1
|
Chandy SK, Raghavachari K. MIM-ML: A Novel Quantum Chemical Fragment-Based Random Forest Model for Accurate Prediction of NMR Chemical Shifts of Nucleic Acids. J Chem Theory Comput 2023; 19:6632-6642. [PMID: 37703522 DOI: 10.1021/acs.jctc.3c00563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
We developed a random forest machine learning (ML) model for the prediction of 1H and 13C NMR chemical shifts of nucleic acids. Our ML model is trained entirely on reproducing computed chemical shifts obtained previously on 10 nucleic acids using a Molecules-in-Molecules (MIM) fragment-based density functional theory (DFT) protocol including microsolvation effects. Our ML model includes structural descriptors as well as electronic descriptors from an inexpensive low-level semiempirical calculation (GFN2-xTB) and trained on a relatively small number of DFT chemical shifts (2080 1H chemical shifts and 1780 13C chemical shifts on the 10 nucleic acids). The ML model is then used to make chemical shift predictions on 8 new nucleic acids ranging in size from 600 to 900 atoms and compared directly to experimental data. Though no experimental data was used in the training, the performance of our model is excellent (mean absolute deviation of 0.34 ppm for 1H chemical shifts and 2.52 ppm for 13C chemical shifts for the test set), despite having some nonstandard structures. A simple analysis suggests that both structural and electronic descriptors are critical for achieving reliable predictions. This is the first attempt to combine ML from fragment-based DFT calculations to predict experimental chemical shifts accurately, making the MIM-ML model a valuable tool for NMR predictions of nucleic acids.
Collapse
Affiliation(s)
- Sruthy K Chandy
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
2
|
Chandy SK, Raghavachari K. Accurate and Cost-Effective NMR Chemical Shift Predictions for Nucleic Acids Using a Molecules-in-Molecules Fragmentation-Based Method. J Chem Theory Comput 2023; 19:544-561. [PMID: 36630261 DOI: 10.1021/acs.jctc.2c00967] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have developed, implemented, and assessed an efficient protocol for the prediction of NMR chemical shifts of large nucleic acids using our molecules-in-molecules (MIM) fragment-based quantum chemical approach. To assess the performance of our approach, MIM-NMR calculations are calibrated on a test set of three nucleic acids, where the structure is derived from solution-phase NMR studies. For DNA systems with multiple conformers, the one-layer MIM method with trimer fragments (MIM1trimer) is benchmarked to get the lowest energy structure, with an average error of only 0.80 kcal/mol with respect to unfragmented full molecule calculations. The MIMI-NMRdimer calibration with respect to unfragmented full molecule calculations shows a mean absolute deviation (MAD) of 0.06 and 0.11 ppm, respectively, for 1H and 13C nuclei, but the performance with respect to experimental NMR chemical shifts is comparable to the more expensive MIM1-NMR and MIM2-NMR methods with trimer subsystems. To compare with the experimental chemical shifts, a standard protocol is derived using DNA systems with Protein Data Bank (PDB) IDs 1SY8, 1K2K, and 1KR8. The effect of structural minimizations is employed using a hybrid mechanics/semiempirical approach and used for computations in solution with implicit and explicit-implicit solvation models in our MIM1-NMRdimer methodology. To demonstrate the applicability of our protocol, we tested it on seven nucleic acids, including structures with nonstandard residues, heteroatom substitutions (F and B atoms), and side chain mutations with a size ranging from ∼300 to 1100 atoms. The major improvement for predicted MIM1-NMRdimer calculations is obtained from structural minimizations and implicit solvation effects. A significant improvement with the explicit-implicit solvation model is observed only for two smaller nucleic acid systems (1KR8 and 7NBK), where the expensive first solvation shell is replaced by the microsolvation model, in which a single water molecule is added for each solvent-exposed amino and imino protons, along with the implicit solvation. Overall, our target accuracy of ∼0.2-0.3 ppm for 1H and ∼2-3 ppm for 13C has been achieved for large nucleic acids. The proposed MIM-NMR approach is accurate and cost-effective (linear scaling with system size), and it can aid in the structural assignments of a wide range of complex biomolecules.
Collapse
Affiliation(s)
- Sruthy K Chandy
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
3
|
Wang J, Sha CM, Dokholyan NV. Combining Experimental Restraints and RNA 3D Structure Prediction in RNA Nanotechnology. Methods Mol Biol 2023; 2709:51-64. [PMID: 37572272 PMCID: PMC10680996 DOI: 10.1007/978-1-0716-3417-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
Precise RNA tertiary structure prediction can aid in the design of RNA nanoparticles. However, most existing RNA tertiary structure prediction methods are limited to small RNAs with relatively simple secondary structures. Large RNA molecules usually have complex secondary structures, including multibranched loops and pseudoknots, allowing for highly flexible RNA geometries and multiple stable states. Various experiments and bioinformatics analyses can often provide information about the distance between atoms (or residues) in RNA, which can be used to guide the prediction of RNA tertiary structure. In this chapter, we will introduce a platform, iFoldNMR, that can incorporate non-exchangeable imino protons resonance data from NMR as restraints for RNA 3D structure prediction. We also introduce an algorithm, DVASS, which optimizes distance restraints for better RNA 3D structure prediction.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Congzhou M Sha
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Engineering Science and Mechanics, Penn State University, State College, PA, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA.
- Department of Engineering Science and Mechanics, Penn State University, State College, PA, USA.
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA.
- Department of Chemistry, Penn State University, State College, PA, USA.
- Department of Biomedical Engineering, Penn State University, State College, PA, USA.
| |
Collapse
|
4
|
Moudgal N, Arhin G, Frank AT. Using Unassigned NMR Chemical Shifts to Model RNA Secondary Structure. J Phys Chem A 2022; 126:2739-2745. [PMID: 35470661 DOI: 10.1021/acs.jpca.2c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NMR-derived chemical shifts are sensitive probes of RNA structure. However, the need to assign NMR spectra hampers their utility as a direct source of structural information. In this report, we describe a simple method that uses unassigned 2D NMR spectra to model the secondary structure of RNAs. As in the case of assigned chemical shifts, we could use unassigned chemical shift data to reweight conformational libraries such that the highest weighted structure closely resembles their reference NMR structure. Furthermore, the application of our approach to the 3'- and 5'-UTR of the SARS-CoV-2 genome yields structures that are, for the most part, consistent with the secondary structure models derived from chemical probing data. Therefore, we expect the framework we describe here will be useful as a general strategy for rapidly generating preliminary structural RNA models directly from unassigned 2D NMR spectra. As we demonstrated for the 337-nt and 472-nt UTRs of SARS-CoV-2, our approach could be especially valuable for modeling the secondary structures of large RNA.
Collapse
Affiliation(s)
- Neel Moudgal
- Saline High School, 1300 Campus Pkwy, Saline, Michigan 48176, United States
| | - Grace Arhin
- Biophysics Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Aaron T Frank
- Biophysics Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States.,Chemistry Department, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Liu B, Rangadurai A, Shi H, Al-Hashimi H. Rapid assessment of Watson-Crick to Hoogsteen exchange in unlabeled DNA duplexes using high-power SELOPE imino 1H CEST. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:715-731. [PMID: 37905209 PMCID: PMC10539785 DOI: 10.5194/mr-2-715-2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/05/2021] [Indexed: 11/01/2023]
Abstract
In duplex DNA, Watson-Crick A-T and G-C base pairs (bp's) exist in dynamic equilibrium with an alternative Hoogsteen conformation, which is low in abundance and short-lived. Measuring how the Hoogsteen dynamics varies across different DNA sequences, structural contexts and physiological conditions is key for identifying potential Hoogsteen hot spots and for understanding the potential roles of Hoogsteen base pairs in DNA recognition and repair. However, such studies are hampered by the need to prepare 13 C or 15 N isotopically enriched DNA samples for NMR relaxation dispersion (RD) experiments. Here, using SELective Optimized Proton Experiments (SELOPE) 1 H CEST experiments employing high-power radiofrequency fields (B 1 > 250 Hz) targeting imino protons, we demonstrate accurate and robust characterization of Watson-Crick to Hoogsteen exchange, without the need for isotopic enrichment of the DNA. For 13 residues in three DNA duplexes under different temperature and pH conditions, the exchange parameters deduced from high-power imino 1 H CEST were in very good agreement with counterparts measured using off-resonance 13 C / 15 N spin relaxation in the rotating frame (R 1 ρ ). It is shown that 1 H-1 H NOE effects which typically introduce artifacts in 1 H-based measurements of chemical exchange can be effectively suppressed by selective excitation, provided that the relaxation delay is short (≤ 100 ms). The 1 H CEST experiment can be performed with ∼ 10× higher throughput and ∼ 100× lower cost relative to 13 C / 15 N R 1 ρ and enabled Hoogsteen chemical exchange measurements undetectable by R 1 ρ . The results reveal an increased propensity to form Hoogsteen bp's near terminal ends and a diminished propensity within A-tract motifs. The 1 H CEST experiment provides a basis for rapidly screening Hoogsteen breathing in duplex DNA, enabling identification of unusual motifs for more in-depth characterization.
Collapse
Affiliation(s)
- Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Atul Rangadurai
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Hashim M. Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
- Department of Chemistry, Duke University, Durham, NC, USA
| |
Collapse
|
6
|
Zhang K, Frank AT. Probabilistic Modeling of RNA Ensembles Using NMR Chemical Shifts. J Phys Chem B 2021; 125:9970-9978. [PMID: 34449236 DOI: 10.1021/acs.jpcb.1c05651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
NMR-derived chemical shifts are structural fingerprints that are sensitive to the underlying conformational distributions of molecules. Thus, chemical shift data are now routinely used to infer the dynamical or conformational ensembles of peptides and proteins. However, for RNAs, techniques for inferring their conformational ensembles from chemical shift data have received less attention. Here, we used chemical shift data and the Bayesian/maximum entropy (BME) approach to model the secondary structure ensembles of several single-stranded RNAs. Inspection of the resulting ensembles indicates that the secondary structure of the highest weighted (most probable) conformer in the ensemble typically resembled the known NMR structure. Furthermore, using apo chemical shifts measured for the HIV-1 TAR RNA, we found that our framework reproduces the expected structure yet predicts the existence of a previously unobserved base pair, which we speculate may be sampled transiently. We expect that the chemical shift-based BME (CS-BME) framework we describe here should find utility as a general strategy for modeling RNA ensembles using chemical shift data.
Collapse
Affiliation(s)
- Kexin Zhang
- Chemistry Department, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Aaron T Frank
- Biophysics Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Lawrence C, Grishaev A. Chemical shifts-based similarity restraints improve accuracy of RNA structures determined via NMR. RNA (NEW YORK, N.Y.) 2020; 26:2051-2061. [PMID: 32917774 PMCID: PMC7668244 DOI: 10.1261/rna.074617.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 08/19/2020] [Indexed: 06/01/2023]
Abstract
Determination of structure of RNA via NMR is complicated in large part by the lack of a precise parameterization linking the observed chemical shifts to the underlying geometric parameters. In contrast to proteins, where numerous high-resolution crystal structures serve as coordinate templates for this mapping, such models are rarely available for smaller oligonucleotides accessible via NMR, or they exhibit crystal packing and counter-ion binding artifacts that prevent their use for the chemical shifts analysis. On the other hand, NMR-determined structures of RNA often are not solved at the density of restraints required to precisely define the variable degrees of freedom. In this study we sidestep the problems of direct parameterization of the RNA chemical shifts/structure relationship and examine the effects of imposing local fragmental coordinate similarity restraints based on similarities of the experimental secondary ribose 13C/1H chemical shifts instead. The effect of such chemical shift similarity (CSS) restraints on the structural accuracy is assessed via residual dipolar coupling (RDC)-based cross-validation. Improvements in the coordinate accuracy are observed for all of the six RNA constructs considered here as test cases, which argues for routine inclusion of these terms during NMR-based oligonucleotide structure determination. Such accuracy improvements are expected to facilitate derivation of the chemical shift/structure relationships for RNA.
Collapse
Affiliation(s)
- Chad Lawrence
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
| | - Alexander Grishaev
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
- Biomolecular Measurement Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
8
|
Ponce-Salvatierra A, Astha, Merdas K, Nithin C, Ghosh P, Mukherjee S, Bujnicki JM. Computational modeling of RNA 3D structure based on experimental data. Biosci Rep 2019; 39:BSR20180430. [PMID: 30670629 PMCID: PMC6367127 DOI: 10.1042/bsr20180430] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 01/02/2023] Open
Abstract
RNA molecules are master regulators of cells. They are involved in a variety of molecular processes: they transmit genetic information, sense cellular signals and communicate responses, and even catalyze chemical reactions. As in the case of proteins, RNA function is dictated by its structure and by its ability to adopt different conformations, which in turn is encoded in the sequence. Experimental determination of high-resolution RNA structures is both laborious and difficult, and therefore the majority of known RNAs remain structurally uncharacterized. To address this problem, predictive computational methods were developed based on the accumulated knowledge of RNA structures determined so far, the physical basis of the RNA folding, and taking into account evolutionary considerations, such as conservation of functionally important motifs. However, all theoretical methods suffer from various limitations, and they are generally unable to accurately predict structures for RNA sequences longer than 100-nt residues unless aided by additional experimental data. In this article, we review experimental methods that can generate data usable by computational methods, as well as computational approaches for RNA structure prediction that can utilize data from experimental analyses. We outline methods and data types that can be potentially useful for RNA 3D structure modeling but are not commonly used by the existing software, suggesting directions for future development.
Collapse
Affiliation(s)
- Almudena Ponce-Salvatierra
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Astha
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Katarzyna Merdas
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Chandran Nithin
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Pritha Ghosh
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, Poznan PL-61-614, Poland
| |
Collapse
|
9
|
Nerli S, McShan AC, Sgourakis NG. Chemical shift-based methods in NMR structure determination. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 106-107:1-25. [PMID: 31047599 PMCID: PMC6788782 DOI: 10.1016/j.pnmrs.2018.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 05/08/2023]
Abstract
Chemical shifts are highly sensitive probes harnessed by NMR spectroscopists and structural biologists as conformational parameters to characterize a range of biological molecules. Traditionally, assignment of chemical shifts has been a labor-intensive process requiring numerous samples and a suite of multidimensional experiments. Over the past two decades, the development of complementary computational approaches has bolstered the analysis, interpretation and utilization of chemical shifts for elucidation of high resolution protein and nucleic acid structures. Here, we review the development and application of chemical shift-based methods for structure determination with a focus on ab initio fragment assembly, comparative modeling, oligomeric systems, and automated assignment methods. Throughout our discussion, we point out practical uses, as well as advantages and caveats, of using chemical shifts in structure modeling. We additionally highlight (i) hybrid methods that employ chemical shifts with other types of NMR restraints (residual dipolar couplings, paramagnetic relaxation enhancements and pseudocontact shifts) that allow for improved accuracy and resolution of generated 3D structures, (ii) the utilization of chemical shifts to model the structures of sparsely populated excited states, and (iii) modeling of sidechain conformations. Finally, we briefly discuss the advantages of contemporary methods that employ sparse NMR data recorded using site-specific isotope labeling schemes for chemical shift-driven structure determination of larger molecules. With this review, we aim to emphasize the accessibility and versatility of chemical shifts for structure determination of challenging biological systems, and to point out emerging areas of development that lead us towards the next generation of tools.
Collapse
Affiliation(s)
- Santrupti Nerli
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States; Department of Computer Science, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Andrew C McShan
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Nikolaos G Sgourakis
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States.
| |
Collapse
|
10
|
Schlagnitweit J, Steiner E, Karlsson H, Petzold K. Efficient Detection of Structure and Dynamics in Unlabeled RNAs: The SELOPE Approach. Chemistry 2018; 24:6067-6070. [PMID: 29504639 PMCID: PMC5947647 DOI: 10.1002/chem.201800992] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Indexed: 01/10/2023]
Abstract
The knowledge of structure and dynamics is crucial to explain the function of RNAs. While nuclear magnetic resonance (NMR) is well suited to probe these for complex biomolecules, it requires expensive, isotopically labeled samples, and long measurement times. Here we present SELOPE, a new robust, proton-only NMR method that allows us to obtain site-specific overview of structure and dynamics in an entire RNA molecule using an unlabeled sample. SELOPE simplifies assignment and allows for cost-effective screening of the response of nucleic acids to physiological changes (e.g. ion concentration) or screening of drugs in a high throughput fashion. This single technique allows us to probe an unprecedented range of exchange time scales (the whole μs to ms motion range) with increased sensitivity, surpassing all current experiments to detect chemical exchange. For the first time we could describe an RNA excited state using an unlabeled RNA.
Collapse
Affiliation(s)
- Judith Schlagnitweit
- Department of Medical Biochemistry and BiophysicsKarolinska Institute17177StockholmSweden
| | - Emilie Steiner
- Department of Medical Biochemistry and BiophysicsKarolinska Institute17177StockholmSweden
| | - Hampus Karlsson
- Department of Medical Biochemistry and BiophysicsKarolinska Institute17177StockholmSweden
| | - Katja Petzold
- Department of Medical Biochemistry and BiophysicsKarolinska Institute17177StockholmSweden
| |
Collapse
|
11
|
Williams B, Zhao B, Tandon A, Ding F, Weeks KM, Zhang Q, Dokholyan NV. Structure modeling of RNA using sparse NMR constraints. Nucleic Acids Res 2018; 45:12638-12647. [PMID: 29165648 PMCID: PMC5728392 DOI: 10.1093/nar/gkx1058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/18/2017] [Indexed: 01/04/2023] Open
Abstract
RNAs fold into distinct molecular conformations that are often essential for their functions. Accurate structure modeling of complex RNA motifs, including ubiquitous non-canonical base pairs and pseudoknots, remains a challenge. Here, we present an NMR-guided all-atom discrete molecular dynamics (DMD) platform, iFoldNMR, for rapid and accurate structure modeling of complex RNAs. We show that sparse distance constraints from imino resonances, which can be readily obtained from routine NMR experiments and easier to compile than laborious assignments of non-solvent-exchangeable protons, are sufficient to direct a DMD search for low-energy RNA conformers. Benchmarking on a set of RNAs with complex folds spanning up to 56 nucleotides in length yields structural models that recapitulate experimentally determined structures with all-heavy-atom RMSDs ranging from 2.4 to 6.5 Å. This platform represents an efficient approach for high-throughput RNA structure modeling and will facilitate analysis of diverse, newly discovered functional RNAs.
Collapse
Affiliation(s)
- Benfeard Williams
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Molecular and Cellular Biophysics Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bo Zhao
- Molecular and Cellular Biophysics Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Arpit Tandon
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Molecular and Cellular Biophysics Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Qi Zhang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Molecular and Cellular Biophysics Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Molecular and Cellular Biophysics Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Sathyamoorthy B, Shi H, Zhou H, Xue Y, Rangadurai A, Merriman DK, Al-Hashimi HM. Insights into Watson-Crick/Hoogsteen breathing dynamics and damage repair from the solution structure and dynamic ensemble of DNA duplexes containing m1A. Nucleic Acids Res 2017; 45:5586-5601. [PMID: 28369571 PMCID: PMC5435913 DOI: 10.1093/nar/gkx186] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/06/2017] [Accepted: 03/17/2017] [Indexed: 12/18/2022] Open
Abstract
In the canonical DNA double helix, Watson-Crick (WC) base pairs (bps) exist in dynamic equilibrium with sparsely populated (∼0.02-0.4%) and short-lived (lifetimes ∼0.2-2.5 ms) Hoogsteen (HG) bps. To gain insights into transient HG bps, we used solution-state nuclear magnetic resonance spectroscopy, including measurements of residual dipolar couplings and molecular dynamics simulations, to examine how a single HG bp trapped using the N1-methylated adenine (m1A) lesion affects the structural and dynamic properties of two duplexes. The solution structure and dynamic ensembles of the duplexes reveals that in both cases, m1A forms a m1A•T HG bp, which is accompanied by local and global structural and dynamic perturbations in the double helix. These include a bias toward the BI backbone conformation; sugar repuckering, major-groove directed kinking (∼9°); and local melting of neighboring WC bps. These results provide atomic insights into WC/HG breathing dynamics in unmodified DNA duplexes as well as identify structural and dynamic signatures that could play roles in m1A recognition and repair.
Collapse
Affiliation(s)
- Bharathwaj Sathyamoorthy
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | - Huiqing Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yi Xue
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | - Atul Rangadurai
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Hashim M. Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| |
Collapse
|
13
|
Juen MA, Wunderlich CH, Nußbaumer F, Tollinger M, Kontaxis G, Konrat R, Hansen DF, Kreutz C. Excited States of Nucleic Acids Probed by Proton Relaxation Dispersion NMR Spectroscopy. Angew Chem Int Ed Engl 2016; 55:12008-12. [PMID: 27533469 PMCID: PMC5082494 DOI: 10.1002/anie.201605870] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 11/16/2022]
Abstract
In this work an improved stable isotope labeling protocol for nucleic acids is introduced. The novel building blocks eliminate/minimize homonuclear (13) C and (1) H scalar couplings thus allowing proton relaxation dispersion (RD) experiments to report accurately on the chemical exchange of nucleic acids. Using site-specific (2) H and (13) C labeling, spin topologies are introduced into DNA and RNA that make (1) H relaxation dispersion experiments applicable in a straightforward manner. The novel RNA/DNA building blocks were successfully incorporated into two nucleic acids. The A-site RNA was previously shown to undergo a two site exchange process in the micro- to millisecond time regime. Using proton relaxation dispersion experiments the exchange parameters determined earlier could be recapitulated, thus validating the proposed approach. We further investigated the dynamics of the cTAR DNA, a DNA transcript that is involved in the viral replication cycle of HIV-1. Again, an exchange process could be characterized and quantified. This shows the general applicablility of the novel labeling scheme for (1) H RD experiments of nucleic acids.
Collapse
Affiliation(s)
- Michael Andreas Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | | | - Felix Nußbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Martin Tollinger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Georg Kontaxis
- Computational Biology and Biomolecular NMR, Max F. Perutz Laboratories (MFPL), University of Vienna, Dr. Bohr Gasse 9 (VBC 5), 1030, Vienna, Austria
| | - Robert Konrat
- Computational Biology and Biomolecular NMR, Max F. Perutz Laboratories (MFPL), University of Vienna, Dr. Bohr Gasse 9 (VBC 5), 1030, Vienna, Austria
| | - D Flemming Hansen
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Room 612, Gower Street, London, WC1E 6BT, UK.
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
14
|
Juen MA, Wunderlich CH, Nußbaumer F, Tollinger M, Kontaxis G, Konrat R, Hansen DF, Kreutz C. Excited States of Nucleic Acids Probed by Proton Relaxation Dispersion NMR Spectroscopy. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michael Andreas Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI); University of Innsbruck; Innrain 80/82 6020 Innsbruck Austria
| | | | - Felix Nußbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI); University of Innsbruck; Innrain 80/82 6020 Innsbruck Austria
| | - Martin Tollinger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI); University of Innsbruck; Innrain 80/82 6020 Innsbruck Austria
| | - Georg Kontaxis
- Computational Biology and Biomolecular NMR; Max F. Perutz Laboratories (MFPL); University of Vienna; Dr. Bohr Gasse 9 (VBC 5) 1030 Vienna Austria
| | - Robert Konrat
- Computational Biology and Biomolecular NMR; Max F. Perutz Laboratories (MFPL); University of Vienna; Dr. Bohr Gasse 9 (VBC 5) 1030 Vienna Austria
| | - D. Flemming Hansen
- Institute of Structural and Molecular Biology; Division of Biosciences; University College London; Darwin Building, Room 612, Gower Street London WC1E 6BT UK
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI); University of Innsbruck; Innrain 80/82 6020 Innsbruck Austria
| |
Collapse
|
15
|
Zhao B, Zhang Q. Measuring Residual Dipolar Couplings in Excited Conformational States of Nucleic Acids by CEST NMR Spectroscopy. J Am Chem Soc 2015; 137:13480-3. [PMID: 26462068 DOI: 10.1021/jacs.5b09014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nucleic acids undergo structural transitions to access sparsely populated and transiently lived conformational states--or excited conformational states--that play important roles in diverse biological processes. Despite ever-increasing detection of these functionally essential states, 3D structure determination of excited states (ESs) of RNA remains elusive. This is largely due to challenges in obtaining high-resolution structural constraints in these ESs by conventional structural biology approaches. Here, we present nucleic-acid-optimized chemical exchange saturation transfer (CEST) NMR spectroscopy for measuring residual dipolar couplings (RDCs), which provide unique long-range angular constraints in ESs of nucleic acids. We demonstrate these approaches on a fluoride riboswitch, where one-bond (13)C-(1)H RDCs from both base and sugar moieties provide direct structural probes into an ES of the ligand-free riboswitch.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Biochemistry and Biophysics and ‡Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Qi Zhang
- Department of Biochemistry and Biophysics and ‡Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
16
|
Salmon L, Giambaşu GM, Nikolova EN, Petzold K, Bhattacharya A, Case DA, Al-Hashimi HM. Modulating RNA Alignment Using Directional Dynamic Kinks: Application in Determining an Atomic-Resolution Ensemble for a Hairpin using NMR Residual Dipolar Couplings. J Am Chem Soc 2015; 137:12954-65. [PMID: 26306428 PMCID: PMC4748170 DOI: 10.1021/jacs.5b07229] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Approaches that combine experimental data and computational molecular dynamics (MD) to determine atomic resolution ensembles of biomolecules require the measurement of abundant experimental data. NMR residual dipolar couplings (RDCs) carry rich dynamics information, however, difficulties in modulating overall alignment of nucleic acids have limited the ability to fully extract this information. We present a strategy for modulating RNA alignment that is based on introducing variable dynamic kinks in terminal helices. With this strategy, we measured seven sets of RDCs in a cUUCGg apical loop and used this rich data set to test the accuracy of an 0.8 μs MD simulation computed using the Amber ff10 force field as well as to determine an atomic resolution ensemble. The MD-generated ensemble quantitatively reproduces the measured RDCs, but selection of a sub-ensemble was required to satisfy the RDCs within error. The largest discrepancies between the RDC-selected and MD-generated ensembles are observed for the most flexible loop residues and backbone angles connecting the loop to the helix, with the RDC-selected ensemble resulting in more uniform dynamics. Comparison of the RDC-selected ensemble with NMR spin relaxation data suggests that the dynamics occurs on the ps-ns time scales as verified by measurements of R(1ρ) relaxation-dispersion data. The RDC-satisfying ensemble samples many conformations adopted by the hairpin in crystal structures indicating that intrinsic plasticity may play important roles in conformational adaptation. The approach presented here can be applied to test nucleic acid force fields and to characterize dynamics in diverse RNA motifs at atomic resolution.
Collapse
Affiliation(s)
- Loïc Salmon
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - George M. Giambaşu
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Evgenia N. Nikolova
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | - David A. Case
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Hashim M. Al-Hashimi
- Department of Biochemistry and Chemistry, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
17
|
Yang S, Al-Hashimi HM. Unveiling Inherent Degeneracies in Determining Population-Weighted Ensembles of Interdomain Orientational Distributions Using NMR Residual Dipolar Couplings: Application to RNA Helix Junction Helix Motifs. J Phys Chem B 2015; 119:9614-26. [PMID: 26131693 DOI: 10.1021/acs.jpcb.5b03859] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A growing number of studies employ time-averaged experimental data to determine dynamic ensembles of biomolecules. While it is well-known that different ensembles can satisfy experimental data to within error, the extent and nature of these degeneracies, and their impact on the accuracy of the ensemble determination remains poorly understood. Here, we use simulations and a recently introduced metric for assessing ensemble similarity to explore degeneracies in determining ensembles using NMR residual dipolar couplings (RDCs) with specific application to A-form helices in RNA. Various target ensembles were constructed representing different domain-domain orientational distributions that are confined to a topologically restricted (<10%) conformational space. Five independent sets of ensemble averaged RDCs were then computed for each target ensemble and a "sample and select" scheme used to identify degenerate ensembles that satisfy RDCs to within experimental uncertainty. We find that ensembles with different ensemble sizes and that can differ significantly from the target ensemble (by as much as ∑Ω ∼ 0.4 where ∑Ω varies between 0 and 1 for maximum and minimum ensemble similarity, respectively) can satisfy the ensemble averaged RDCs. These deviations increase with the number of unique conformers and breadth of the target distribution, and result in significant uncertainty in determining conformational entropy (as large as 5 kcal/mol at T = 298 K). Nevertheless, the RDC-degenerate ensembles are biased toward populated regions of the target ensemble, and capture other essential features of the distribution, including the shape. Our results identify ensemble size as a major source of uncertainty in determining ensembles and suggest that NMR interactions such as RDCs and spin relaxation, on their own, do not carry the necessary information needed to determine conformational entropy at a useful level of precision. The framework introduced here provides a general approach for exploring degeneracies in ensemble determination for different types of experimental data.
Collapse
Affiliation(s)
- Shan Yang
- †Department of Biochemistry, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, United States
| | - Hashim M Al-Hashimi
- ‡Department of Biochemistry and Chemistry, Duke University Medical Center, Durham, North Carolina 27705, United States
| |
Collapse
|
18
|
Abstract
![]()
Influenza A is an RNA virus with
a genome of eight negative sense
segments. Segment 7 mRNA contains a 3′ splice site for alternative
splicing to encode the essential M2 protein. On the basis of sequence
alignment and chemical mapping experiments, the secondary structure
surrounding the 3′ splice site has an internal loop, adenine
bulge, and hairpin loop when it is in the hairpin conformation that
exposes the 3′ splice site. We report structural features of
a three-dimensional model of the hairpin derived from nuclear magnetic
resonance spectra and simulated annealing with restrained molecular
dynamics. Additional insight was provided by modeling based on 1H chemical shifts. The internal loop containing the 3′
splice site has a dynamic guanosine and a stable imino (cis Watson–Crick/Watson–Crick) GA pair. The adenine bulge
also appears to be dynamic with the A either stacked in the stem or
forming a base triple with a Watson–Crick GC pair. The hairpin
loop is a GAAA tetraloop closed by an AC pair.
Collapse
Affiliation(s)
- Jonathan L Chen
- †Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Scott D Kennedy
- ‡Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Douglas H Turner
- †Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.,§Center for RNA Biology, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
19
|
Zhao B, Zhang Q. Characterizing excited conformational states of RNA by NMR spectroscopy. Curr Opin Struct Biol 2015; 30:134-146. [PMID: 25765780 DOI: 10.1016/j.sbi.2015.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/14/2015] [Accepted: 02/18/2015] [Indexed: 11/25/2022]
Abstract
Conformational dynamics is a hallmark of diverse non-coding RNA functions. During these functional processes, RNA molecules almost ubiquitously undergo conformational transitions that are tuned to meet distinct structural and kinetic requirements for proper function. A complete mechanistic understanding of RNA function requires comprehensive structural and dynamic knowledge of these complex transitions, which often involve alternative higher-energy conformational states that pose a major challenge for high-resolution structural study by conventional methods. In this review, we describe recent progress in RNA NMR that has started to unveil detailed structural, thermodynamic and kinetic insights into some of these excited conformational states of RNA and their functional roles in biology.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Qi Zhang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
20
|
Ng KS, Lam SL. NMR proton chemical shift prediction of C·C mismatches in B-DNA. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 252:87-93. [PMID: 25681800 DOI: 10.1016/j.jmr.2015.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/09/2015] [Accepted: 01/11/2015] [Indexed: 05/15/2023]
Abstract
Accurate prediction of DNA chemical shifts facilitates resonance assignment and allows recognition of different conformational features. Based on the nearest neighbor model and base pair replacement approach, we have determined a set of triplet chemical shift values and correction factors for predicting the proton chemical shifts of B-DNA containing an internal C·C mismatch. Our results provide a reliable chemical shift prediction with an accuracy of 0.07 ppm for non-labile protons and 0.09 ppm for labile protons. In addition, we have also shown that the correction factors for C·C mismatches can be used interchangeably with those for T·T mismatches. As a result, we have generalized a set of correction factors for predicting the flanking residue chemical shifts of pyrimidine·pyrimidine mismatches.
Collapse
Affiliation(s)
- Kui Sang Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
21
|
Victora A, Möller HM, Exner TE. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes. Nucleic Acids Res 2014; 42:e173. [PMID: 25404135 PMCID: PMC4267612 DOI: 10.1093/nar/gku1006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3–0.6 ppm and correlation coefficients (r2) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization.
Collapse
Affiliation(s)
- Andrea Victora
- Department of Chemistry and Zukunftskolleg, Universität Konstanz, 78457 Konstanz, Germany
| | - Heiko M Möller
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam OT Golm, Germany
| | - Thomas E Exner
- Department of Chemistry and Zukunftskolleg, Universität Konstanz, 78457 Konstanz, Germany Institute of Pharmacy, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
22
|
Sathyamoorthy B, Lee J, Kimsey I, Ganser L, Al-Hashimi H. Development and application of aromatic [(13)C, (1)H] SOFAST-HMQC NMR experiment for nucleic acids. JOURNAL OF BIOMOLECULAR NMR 2014; 60:77-83. [PMID: 25186910 PMCID: PMC4324173 DOI: 10.1007/s10858-014-9856-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/19/2014] [Indexed: 05/20/2023]
Abstract
Higher sensitivity of NMR spectrometers and novel isotopic labeling schemes have ushered the development of rapid data acquisition methodologies, improving the time resolution with which NMR data can be acquired. For nucleic acids, longitudinal relaxation optimization in conjunction with Ernst angle excitation (SOFAST-HMQC) for imino protons, in addition to rendering rapid pulsing, has been demonstrated to yield significant improvements in sensitivity per unit time. Extending such methodology to other spins offers a viable prospect to measure additional chemical shifts, thereby broadening their utilization for various applications. Here, we introduce the 2D [(13)C, (1)H] aromatic SOFAST-HMQC that results in overall sensitivity gain of 1.4- to 1.7-fold relative to the conventional HMQC and can also be extended to yield long-range heteronuclear chemical shifts such as the adenine imino nitrogens N1, N3, N7 and N9. The applications of these experiments range from monitoring real-time biochemical processes, drug/ligand screening, and to collecting data at very low sample concentration and/or in cases where isotopic enrichment cannot be achieved.
Collapse
Affiliation(s)
| | - Janghyun Lee
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Isaac Kimsey
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Laura Ganser
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | | |
Collapse
|
23
|
Fonseca R, Pachov DV, Bernauer J, van den Bedem H. Characterizing RNA ensembles from NMR data with kinematic models. Nucleic Acids Res 2014; 42:9562-72. [PMID: 25114056 PMCID: PMC4150802 DOI: 10.1093/nar/gku707] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/03/2022] Open
Abstract
Functional mechanisms of biomolecules often manifest themselves precisely in transient conformational substates. Researchers have long sought to structurally characterize dynamic processes in non-coding RNA, combining experimental data with computer algorithms. However, adequate exploration of conformational space for these highly dynamic molecules, starting from static crystal structures, remains challenging. Here, we report a new conformational sampling procedure, KGSrna, which can efficiently probe the native ensemble of RNA molecules in solution. We found that KGSrna ensembles accurately represent the conformational landscapes of 3D RNA encoded by NMR proton chemical shifts. KGSrna resolves motionally averaged NMR data into structural contributions; when coupled with residual dipolar coupling data, a KGSrna ensemble revealed a previously uncharacterized transient excited state of the HIV-1 trans-activation response element stem-loop. Ensemble-based interpretations of averaged data can aid in formulating and testing dynamic, motion-based hypotheses of functional mechanisms in RNAs with broad implications for RNA engineering and therapeutic intervention.
Collapse
Affiliation(s)
- Rasmus Fonseca
- AMIB Project, INRIA Saclay-Île de France, 1 rue Honoré d'Estienne d'Orves, Bâtiment Alan Turing, Campus de l'École Polytechnique, 91120 Palaiseau, France Laboratoire d'Informatique de l'École Polytechnique (LIX), CNRS UMR 7161, École Polytechnique, 91128 Palaiseau, France Department of Computer Science, University of Copenhagen, Nørre Campus, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Dimitar V Pachov
- Department of Chemistry, Stanford University, 333 Campus Dr., Stanford, CA 94305, USA
| | - Julie Bernauer
- AMIB Project, INRIA Saclay-Île de France, 1 rue Honoré d'Estienne d'Orves, Bâtiment Alan Turing, Campus de l'École Polytechnique, 91120 Palaiseau, France Laboratoire d'Informatique de l'École Polytechnique (LIX), CNRS UMR 7161, École Polytechnique, 91128 Palaiseau, France
| | - Henry van den Bedem
- Joint Center for Structural Genomics, Stanford Synchrotron Radiation Lightsource, Stanford University, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
24
|
Sripakdeevong P, Cevec M, Chang AT, Erat MC, Ziegeler M, Zhao Q, Fox GE, Gao X, Kennedy SD, Kierzek R, Nikonowicz EP, Schwalbe H, Sigel RKO, Turner DH, Das R. Structure determination of noncanonical RNA motifs guided by ¹H NMR chemical shifts. Nat Methods 2014; 11:413-6. [PMID: 24584194 PMCID: PMC3985481 DOI: 10.1038/nmeth.2876] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 01/06/2014] [Indexed: 12/31/2022]
Abstract
Structured noncoding RNAs underlie fundamental cellular processes, but determining their three-dimensional structures remains challenging. We demonstrate that integrating ¹H NMR chemical shift data with Rosetta de novo modeling can be used to consistently determine high-resolution RNA structures. On a benchmark set of 23 noncanonical RNA motifs, including 11 'blind' targets, chemical-shift Rosetta for RNA (CS-Rosetta-RNA) recovered experimental structures with high accuracy (0.6-2.0 Å all-heavy-atom r.m.s. deviation) in 18 cases.
Collapse
Affiliation(s)
| | - Mirko Cevec
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University Frankfurt, Frankfurt, Germany
| | - Andrew T Chang
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, USA
| | - Michèle C Erat
- 1] Department of Biochemistry, University of Oxford, Oxford, UK. [2] Institute of Inorganic Chemistry, University of Zurich, Zurich, Switzerland
| | - Melanie Ziegeler
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University Frankfurt, Frankfurt, Germany
| | - Qin Zhao
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - George E Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Xiaolian Gao
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Scott D Kennedy
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Edward P Nikonowicz
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, USA
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University Frankfurt, Frankfurt, Germany
| | - Roland K O Sigel
- Institute of Inorganic Chemistry, University of Zurich, Zurich, Switzerland
| | - Douglas H Turner
- Department of Chemistry, University of Rochester, Rochester, New York, USA
| | - Rhiju Das
- 1] Biophysics Program, Stanford University, Stanford, California, USA. [2] Department of Biochemistry, Stanford University, Stanford, California, USA. [3] Department of Physics, Stanford University, Stanford, California, USA
| |
Collapse
|
25
|
Suardíaz R, Sahakyan AB, Vendruscolo M. A geometrical parametrization of C1'-C5' RNA ribose chemical shifts calculated by density functional theory. J Chem Phys 2014; 139:034101. [PMID: 23883004 DOI: 10.1063/1.4811498] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
It has been recently shown that NMR chemical shifts can be used to determine the structures of proteins. In order to begin to extend this type of approach to nucleic acids, we present an equation that relates the structural parameters and the (13)C chemical shifts of the ribose group. The parameters in the equation were determined by maximizing the agreement between the DFT-derived chemical shifts and those predicted through the equation for a database of ribose structures. Our results indicate that this type of approach represents a promising way of establishing quantitative and computationally efficient analytical relationships between chemical shifts and structural parameters in nucleic acids.
Collapse
Affiliation(s)
- Reynier Suardíaz
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | | |
Collapse
|
26
|
Abstract
Conformational changes in nucleic acids play a key role in the way genetic information is stored, transferred, and processed in living cells. Here, we describe new approaches that employ a broad range of experimental data, including NMR-derived chemical shifts and residual dipolar couplings, small-angle X-ray scattering, and computational approaches such as molecular dynamics simulations to determine ensembles of DNA and RNA at atomic resolution. We review the complementary information that can be obtained from diverse sets of data and the various methods that have been developed to combine these data with computational methods to construct ensembles and assess their uncertainty. We conclude by surveying RNA and DNA ensembles determined using these methods, highlighting the unique physical and functional insights obtained so far.
Collapse
Affiliation(s)
- Loïc Salmon
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109;
| | | | | |
Collapse
|
27
|
Al-Hashimi HM. NMR studies of nucleic acid dynamics. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 237:191-204. [PMID: 24149218 PMCID: PMC3984477 DOI: 10.1016/j.jmr.2013.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/23/2013] [Indexed: 05/12/2023]
Abstract
Nucleic acid structures have to satisfy two diametrically opposite requirements; on one hand they have to adopt well-defined 3D structures that can be specifically recognized by proteins; on the other hand, their structures must be sufficiently flexible to undergo very large conformational changes that are required during key biochemical processes, including replication, transcription, and translation. How do nucleic acids introduce flexibility into their 3D structure without losing biological specificity? Here, I describe the development and application of NMR spectroscopic techniques in my laboratory for characterizing the dynamic properties of nucleic acids that tightly integrate a broad set of NMR measurements, including residual dipolar couplings, spin relaxation, and relaxation dispersion with sample engineering and computational approaches. This approach allowed us to obtain fundamental new insights into directional flexibility in nucleic acids that enable their structures to change in a very specific functional manner.
Collapse
Affiliation(s)
- Hashim M Al-Hashimi
- Department of Chemistry & Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
28
|
Frank AT, Bae SH, Stelzer AC. Prediction of RNA 1H and 13C chemical shifts: a structure based approach. J Phys Chem B 2013; 117:13497-506. [PMID: 24033307 DOI: 10.1021/jp407254m] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of NMR-derived chemical shifts in protein structure determination and prediction has received much attention, and, as such, many methods have been developed to predict protein chemical shifts from three-dimensional (3D) coordinates. In contrast, little attention has been paid to predicting chemical shifts from RNA coordinates. Using the random forest machine learning approach, we developed RAMSEY, which is capable of predicting both (1)H and protonated (13)C chemical shifts from RNA coordinates. In this report, we introduce RAMSEY, assess its accuracy, and demonstrate the sensitivity of RAMSEY-predicted chemical shifts to RNA 3D structure.
Collapse
Affiliation(s)
- Aaron T Frank
- Nymirum , 3510 West Liberty Road, Ann Arbor, Michigan 48103, United States
| | | | | |
Collapse
|
29
|
Kwok CK, Lam SL. NMR proton chemical shift prediction of T·T mismatches in B-DNA duplexes. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 234:184-9. [PMID: 23892104 DOI: 10.1016/j.jmr.2013.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/24/2013] [Accepted: 06/28/2013] [Indexed: 05/15/2023]
Abstract
A proton chemical shift prediction scheme for B-DNA duplexes containing a T·T mismatch has been established. The scheme employs a set of T·T mismatch triplet chemical shift values, 5'- and 3'-correction factors extracted from reference sequences, and also the B-DNA chemical shift values predicted by Altona et al. The prediction scheme was tested by eight B-DNA duplexes containing T·T mismatches. Based on 560 sets of predicted and experimental proton chemical shift values, the overall prediction accuracy for non-labile protons was determined to be 0.07 ppm with an excellent correlation coefficient of 0.9996. In addition, the prediction accuracy for 96 sets of labile protons was found to be 0.22 ppm with a correlation coefficient of 0.9961. The prediction scheme developed herein can facilitate resonance assignments of B-DNA duplexes containing T·T mismatches and be generalized for the chemical shift prediction of other DNA mismatches. Our chemical shift data will also be useful for establishing structure-chemical shift information in B-DNA containing mismatches.
Collapse
Affiliation(s)
- Chun Kit Kwok
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | | |
Collapse
|
30
|
Salmon L, Bascom G, Andricioaei I, Al-Hashimi HM. A general method for constructing atomic-resolution RNA ensembles using NMR residual dipolar couplings: the basis for interhelical motions revealed. J Am Chem Soc 2013; 135:5457-66. [PMID: 23473378 DOI: 10.1021/ja400920w] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to modulate alignment and measure multiple independent sets of NMR residual dipolar couplings (RDCs) has made it possible to characterize internal motions in proteins at atomic resolution and with time scale sensitivity ranging from picoseconds up to milliseconds. The application of such methods to the study of RNA dynamics, however, remains fundamentally limited by the inability to modulate alignment and by strong couplings between internal and overall motions that complicate the quantitative interpretation of RDCs. Here, we address this problem by showing that RNA alignment can be generally modulated, in a controlled manner, by variable elongation of A-form helices and that the information contained within the measured RDCs can be extracted even in the presence of strong couplings between motions and overall alignment via structure-based prediction of alignment. Using this approach, four RDC data sets, and a broad conformational pool obtained from a 8.2 μs molecular dynamics simulation, we successfully construct and validate an atomic resolution ensemble of human immunodeficiency virus type I transactivation response element RNA. This ensemble reveals local motions in and around the bulge involving changes in stacking and hydrogen-bonding interactions, which are undetectable by traditional spin relaxation and drive global changes in interhelical orientation. This new approach broadens the scope of using RDCs in characterizing the dynamics of nucleic acids.
Collapse
Affiliation(s)
- Loïc Salmon
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|