous results. On the other hand, the breaking of H-bonds between the two strands does not alter the spectral intensity considerably, it only causes a redshift of the absorption band, thus it is unable to explain the experimentally observed DNA hyperchromism on its own, and stacking interactions need to be considered for the description of this effect as well.
Collapse
Affiliation(s)
- Zsuzsanna Benda
- Institute of Chemistry, Eötvös University, H-1518 Budapest, P.O. Box 32, Hungary.
| | | |
Collapse
|
19
|
Giussani A, Segarra-Martí J, Nenov A, Rivalta I, Tolomelli A, Mukamel S, Garavelli M. Spectroscopic fingerprints of DNA/RNA pyrimidine nucleobases in third-order nonlinear electronic spectra. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1867-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Improta R, Santoro F, Blancafort L. Quantum Mechanical Studies on the Photophysics and the Photochemistry of Nucleic Acids and Nucleobases. Chem Rev 2016; 116:3540-93. [PMID: 26928320 DOI: 10.1021/acs.chemrev.5b00444] [Citation(s) in RCA: 344] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The photophysics and photochemistry of DNA is of great importance due to the potential damage of the genetic code by UV light. Quantum mechanical studies have played a key role in interpretating the results of modern time-resolved pump-probe spectroscopy, and in elucidating the main photoactivated reactive paths. This review provides a concise, complete picture of the computational studies carried out, approximately, in the past decade. We start with an overview of the photophysics of the nucleobases in the gas phase and in solution. We discuss the proposed mechanisms for ultrafast decay to the ground state, that involve conical intersections, consider the role of triplet states, and analyze how the solvent modulates the photophysics. Then we move to larger systems, from dinucleotides to single- and double-stranded oligonucleotides. We focus on the possible role of charge transfer and delocalized or excitonic states in the photophysics of these systems and discuss the main photochemical paths. We finish with an outlook on the current challenges in the field and future directions of research.
Collapse
Affiliation(s)
- Roberto Improta
- Istituto di Biostrutture Biommagini (IBB-CNR), CNR-Consiglio Nazionale delle Ricerche , Via Mezzocannone 16, I-80134, Napoli, Italy
| | - Fabrizio Santoro
- Area della Ricerca di Pisa, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), CNR-Consiglio Nazionale delle Ricerche , Via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Lluís Blancafort
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilivi , 17071 Girona, Spain
| |
Collapse
|
21
|
Theoretical study on the excited-state π-stacking versus intermolecular hydrogen-transfer processes in the guanine–cytosine/cytosine trimer. Theor Chem Acc 2016. [DOI: 10.1007/s00214-015-1762-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Sun H, Zhang S, Zhong C, Sun Z. Theoretical study of excited states of DNA base dimers and tetramers using optimally tuned range-separated density functional theory. J Comput Chem 2015; 37:684-93. [DOI: 10.1002/jcc.24266] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Haitao Sun
- State Key Laboratory of Precision Spectroscopy, Department of Physics; East China Normal University; Shanghai 200062 People's Republic of China
| | - Shian Zhang
- State Key Laboratory of Precision Spectroscopy, Department of Physics; East China Normal University; Shanghai 200062 People's Republic of China
| | - Cheng Zhong
- Department of Chemistry; Wuhan University; Hubei 430072 People's Republic of China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, Department of Physics; East China Normal University; Shanghai 200062 People's Republic of China
| |
Collapse
|
23
|
Sun CL, Ding F, Ding YL, Wang CS. The nonadditivity of stacking interactions in adenine–thymine and guanine–cytosine stacked structures: Study by MP2 and SCS-MP2 calculations. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2015. [DOI: 10.1142/s0219633615500376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The nonadditivity of stacking interactions in stacked structures of adenine–thymine and guanine–cytosine base pairs is investigated by MP2 and SCS-MP2 calculations with 6-311++G** and aug-cc-pvdz basis sets. The calculation results indicate that the intermolecular distances in the multi-stacked structures do not become shorter obviously as the stacked structure added. The middle stacking interaction energies in the multi-stacked structures also become weaker than that of dimer structures. It is found that the total stacking interaction energies of the trimer and tetramer stacked structures do not increase proportionally. Based on the results, we suggest that there is negative cooperativity of the stacking interactions in the adenine–thymine and guanine–cytosine stacked structures.
Collapse
Affiliation(s)
- Chang-Liang Sun
- Center of Physical Chemistry Test, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
| | - Fu Ding
- Center of Physical Chemistry Test, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
| | - Yan-Li Ding
- Department of Mathematics and Physics, Shenyang University of Chemical Technology Shenyang 110142, P. R. China
| | - Chang-Sheng Wang
- Department of Chemistry, Liaoning Normal University, Dalian 116029, P. R. China
| |
Collapse
|
24
|
Computational modeling of photoexcitation in DNA single and double strands. Top Curr Chem (Cham) 2015; 356:89-122. [PMID: 24647841 DOI: 10.1007/128_2014_533] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The photoexcitation of DNA strands triggers extremely complex photoinduced processes, which cannot be understood solely on the basis of the behavior of the nucleobase building blocks. Decisive factors in DNA oligomers and polymers include collective electronic effects, excitonic coupling, hydrogen-bonding interactions, local steric hindrance, charge transfer, and environmental and solvent effects. This chapter surveys recent theoretical and computational efforts to model real-world excited-state DNA strands using a variety of established and emerging theoretical methods. One central issue is the role of localized vs delocalized excitations and the extent to which they determine the nature and the temporal evolution of the initial photoexcitation in DNA strands.
Collapse
|
25
|
Stojanović L, Rodrigues GP, Aziz SG, Hilal RH, Barbatti M. Photochemistry of methyl hypobromite (CH3OBr): excited states and photoabsorption spectrum. RSC Adv 2015. [DOI: 10.1039/c5ra18578e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
From photoabsorption to photodissociation, from MRCI to TDDFT; a comprehensive benchmark on the photochemistry of methyl hypobromite (CH3OBr) is provided.
Collapse
Affiliation(s)
| | - Gessenildo Pereira Rodrigues
- Max-Planck-Institut für Kohlenforschung
- 45470 Mülheim an der Ruhr
- Germany
- Universidade Federal da Paraiba
- João Pessoa
| | - Saadullah G. Aziz
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah B.O. 208203
- Saudi Arabia
| | - Rifaat H. Hilal
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah B.O. 208203
- Saudi Arabia
| | - Mario Barbatti
- Max-Planck-Institut für Kohlenforschung
- 45470 Mülheim an der Ruhr
- Germany
- Aix Marseille Université
- CNRS
| |
Collapse
|
26
|
Norman P, Parello J, Polavarapu PL, Linares M. Predicting near-UV electronic circular dichroism in nucleosomal DNA by means of DFT response theory. Phys Chem Chem Phys 2015; 17:21866-79. [DOI: 10.1039/c5cp02481a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It is demonstrated that time-dependent density functional theory (DFT) calculations can accurately predict changes in near-UV electronic circular dichroism (ECD) spectra of DNA as the structure is altered from the linear (free) B-DNA form to the supercoiled N-DNA form found in nucleosome core particles.
Collapse
Affiliation(s)
- Patrick Norman
- Department of Physics
- Chemistry and Biology
- Linköping University
- SE-581 83 Linköping
- Sweden
| | - Joseph Parello
- Department of Chemistry
- Vanderbilt University
- Nashville
- USA
| | | | - Mathieu Linares
- Department of Physics
- Chemistry and Biology
- Linköping University
- SE-581 83 Linköping
- Sweden
| |
Collapse
|
27
|
Kánnár D, Szalay PG. Benchmarking coupled cluster methods on singlet excited states of nucleobases. J Mol Model 2014; 20:2503. [DOI: 10.1007/s00894-014-2503-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/13/2014] [Indexed: 11/30/2022]
|
28
|
Benda Z, Szalay PG. Details of the Excited-State Potential Energy Surfaces of Adenine by Coupled Cluster Techniques. J Phys Chem A 2014; 118:6197-207. [DOI: 10.1021/jp505331s] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zsuzsanna Benda
- Laboratory of Theoretical Chemistry, Institute of Chemistry, Eötvös University, P.O. Box 32, H-1518 Budapest, Hungary
| | - Péter G. Szalay
- Laboratory of Theoretical Chemistry, Institute of Chemistry, Eötvös University, P.O. Box 32, H-1518 Budapest, Hungary
| |
Collapse
|
29
|
Franzen S, Skalski B, Bartolotti L, Delley B. The coupling of tautomerization to hydration in the transition state on the pyrimidine photohydration reaction path. Phys Chem Chem Phys 2014; 16:20164-74. [DOI: 10.1039/c4cp02160f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Kánnár D, Szalay PG. Benchmarking Coupled Cluster Methods on Valence Singlet Excited States. J Chem Theory Comput 2014; 10:3757-65. [DOI: 10.1021/ct500495n] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Dániel Kánnár
- Laboratory of Theoretical
Chemistry, Institute of Chemistry, Eötvös University, P.O. Box 32, H-1518, Budapest 112, Hungary
| | - Péter G. Szalay
- Laboratory of Theoretical
Chemistry, Institute of Chemistry, Eötvös University, P.O. Box 32, H-1518, Budapest 112, Hungary
| |
Collapse
|
31
|
Lutz JJ, Piecuch P. Performance of the completely renormalized equation-of-motion coupled-cluster method in calculations of excited-state potential cuts of water. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Li H, Nieman R, Aquino AJA, Lischka H, Tretiak S. Comparison of LC-TDDFT and ADC(2) Methods in Computations of Bright and Charge Transfer States in Stacked Oligothiophenes. J Chem Theory Comput 2014; 10:3280-9. [DOI: 10.1021/ct500072f] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hao Li
- Theoretical Division,
Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Reed Nieman
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Adélia J. A. Aquino
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Hans Lischka
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
- Institute
for Theoretical Chemistry, University of Vienna, Währingerstrasse
17, A-1090, Vienna, Austria
| | - Sergei Tretiak
- Theoretical Division,
Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated
Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
33
|
|
34
|
Significant Publications in Applications. Mol Phys 2014. [DOI: 10.1080/00268976.2014.884261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Blancafort L, Voityuk AA. Exciton delocalization, charge transfer, and electronic coupling for singlet excitation energy transfer between stacked nucleobases in DNA: An MS-CASPT2 study. J Chem Phys 2014; 140:095102. [DOI: 10.1063/1.4867118] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
36
|
Electronic Excitation Processes in Single-Strand and Double-Strand DNA: A Computational Approach. PHOTOINDUCED PHENOMENA IN NUCLEIC ACIDS II 2014; 356:1-37. [DOI: 10.1007/128_2013_517] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Chen J, Zhang Y, Kohler B. Excited States in DNA Strands Investigated by Ultrafast Laser Spectroscopy. PHOTOINDUCED PHENOMENA IN NUCLEIC ACIDS II 2014; 356:39-87. [DOI: 10.1007/128_2014_570] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|