1
|
Xiao Z, Yu P, Sun P, Kang Y, Niu Y, She Y, Zhao D. Inclusion complexes of β-cyclodextrin with isomeric ester aroma compounds: Preparation, characterization, mechanism study, and controlled release. Carbohydr Polym 2024; 333:121977. [PMID: 38494230 DOI: 10.1016/j.carbpol.2024.121977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
Cyclodextrins (CDs) have been discovered to provide an efficient solution to the limited application of ester aroma molecules used in food, tobacco, and medication due to their strong smell and unstable storage. This work combined molecular modeling and experimental to analyze the conformation and controlled release of isomeric ester aroma compounds/β-CD inclusion complexes (ICs). The investigation revealed that ester aroma compounds could be effectively encapsulated within the β-CD cavity, forming ICs with low binding affinity. Furthermore, the key driving forces in ICs were identified as hydrogen bonds and van der Waals interactions through theoretical simulation. Results from the Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) and Isothermal titration calorimetry (ITC) experiments confirmed the intermolecular interaction predicted by the molecular model. Notably, the release rate of aroma compounds from L-menthyl acetate/β-CD (LMA/β-CD) IC exceeded that of terpinyl acetate/β-CD (TA/β-CD) IC. This difference is attributed to the length of the chain of aroma molecules and the variation in the position of functional groups, influencing the stable formation of ICs with β-CD. These findings hold potential implications for refining the application of ICs across diverse industries.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Peiran Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Pingli Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yanxiang Kang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
2
|
Zhang X, Su J, Wang X, Wang X, Liu R, Fu X, Li Y, Xue J, Li X, Zhang R, Chu X. Preparation and Properties of Cyclodextrin Inclusion Complexes of Hyperoside. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092761. [PMID: 35566111 PMCID: PMC9100073 DOI: 10.3390/molecules27092761] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023]
Abstract
In order to improve the aqueous solubility and enhance the bioavailability of Hyperoside (Hyp), three inclusion complexes (ICs) of Hyp with 2-hydroxypropyl-β-cyclodextrin (2H-β-CD), β-cyclodextrin (β-CD), and methyl-β-cyclodextrin (M-β-CD) were prepared using the ultrasonic method. The characterization of the inclusion complexes (ICs) was achieved using Fourier-transform infrared spectroscopy (FTIR), scanning electronic microscopy (SEM), X-ray powder diffraction (XRPD), thin-layer chromatography (TLC), and 1H nuclear magnetic resonance (1H NMR). The effects of the ICs on the solubility and antioxidant activity of Hyp were investigated. A Job’s plot revealed that the Hyp formed ICs with three kinds of cyclodextrin (CD), all at a 1:1 stoichiometric ratio. The FTIR, SEM, XRPD, TLC, and 1H NMR results confirmed the formation of inclusion complexes. The water solubility of the IC of Hyp with 2-hydroxypropyl-β-cyclodextrin was enhanced 9-fold compared to the solubility of the original Hyp. The antioxidant activity tests showed that the inclusion complexes had higher antioxidant activities compared to free Hyp in vitro and the H2O2–RAW264.7 cell model. Therefore, encapsulation with CDs can not only improve Hyp’s water solubility but can also enhance its biological activity, which provides useful information for the potential application of complexation with Hyp in a clinical context.
Collapse
Affiliation(s)
| | - Jianqing Su
- Correspondence: (J.S.); (X.C.); Tel.: +86-150-9503-9358 (J.S.); +86-150-2062-6235 (X.C.)
| | | | | | | | | | | | | | | | | | - Xiuling Chu
- Correspondence: (J.S.); (X.C.); Tel.: +86-150-9503-9358 (J.S.); +86-150-2062-6235 (X.C.)
| |
Collapse
|
3
|
Araujo Marques I, Patiño-Agudelo ÁJ, Coelho YL, Santos Moreau PD, Neves Santa Rosa L, dos Santos Pires AC, Mendes da Silva LH. Formation and self-association of host-guest complexes between βCD and nonionic surfactants Brij. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Belica-Pacha S, Małecka M, Daśko M, Miłowska K, Bryszewska M, Budryn G, Oracz J, Pałecz B. The Interaction of Heptakis (2,6-di-O-Methyl)-β-cyclodextrin with Mianserin Hydrochloride and Its Influence on the Drug Toxicity. Int J Mol Sci 2021; 22:ijms22179419. [PMID: 34502332 PMCID: PMC8430726 DOI: 10.3390/ijms22179419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/02/2022] Open
Abstract
One tetracyclic antidepressant, mianserin hydrochloride (MIA), has quite significant side effects on a patients’ health. Cyclodextrins, which are most commonly used to reduce the undesirable features of contained drugs within their hydrophobic interior, also have the potential to alter the toxic behavior of the drug. The present paper contains investigations and the characteristics of interaction mechanisms for MIA and the heptakis (2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD) system, and evaluated the effects of the complexation on MIA cytotoxicity. In order to assess whether there was an interaction between MIA and DM-β-CD molecules, isothermal titration calorimetry (ITC) have been chosen. Electrospray ionization mass spectrometry (ESI-MS) helped to establish the complex stoichiometry, and circular dichroism spectroscopy was used to describe the process of complex formation. In order to make a wider interpretative perspective, the molecular docking results have been performed. The viability of Chinese hamster cells were investigated in the presence of DM-β-CD and its complexes with MIA in order to estimate the cytotoxicity of the drug and the conjugate with the chosen cyclodextrin. The viability of B14 cells treated with MIA+DM-β-CD is lower (the toxicity is higher) than with MIA alone, and no protective effects have been observed for complexes of MIA with DM-β-CD in any ratio.
Collapse
Affiliation(s)
- Sylwia Belica-Pacha
- Unit of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, 90-236 Lodz, Poland; (M.M.); (B.P.)
- Correspondence:
| | - Magdalena Małecka
- Unit of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, 90-236 Lodz, Poland; (M.M.); (B.P.)
| | - Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (M.B.)
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (M.B.)
| | - Grażyna Budryn
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4-10, 90-924 Lodz, Poland; (G.B.); (J.O.)
| | - Joanna Oracz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4-10, 90-924 Lodz, Poland; (G.B.); (J.O.)
| | - Bartłomiej Pałecz
- Unit of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, 90-236 Lodz, Poland; (M.M.); (B.P.)
| |
Collapse
|
5
|
Cerutti JP, Aiassa V, Fernández MA, Longhi MR, Quevedo MA, Zoppi A. Structural, physicochemical and biological characterization of chloramphenicol multicomponent complexes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Development of a stable oral pediatric solution of hydrochlorothiazide by the combined use of cyclodextrins and hydrophilic polymers. Int J Pharm 2020; 587:119692. [PMID: 32717285 DOI: 10.1016/j.ijpharm.2020.119692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Hydrochlorothiazide (HCT) is widely used in pediatrics for hypertension management. Due to the lack of pediatric commercial forms, community or hospital pharmacies generally prepare HCT extemporaneous pediatric suspensions by dispersing in water a portion of a crushed tablet or the drug powder; however, any dose or stability control is usually done on these preparations. Obtaining stable HCT solutions is very challenging, due to its low water-solubility and pH-dependent degradation. The aim of this work was to develop a stable 2 mg/mL-HCT oral pediatric solution without using co-solvents. Combined use of cyclodextrins (CD) and hydrophilic polymers was exploited to improve poor HCT solubility and stability. HPβCD and SBEβCD were selected, considering their safe toxicological profiles, while PVP resulted the best among the tested polymers. Low PVP concentrations (0.2-1.0%) improved the solubilizing efficiency of both CDs, allowing to reach the prefixed HCT concentration. Different CD-PVP concentrations were used to prepare several 2 mg/mL-HCT solutions in pH 5.5 buffer. The best stability was shown by solutions containing the highest SBEβCD concentration (25 mM), which allowed a 3-months stability at 4 °C. In vivo studies on rats showed that such formulation allowed a more pronounced and more reproducible diuretic effect than the corresponding HCT suspension.
Collapse
|
7
|
Roy N, Bomzan P, Nath Roy M. Probing Host-Guest inclusion complexes of Ambroxol Hydrochloride with α- & β-Cyclodextrins by physicochemical contrivance subsequently optimized by molecular modeling simulations. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137372] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Tablets of "Hydrochlorothiazide in Cyclodextrin in Nanoclay": A New Nanohybrid System with Enhanced Dissolution Properties. Pharmaceutics 2020; 12:pharmaceutics12020104. [PMID: 32013051 PMCID: PMC7076548 DOI: 10.3390/pharmaceutics12020104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 11/17/2022] Open
Abstract
Hydrochlorothiazide (HCT), a Biopharmaceutical Classification System (BCS) class IV drug, is characterized by low solubility and permeability, that negatively affect its oral bioavailability, reducing its therapeutic efficacy. The combined use of cyclodextrins (CDs) and nanoclays (NCs) recently proved to be a successful strategy in developing delivery systems able to merge the potential benefits of both carriers. In this work, several binary systems of CDs or NCs with the drug were obtained, using different drug:carrier ratios and preparation techniques, and characterized in solution and in solid state, to properly select the most effective system and preparation method. Then, the best CD (RAMEB) and NC (sepiolite), at the best drug:carrier ratio, was selected for preparation of the ternary system by co-evaporation and emerged as the most effective preparation method. The combined presence of RAMEB and sepiolite gave rise to a synergistic improvement of drug dissolution properties, with a two-fold increase in the amount of drug dissolved as compared with the corresponding HCT-RAMEB system, resulting in an approximately 12-fold increase in drug solubility as compared with the drug alone. The ternary system that was co-evaporated was then selected for a tablet formulation. The obtained tablets were fully characterized for technological properties and clearly revealed a better drug dissolution performance than the commercial reference tablet (Esidrex).
Collapse
|
9
|
Altamimi MA, Elzayat EM, Alhowyan AA, Alshehri S, Shakeel F. Effect of β-cyclodextrin and different surfactants on solubility, stability, and permeability of hydrochlorothiazide. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Current trends in molecular modeling methods applied to the study of cyclodextrin complexes. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0763-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Onnainty R, Schenfeld EM, Petiti JP, Longhi MR, Torres A, Quevedo MA, Granero GE. Permeability Profiles and Intestinal Toxicity Assessment of Hydrochlorothiazide and Its Inclusion Complex with β-Cyclodextrin Loaded into Chitosan Nanoparticles. Mol Pharm 2016; 13:3736-3746. [DOI: 10.1021/acs.molpharmaceut.6b00532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R. Onnainty
- Departamento de
Farmacia, UNITEFA, CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000HUA, Argentina
| | - E. M. Schenfeld
- Departamento de
Farmacia, UNITEFA, CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000HUA, Argentina
| | - J. P. Petiti
- Centro de Microscopía Electrónica, UNC, INICSA, CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000HUA, Argentina
| | - M. R. Longhi
- Departamento de
Farmacia, UNITEFA, CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000HUA, Argentina
| | - A. Torres
- Centro de Microscopía Electrónica, UNC, INICSA, CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000HUA, Argentina
| | - M. A. Quevedo
- Departamento de
Farmacia, UNITEFA, CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000HUA, Argentina
| | - G. E. Granero
- Departamento de
Farmacia, UNITEFA, CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000HUA, Argentina
| |
Collapse
|
12
|
Inclusion complexes of hydrochlorothiazide and β-cyclodextrin: Physicochemical characteristics, in vitro and in vivo studies. Eur J Pharm Sci 2015; 83:71-8. [PMID: 26687444 DOI: 10.1016/j.ejps.2015.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 11/06/2015] [Accepted: 12/09/2015] [Indexed: 11/21/2022]
Abstract
Hydrochlorothiazide is a thiazide diuretic widely used in clinics to treat arterial hypertension. It is a class IV drug according to the Biopharmaceutical Classification System, that is, it presents low solubility and low permeability and, consequently, low absorption in the gastrointestinal tract. As a strategy to improve stability and biopharmaceutical properties of hydrochlorothiazide, the use of cyclodextrins to produce inclusion complexes, applying different methods, was investigated. In the phase solubility studies, β-cyclodextrin was identified as the cyclodextrin which provided the most promising results in terms of the solubilization of the drug. The thermal analysis verified the interaction between hydrochlorothiazide and β-cyclodextrin, indicating the formation of inclusion complexes, and the thermal stability varied according to the preparation technique. The physicochemical characterization showed that in the inclusion complexes obtained by co-evaporation, kneading followed by freeze-drying and kneading followed by spray-drying the hydrochlorothiazide complexation mostly occurred with different degrees of amorphization and the drug solubility was improved. These three inclusion complexes presented better in vitro characteristics and the inclusion complex obtained by kneading followed by freeze-drying increased the in vivo diuretic activity of the drug accompanied by significant effects on natriuresis, kaliuresis and chloriuresis. The inclusion complex formation was effective in improving the biopharmaceutical properties of hydrochlorothiazide and protecting the drug from hydrolysis. This paper describes an important alternative approach to the development of liquid pharmaceutical formulations to pediatric administration, a real need of the current pharmaceutical market.
Collapse
|
13
|
Khuntawee W, Wolschann P, Rungrotmongkol T, Wong-ekkabut J, Hannongbua S. Molecular Dynamics Simulations of the Interaction of Beta Cyclodextrin with a Lipid Bilayer. J Chem Inf Model 2015; 55:1894-902. [DOI: 10.1021/acs.jcim.5b00152] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Peter Wolschann
- Department
of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, 14 Althan Straße 14, Vienna 1090, Austria
- Institute
of Theoretical Chemistry, University of Vienna, Währinger
Straße 17, Vienna 1090, Austria
| | | | - Jirasak Wong-ekkabut
- Department
of Physics, Faculty of Science, Kasetsart University, 50 Phahon
Yothin Road, Chatuchak, Bangkok 10900, Thailand
| | | |
Collapse
|
14
|
A comprehensive study of the enantioseparation of chiral drugs by cyclodextrin using capillary electrophoresis combined with theoretical approaches. Talanta 2015; 142:28-34. [DOI: 10.1016/j.talanta.2015.04.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/07/2015] [Accepted: 04/12/2015] [Indexed: 11/21/2022]
|
15
|
Effect of preparation processes and structural insight into the supermolecular system: Bisacodyl and β-cyclodextrin inclusion complex. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 58:224-32. [PMID: 26478306 DOI: 10.1016/j.msec.2015.08.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/20/2015] [Accepted: 08/22/2015] [Indexed: 12/14/2022]
Abstract
In this study, β-cyclodextrin (β-CD) and bisacodyl were chosen as model host and guest molecule to explore the effect of preparation processes on the physicochemical properties of inclusion complexes (ICs) and to gain an insight into the structure of ICs. The influence of temperature and pH on complexation was studied by multiple temperature-pH phase solubility analysis. The most favorable conformation was predicted by molecular modeling using AutoDock. (1)H nuclear magnetic resonance and rotating frame nuclear Overhauser effect spectroscopy further confirmed the structure. Moreover, bisacodyl · β-CD ICs in solid state were successfully prepared via three different procedures (co-crystallization, co-evaporation, and co-grinding) and fully characterized by several solid-state techniques, namely, Fourier transform infrared spectroscopy, X-ray powder diffraction, thermogravimetric analysis, differential scanning calorimetry, solid-state NMR spectroscopy, and scanning electron microscopy. It was found that acid solution and low temperature were unfavorable for formation of bisacodyl · β-CD. The pyridine moiety was suggested to be enclosed in the hydrophobic cavity of β-CD. The complexes prepared using co-crystallization showed properties similar to those prepared using co-evaporation. Moreover, ICs obtained by co-evaporation and co-grinding had higher loading efficiency, water solubility, and dissolution rate than ICs obtained by co-crystallization.
Collapse
|
16
|
Bai L, Zhao Q, Wang J, Gao Y, Sha Z, Di D, Han N, Wang Y, Zhang J, Wang S. Mechanism study on pH-responsive cyclodextrin capped mesoporous silica: effect of different stalk densities and the type of cyclodextrin. NANOTECHNOLOGY 2015; 26:165704. [PMID: 25827241 DOI: 10.1088/0957-4484/26/16/165704] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cyclodextrin (CD)-capped mesoporous silica nanoparticles (MSN) with pH-responsive properties were synthesized, but little research has been carried out to evaluate the impact of critical factors such as the stalk density and the type of CD on the pH-responsive release behavior. Here, the effect of different stalk densities on the pH-responsive release behavior was investigated. Either too low or too high density of the grafted p-anisidine stalk could result in poor cargo release, and the optimum stalk density for MSN was measured by thermal analysis, and found to be approximately 8.7 stalks nm(-2). To achieve effective release control, the CD capes, α-CD and β-CD, were also investigated. Isothermal titration calorimetry (ITC) analysis was employed to determine the formation constants (Kf) of the two CD with p-anisidine at different pH values. The results obtained showed that the complex of β-CD with p-anisidine had excellent pH-responsive behavior as it exhibited the largest changed formation constant (ΔKf) in different pH media. Furthermore, the pH-responsive mechanism between CD and p-anisidine molecules was investigated through ITC and a molecular modeling study. The release of antitumor drug DOX presents a significant prospect toward the development of pH-responsive nanoparticles as a drug delivery vehicle.
Collapse
Affiliation(s)
- Ling Bai
- Liaoning Provincial Key Laboratory of Studying the Modern Drug preparations, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang 110016, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bertaut E, Landy D. Improving ITC studies of cyclodextrin inclusion compounds by global analysis of conventional and non-conventional experiments. Beilstein J Org Chem 2014; 10:2630-41. [PMID: 25550724 PMCID: PMC4273236 DOI: 10.3762/bjoc.10.275] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/22/2014] [Indexed: 12/19/2022] Open
Abstract
The study of 1:1 cyclodextrin inclusion compounds by isothermal titration calorimetry was explored in a theoretical and experimental point of view to compare the efficiency of conventional and non-conventional experiments. All direct and competitive protocols were described and evaluated in terms of accuracy on both binding constant and inclusion enthalpy. Significant improvement in the calorimetric characterization may be obtained by means of the global analysis of non-conventional experiments coupled to the standard titration protocol. While the titration-release approach proved to be the most accurate strategy for classical complexations, the valuable contribution of other non-conventional experiments was demonstrated for issues concerning weak stability, enthalpy, or solubility.
Collapse
Affiliation(s)
- Eléonore Bertaut
- Univ Lille Nord de France, F-59000 Lille, France ; ULCO, UCEIV, F-59140 Dunkerque, France
| | - David Landy
- Univ Lille Nord de France, F-59000 Lille, France ; ULCO, UCEIV, F-59140 Dunkerque, France
| |
Collapse
|
18
|
Kogawa AC, Zoppi A, Quevedo MA, Nunes Salgado HR, Longhi MR. Increasing doxycycline hyclate photostability by complexation with β-cyclodextrin. AAPS PharmSciTech 2014; 15:1209-17. [PMID: 24889734 DOI: 10.1208/s12249-014-0150-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 05/07/2014] [Indexed: 11/30/2022] Open
Abstract
Doxycycline hyclate (DOX) is a highly photosensitive drug, a feature that limits the stability of the corresponding dosage forms. The main objectives of this work were the preparation and characterization of an inclusion complex of DOX with β-cyclodextrin (βCD) and to investigate if this approach could improve the photostability of the drug. Guest-host interactions were investigated using nuclear magnetic resonance, which were afterwards combined with molecular modeling methods to study the complex formation and its three-dimensional structure was proposed. A freeze-drying method was applied to obtain the complex in the solid state, which was further confirmed by thermal and spectroscopic techniques. To evaluate the complexation effect on DOX integrity, the photostability of the inclusion complex was studied, with a significant decrease in the photodegradation of DOX being found in aqueous solution upon complexation. Finally, the photoprotection produced by the complexation was evaluated by means of an antimicrobial assay. Overall, the presented results suggest that the formulation of DOX complexed with βCD constitutes an interesting approach for the preparation of pharmaceutical dosage forms of DOX with enhanced stability properties.
Collapse
|
19
|
Triethanolamine stabilization of methotrexate-β-cyclodextrin interactions in ternary complexes. Int J Mol Sci 2014; 15:17077-99. [PMID: 25257529 PMCID: PMC4200828 DOI: 10.3390/ijms150917077] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/26/2014] [Accepted: 08/26/2014] [Indexed: 11/17/2022] Open
Abstract
The interaction of methotrexate (MTX) with beta-cyclodextrin (β-CD) in the presence of triethanolamine (TEA) was investigated with the aim to elucidate the mechanism whereby self-assembly cyclodextrin systems work in association with this third component. Solubility diagram studies showed synergic increment of the MTX solubility to be about thirty-fold. Experiments using 2D ROESY and molecular modeling studies revealed the inclusion of aromatic ring III of the drug into β-CD cavity, in which TEA contributes by intensifying MTX interaction with β-CD and stabilizes MTX:β-CD:TEA ternary complex by electrostatic interaction. The maintenance of these interactions in solid phase was also studied in ternary MTX:β-CD:TEA and comparisons were made with freeze dried binary MTX:β-CD and physical mixtures. FTIR studies evidenced that MTX–β-CD interaction remained in solid ternary complexes, which was also supported by thermal (differential scanning calorimetry (DSC), thermogravimetric analysis (TG)/first derivative of TG analysis (DTG) and C,N,H elementary analysis) and structural (X-ray diffraction analysis, (XRD)) studies, mainly regarding the increment of drug stability. The efficient in vitro drug dissolution studies successfully demonstrated the contribution of ternary complexes, which highlights the importance of this possible new raw material for further applications in drug delivery systems.
Collapse
|