1
|
Hsu PJ, Mizuide A, Kuo JL, Fujii A. Hydrogen bond network structures of protonated 2,2,2-trifluoroethanol/ethanol mixed clusters probed by infrared spectroscopy combined with a deep-learning structure sampling approach: the origin of the linear type network preference in protonated fluoroalcohol clusters. Phys Chem Chem Phys 2024; 26:27751-27762. [PMID: 39470069 DOI: 10.1039/d4cp03534h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
While preferential hydrogen bond network structures of cold protonated alcohol clusters H+(ROH)n are generally switched from a linear type to a cyclic one at n = 4-5, those of protonated 2,2,2-trifluoroethanol (TFE) clusters maintain linear type structures at least in the size range of n = 3-7. To explore the origin of the strong linear type network preference of H+(TFE)n, infrared spectra of protonated mixed clusters H+(TFE)m(ethanol)n (m + n = 5) were measured. An efficient structure sampling technique using parallelized basin-hopping algorithms and deep-learning neural network potentials is developed to search for essential isomers of the mixed clusters. Vibrational simulations based on the harmonic superposition approximation were compared with the observed spectra to identify the major isomer component at each mixing ratio. It was found that the formation of the cyclic structure occurs only in n ≥ 3 of the mixed clusters, in which the proton solvating sites and the double acceptor site are occupied by ethanol. The crucial role of the stability of the double acceptor site in the cyclic structure formation is discussed.
Collapse
Affiliation(s)
- Po-Jen Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
| | - Atsuya Mizuide
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
| | - Asuka Fujii
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
2
|
Méndez E, Laria D, Hunt D. Proton quantal delocalization and H/D translocations in (MeOH)nH+ (n = 2, 3). J Chem Phys 2024; 161:174303. [PMID: 39484904 DOI: 10.1063/5.0234264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024] Open
Abstract
In this study, we present results from path integral molecular dynamics simulations that describe the characteristics of the quantum spatial delocalizations of protons participating in OH bonds in (MeOH)2H+ and in (MeOH)3H+. The characterization was carried out by examining the overall structures of the corresponding isomorphic polymers. To introduce full flexibility in the force treatment, we have adopted a neural network fitting procedure based on second-order Møller-Plesset perturbation theory predictions. For the dimer case, we found that the spatial extent of the shared connective proton can be portrayed in terms of a prolate-like structure with typical dimensions of ∼0.1 Å. On the other hand, the dangling polymers lie confined within a thin spherical layer, spread over length scales of the order of ∼0.25 Å. In contrast, connective protons in (MeOH)3H+ exhibit larger delocalizations along the O-H bond and more localized ones along perpendicular directions, compared to their dangling counterparts. We also examined the characteristics of the relative propensities of H and D isotopes to be localized in dangling and connective positions. Physical interpretations of the different thermodynamic trends are provided in terms of the local geometrical characteristics and of the strengths of the corresponding intermolecular connectivities.
Collapse
Affiliation(s)
- Emilio Méndez
- Sorbonne Université CNRS, Physico-chimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Daniel Laria
- Departamento de Física de la Materia Condensada, GIyA, CAC-CNEA, 1650 San Martín, Buenos Aires, Argentina and Departamento de Química Inorgánica, Analítica y Química-Física, Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina
| | - Diego Hunt
- Departamento de Física de la Materia Condensada, GIyA, CAC-CNEA, 1650 San Martín, Buenos Aires, Argentina, Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
3
|
Mizuide A, Fujii A. Hydrogen bond network structures of protonated dimethylamine clusters H +(DMA) n ( n = 3-7). Phys Chem Chem Phys 2024; 26:19418-19432. [PMID: 38973623 DOI: 10.1039/d4cp01931h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Infrared spectroscopy of protonated dimethylamine clusters, H+(DMA)n, (n = 3-7), and their Ar-tagged clusters was performed in the NH and CH stretching vibrational region to explore their hydrogen bond network structures. A stable isomer search and vibrational spectral simulations of the clusters were also carried out to support the interpretations of the observed spectra. Weakly hydrogen-bonded NH stretching vibrational bands, which are characteristic of cyclic structures of small-sized protonated clusters, are observed in the spectra of the Ar-tagged clusters of n ≥ 5, while only linear chain type structures are suggested for the Ar-tagged clusters of n = 3-4 and the bare clusters of all the sizes. These results demonstrate that the size and temperature dependence of the hydrogen bond network structures of the protonated dimethylamine clusters is analogous to that of protonated monohydric alcohol clusters.
Collapse
Affiliation(s)
- Atsuya Mizuide
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Asuka Fujii
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
4
|
Akgüller Ö, Balcı MA, Cioca G. Network Models of BACE-1 Inhibitors: Exploring Structural and Biochemical Relationships. Int J Mol Sci 2024; 25:6890. [PMID: 38999999 PMCID: PMC11240958 DOI: 10.3390/ijms25136890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
This study investigates the clustering patterns of human β-secretase 1 (BACE-1) inhibitors using complex network methodologies based on various distance functions, including Euclidean, Tanimoto, Hamming, and Levenshtein distances. Molecular descriptor vectors such as molecular mass, Merck Molecular Force Field (MMFF) energy, Crippen partition coefficient (ClogP), Crippen molar refractivity (MR), eccentricity, Kappa indices, Synthetic Accessibility Score, Topological Polar Surface Area (TPSA), and 2D/3D autocorrelation entropies are employed to capture the diverse properties of these inhibitors. The Euclidean distance network demonstrates the most reliable clustering results, with strong agreement metrics and minimal information loss, indicating its robustness in capturing essential structural and physicochemical properties. Tanimoto and Hamming distance networks yield valuable clustering outcomes, albeit with moderate performance, while the Levenshtein distance network shows significant discrepancies. The analysis of eigenvector centrality across different networks identifies key inhibitors acting as hubs, which are likely critical in biochemical pathways. Community detection results highlight distinct clustering patterns, with well-defined communities providing insights into the functional and structural groupings of BACE-1 inhibitors. The study also conducts non-parametric tests, revealing significant differences in molecular descriptors, validating the clustering methodology. Despite its limitations, including reliance on specific descriptors and computational complexity, this study offers a comprehensive framework for understanding molecular interactions and guiding therapeutic interventions. Future research could integrate additional descriptors, advanced machine learning techniques, and dynamic network analysis to enhance clustering accuracy and applicability.
Collapse
Affiliation(s)
- Ömer Akgüller
- Department of Mathematics, Faculty of Science, Mugla Sitki Kocman University, 48000 Mugla, Turkey;
| | - Mehmet Ali Balcı
- Department of Mathematics, Faculty of Science, Mugla Sitki Kocman University, 48000 Mugla, Turkey;
| | - Gabriela Cioca
- Preclinical Department, Faculty of Medicine, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania;
| |
Collapse
|
5
|
Kato T, Fujii A. Experimental confirmation of the Badger-Bauer rule in the protonated methanol clusters: weak hydrogen bond formation as a measure of terminal OH acidity in hydrogen bond networks. Phys Chem Chem Phys 2023; 25:30188-30192. [PMID: 37920966 DOI: 10.1039/d3cp04644c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
We report a linear correlation between the OH stretch frequency shift of the protonated methanol cluster, H+(MeOH)n, upon the π-hydrogen bond formation with benzene and the enthalpy change in clustering of H+(MeOH)n to H+(MeOH)n+1. This result suggests a new method to explore hydrogen bond strength in hydrogen bond networks.
Collapse
Affiliation(s)
- Takeru Kato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Asuka Fujii
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
6
|
Haiwang Djefoulna VH, Abia D, Jules Fifen J, Nsangou M, Jaidane NE. Rotational thermodynamic parameters for asymmetric-top molecules: classical vs. quantum approaches and new analytical partition function. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2087565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Daouda Abia
- Department of Chemistry, Faculty of Science, The University of Ngaoundere, Ngaoundere, Cameroon
| | - Jean Jules Fifen
- Quantum Theory and Aplications Unit, Department of Physics, Faculty of Science, The University of Ngaoundere, Ngaoundere, Cameroon
| | - Mama Nsangou
- Quantum Theory and Aplications Unit, Department of Physics, Faculty of Science, The University of Ngaoundere, Ngaoundere, Cameroon
- University of Maroua, Maroua, Cameroon
| | - Nejm-Eddine Jaidane
- Laboratoire de Spectroscopie Atomique Moléculaire et Applications, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| |
Collapse
|
7
|
Shinkai T, Hsu PJ, Fujii A, Kuo JL. Infrared spectroscopy and theoretical structure analyses of protonated fluoroalcohol clusters: the impact of fluorination on the hydrogen bond networks. Phys Chem Chem Phys 2022; 24:12631-12644. [PMID: 35579401 DOI: 10.1039/d2cp01300b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To explore the impact of fluorination on the hydrogen bond networks of protonated alkylalcohols, infrared spectroscopy and theoretical computations of protonated 2,2,2-trifluoroethanol clusters, H+(TFE)n, (n = 4-7), were performed. It has been demonstrated that the development of the hydrogen bond networks from a linear type to cyclic types occurs in this size region for the protonated alkylalcohol clusters. In contrast, infrared spectroscopy of H+(TFE)n in the OH/CH stretch region clearly indicated that the linear type structures are held in the whole size range, irrespective of temperature of the clusters. The extensive stable isomer structure search of H+(TFE)n based on our latest sampling approach supported the strong preference of the linear type hydrogen bond networks. Detailed analyses of the free OH stretching vibrational bands evidenced the intra- and intermolecular OH⋯FC interactions in the clusters. In addition, infrared spectra of protonated clusters of 2,2-difluoroethanol, 2,2-difluoropropanol, and 3,3,3-trifluoropropanol were measured for n = 4 and 5, and their spectra also indicated the effective inhibition of the cyclic hydrogen bond network formation by the fluorination.
Collapse
Affiliation(s)
- Takahiro Shinkai
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Po-Jen Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
| | - Asuka Fujii
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
| |
Collapse
|
8
|
Malloum A, Conradie J. Non-covalent interactions in dimethylsulfoxide (DMSO) clusters and DFT benchmarking. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Kato T, Fujii A. How many methanol molecules effectively solvate an excess proton in the gas phase? Infrared spectroscopy of H +(methanol) n-benzene clusters. Phys Chem Chem Phys 2021; 24:163-171. [PMID: 34878469 DOI: 10.1039/d1cp04689f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An excess proton in a hydrogen-bonded system enhances the strength of hydrogen bonds of the surrounding molecules. The extent of this influence can be a measure of the number of molecules effectively solvating the excess proton. Such extent in methanol has been discussed by the observation of the π-hydrogen-bonded OH stretch bands of the terminal sites of protonated methanol clusters, H+(methanol)n, in benzene solutions, and it has been concluded that ∼8 molecules effectively solvate the excess proton (Stoyanov et al., Chem. Eur. J. 2008, 14, 3596-3604). In the present study, we performed infrared spectroscopy of H+(methanol)n-benzene clusters in the gas phase. The cluster size and hydrogen-bonded network structure are identified by the tandem mass spectrometric technique and the comparison of the observed infrared spectra with density functional theory calculations. Though changes of the preferred hydrogen bond network type occur with the increase of cluster size in the gas phase clusters, the observed size dependence of the π-hydrogen bonded OH frequency agrees well with that in the benzene solutions. This means that the observations in both the gas and condensed phases catch the same physical essence of the excess proton solvation by methanol.
Collapse
Affiliation(s)
- Takeru Kato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Asuka Fujii
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
10
|
Malloum A, Conradie J. Structures, binding energies and non-covalent interactions of furan clusters. J Mol Graph Model 2021; 111:108102. [PMID: 34915345 DOI: 10.1016/j.jmgm.2021.108102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022]
Abstract
Understanding of the furan solvent is subjected to the knowledge of the structures of the furan clusters and interactions taking place therein. Although, furan clusters can be very important to determine the dynamics and the properties of the furan solvent, there has been only a few investigations reported on furan dimer. In this work, we have explored the potential energy surfaces (PESs) of the furan clusters using two incremental levels of theory. Structures have been initially generated using classical molecular dynamics followed by full optimization at the MP2/aug-cc-pVDZ level of theory. The results show that the most stable structure of the furan dimer has a stacking configuration while that of the trimer has a cyclic configuration. We have noted that the structures of the furan tetramer have no definite configurations. In addition, we have performed a quantum theory of atoms in molecule (QTAIM) analysis to identify all possible non-covalent interactions of the furan clusters. The results show that six different types of non-covalent interactions can be identified in furan clusters. We have noted that the CH⋯C and CH⋯O hydrogen bondings are the strongest non-covalent interactions while the H⋯H bonding interaction is found to be the weakest. Furthermore, we have assessed the performance of ten DFT functionals in calculating the binding energies of the furan clusters. The ten DFT functionals (M05, M05-2X, M06, M06-2X, M08HX, PBE0, ωB97XD, PW6B95D3, APFD and MN15) have been benchmarked to DLPNO-CCSD(T)/CBS. The functionals M05-2X and M06 are recommended for further affordable investigations of the furan clusters.
Collapse
Affiliation(s)
- Alhadji Malloum
- Department of Chemistry, University of the Free State, PO BOX 339, Bloemfontein, 9300, South Africa; Department of Physics, Faculty of Science, University of Maroua, PO BOX 46, Maroua, Cameroon.
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, PO BOX 339, Bloemfontein, 9300, South Africa; Department of Chemistry, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
11
|
Lin CK, Huang QR, Li YC, Nguyen HQ, Kuo JL, Fujii A. Anharmonic Coupling Revealed by the Vibrational Spectra of Solvated Protonated Methanol: Fermi Resonance, Combination Bands, and Isotope Effect. J Phys Chem A 2021; 125:1910-1918. [PMID: 33636081 DOI: 10.1021/acs.jpca.1c00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intriguing vibrational features of solvated protonated methanol between 2400-3800 cm-1 are recorded by infrared predissociation spectroscopy. Positions of absorption bands corresponding to OH stretching modes are sensitive to changes in solvation environments, thus leading to changes in these vibrational features. Two anharmonic coupling mechanisms, Fermi resonance (FR) contributed by bending overtones and combination band (CB) associated with intermolecular stretching modes, are known to lead to band splitting of OH stretching fundamentals in solvated hydronium and ammonium. Theoretical analyses based on the ab initio anharmonic algorithm not only well reproduce the experimentally observed features but also elucidate the magnitudes of such couplings and the resulting interplay between these two mechanisms, which provide convincing assignments of the spectral patterns. Moreover, while the hydroxyl group plays the leading role in all the above-mentioned features, the role of the methyl group is also analyzed. Through the H/D isotope substitution, we identify overtones of the methyl-hydroxyl rocking modes and their participation in FR.
Collapse
Affiliation(s)
- Chih-Kai Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan 10617, ROC
| | - Qian-Rui Huang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan 10617, ROC
| | - Ying-Cheng Li
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan 10617, ROC
| | - Ha-Quyen Nguyen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan 10617, ROC
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan 10617, ROC
| | - Asuka Fujii
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
12
|
Djefoulna VHH, Fifen JJ, Malloum A, Jaidane NE. Rotational thermodynamic parameters for symmetric-top, linear-top and spherical-top molecules: classical versus quantum approach and New analytical partition functions. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02674-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Hsu PJ, Shinkai T, Tai PH, Fujii A, Kuo JL. Effects of mixing between short-chain and branched-chain alcohols in protonated clusters. Phys Chem Chem Phys 2020; 22:13223-13239. [PMID: 32500878 DOI: 10.1039/d0cp01116a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The previous analysis of the neat protonated branched-chain alcohol clusters revealed the impact of steric repulsion and dispersion of the bulky alkyl group on the hydrogen-bonded (H-bonded) structures and their temperature-dependence. To further understand the influence of the alkyl groups in H-bonded clusters, we studied the mixing of the two extremes of alcohols, methanol (MeOH) and tert-butyl alcohol (t-BuOH), with an excess proton. Infrared spectroscopy and a structural search of first principles calculations on the size-selected clusters H+(MeOH)m(t-BuOH)t (m + t = 4 and 5) were conducted. Temperature-dependence of the dominant H-bonded structures was explored by the Ar-tagging technique and quantum harmonic superposition approach. By introducing the dispersion-corrected density functional theory methods, it was shown that the effects of dispersion due to the bulky alkyl groups in the mixed clusters cannot be ignored for t≥ 2. The computational results qualitatively depicted the characteristics of the observed IR spectra, but overestimation of the temperature-dependence with dispersion correction was clearly seen due to the unbalanced correction between linear H-bonded structures and compact cyclic ones. These results demonstrate the importance of extensive investigation and benchmarks on different levels of theory, and that a properly sampled structure database is crucial to evaluate theoretical models.
Collapse
Affiliation(s)
- Po-Jen Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
| | | | | | | | | |
Collapse
|
14
|
Sugawara N, Hsu PJ, Fujii A, Kuo JL. Competition between hydrogen bonds and van der Waals forces in intermolecular structure formation of protonated branched-chain alcohol clusters. Phys Chem Chem Phys 2018; 20:25482-25494. [PMID: 30276413 DOI: 10.1039/c8cp05222k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To investigate the influence of bulky alkyl groups on hydrogen-bonded (H-bonded) network structures of alcohols, infrared (IR) spectra of protonated clusters of 2-propanol (2-PrOH) and tert-butyl alcohol (t-BuOH) were observed in the OH and CH stretch regions. In addition, by varying the tag species, the temperature dependence profile of the isomer population of H+(t-BuOH)n was revealed. An extensive search for stable isomers was performed using dispersion-corrected density functional theory methods, and temperature-dependent IR spectral simulations were done on the basis of the harmonic superposition approximation. The computational results qualitatively agreed with the observed size and temperature dependence of the H-bonded network structures of these protonated bulky alcohol clusters. However, the difficulty in the quantitative evaluation of dispersion was also demonstrated. It was shown that H+(2-PrOH)n (n = 4-7) have essentially the same network structures as the protonated normal alcohol clusters studied so far. On the other hand, H+(t-BuOH)n (n = 4-8) showed a clear preference for the smaller-membered ring structures, that is very different from the preference of the protonated normal alcohol clusters. The origin of the different structure preferences was discussed in terms of the steric effect and dispersion.
Collapse
Affiliation(s)
- Natsuko Sugawara
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | | | | | | |
Collapse
|
15
|
Fujii A, Sugawara N, Hsu PJ, Shimamori T, Li YC, Hamashima T, Kuo JL. Hydrogen bond network structures of protonated short-chain alcohol clusters. Phys Chem Chem Phys 2018; 20:14971-14991. [DOI: 10.1039/c7cp08072g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protonated alcohol clusters enable extraction of the physical essence of the nature of hydrogen bond networks.
Collapse
Affiliation(s)
- Asuka Fujii
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Natsuko Sugawara
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Po-Jen Hsu
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Taiwan
| | - Takuto Shimamori
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Ying-Cheng Li
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Taiwan
| | - Toru Hamashima
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Taiwan
| |
Collapse
|
16
|
Esser TK, Knorke H, Siro-Brigiano F, Galimberti DR, Asmis KR, Gaigeot MP, Lisy JM. Influence of argon and D2 tagging on the hydrogen bond network in Cs+(H2O)3; kinetic trapping below 40 K. Phys Chem Chem Phys 2018; 20:28476-28486. [DOI: 10.1039/c8cp06020g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tuning cluster ion conformations between 12 and 21 K.
Collapse
Affiliation(s)
- Tim K. Esser
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie
- Universität Leipzig
- D-04103 Leipzig
- Germany
| | - Harald Knorke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie
- Universität Leipzig
- D-04103 Leipzig
- Germany
| | | | | | - Knut R. Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie
- Universität Leipzig
- D-04103 Leipzig
- Germany
| | | | - James M. Lisy
- Department of Chemistry
- University of Illinois at Urbana-Champaign, Urbana
- Illinois 61801
- USA
| |
Collapse
|
17
|
Katada M, Hsu PJ, Fujii A, Kuo JL. Temperature and Size Dependence of Characteristic Hydrogen-Bonded Network Structures with Ion Core Switching in Protonated (Methanol)6–10–(Water)1 Mixed Clusters: A Revisit. J Phys Chem A 2017; 121:5399-5413. [DOI: 10.1021/acs.jpca.7b03762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marusu Katada
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Po-Jen Hsu
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Asuka Fujii
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Jer-Lai Kuo
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| |
Collapse
|
18
|
Ishikawa H, Kurusu I, Yagi R, Kato R, Kasahara Y. Quantitative Temperature Dependence of the Microscopic Hydration Structures Investigated by Ultraviolet Photodissociation Spectroscopy of Hydrated Phenol Cations. J Phys Chem Lett 2017; 8:2541-2546. [PMID: 28530816 DOI: 10.1021/acs.jpclett.7b01165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To discuss the temperature effect on microscopic hydration structures in clusters, relative populations of the isomers having different hydration structures at well-defined temperatures are quite important. In the present study, we measured ultraviolet photodissociation spectra of the temperature-controlled hydrated phenol cation [PhOH(H2O)5]+ trapped in the 22-pole ion trap. Two isomers having a distinct hydration motif with each other are identified in the spectra, and a clear change in the relative populations is observed in the temperature range from 30 to 150 K. This behavior is quantitatively interpreted by statistical mechanical estimation based on density functional theory calculations. A ring with tail-type hydration motif is dominant in cold conditions, whereas a chain-like motif is dominant in hot conditions. The present study provides very quantitative information about the temperature effect on the microscopic hydration structures.
Collapse
Affiliation(s)
- Haruki Ishikawa
- Department of Chemistry, School of Science, Kitasato University , Minami-ku, Sagamihara 252-0373, Japan
| | - Itaru Kurusu
- Department of Chemistry, School of Science, Kitasato University , Minami-ku, Sagamihara 252-0373, Japan
| | - Reona Yagi
- Department of Chemistry, School of Science, Kitasato University , Minami-ku, Sagamihara 252-0373, Japan
| | - Ryota Kato
- Department of Chemistry, School of Science, Kitasato University , Minami-ku, Sagamihara 252-0373, Japan
| | - Yasutoshi Kasahara
- Department of Chemistry, School of Science, Kitasato University , Minami-ku, Sagamihara 252-0373, Japan
| |
Collapse
|
19
|
Malloum A, Fifen JJ, Dhaouadi Z, Engo SGN, Jaidane NE. Solvation energies of the proton in ammonia explicitly versus temperature. J Chem Phys 2017; 146:134308. [DOI: 10.1063/1.4979568] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
20
|
Wang D, Fujii A. Structures of protonated hydrogen sulfide clusters, H+(H2S)n, highlighting the nature of sulfur-centered intermolecular interactions. Phys Chem Chem Phys 2017; 19:2036-2043. [DOI: 10.1039/c6cp07342e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Though H2S has the same hydrogen bond coordination property as H2O, intermolecular structures of H+(H2S)n are very different from those of H+(H2O)n, indicating the competition among hydrogen bond and other intermolecular interactions.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Asuka Fujii
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| |
Collapse
|
21
|
Hsu PJ, Ho KL, Lin SH, Kuo JL. Exploration of hydrogen bond networks and potential energy surfaces of methanol clusters using a two-stage clustering algorithm. Phys Chem Chem Phys 2017; 19:544-556. [DOI: 10.1039/c6cp07120a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A two-stage algorithm based both on the similarity in shape and hydrogen bond network is developed to explore the potential energy surface of methanol clusters.
Collapse
Affiliation(s)
- Po-Jen Hsu
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei
- Taiwan
- Department of Applied Chemistry
| | - Kun-Lin Ho
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei
- Taiwan
| | - Sheng-Hsien Lin
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei
- Taiwan
- Department of Applied Chemistry
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei
- Taiwan
| |
Collapse
|
22
|
Shimamori T, Kuo JL, Fujii A. Stepwise Internal Energy Change of Protonated Methanol Clusters By Using the Inert Gas Tagging. J Phys Chem A 2016; 120:9203-9208. [DOI: 10.1021/acs.jpca.6b10140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takuto Shimamori
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Jer-Lai Kuo
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Asuka Fujii
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
23
|
Xie H, Liu Z, Zhao Z, Kong X, Fan H, Tang Z, Jiang L. Observing the Transition from Equatorial to Axial CO Chemisorption: Infrared Photodissociation Spectroscopy of Yttrium Oxide–Carbonyls. Inorg Chem 2016; 55:5502-6. [DOI: 10.1021/acs.inorgchem.6b00519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hua Xie
- State
Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation
Center of Chemistry for Energy and Materials (iChEM), Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, Liaoning, P. R. China
| | - Zhiling Liu
- School
of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, Shanxi, P. R. China
| | - Zhi Zhao
- State
Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation
Center of Chemistry for Energy and Materials (iChEM), Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, Liaoning, P. R. China
| | - Xiangtao Kong
- State
Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation
Center of Chemistry for Energy and Materials (iChEM), Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, Liaoning, P. R. China
| | - Hongjun Fan
- State
Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation
Center of Chemistry for Energy and Materials (iChEM), Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, Liaoning, P. R. China
| | - Zichao Tang
- State
Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation
Center of Chemistry for Energy and Materials (iChEM), Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, Liaoning, P. R. China
| | - Ling Jiang
- State
Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation
Center of Chemistry for Energy and Materials (iChEM), Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, Liaoning, P. R. China
| |
Collapse
|
24
|
Lin TJ, Hsing CR, Wei CM, Kuo JL. Structure prediction of the solid forms of methanol: an ab initio random structure searching approach. Phys Chem Chem Phys 2016; 18:2736-46. [DOI: 10.1039/c5cp06583f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Liquid methanol and methanol clusters have been comprehensively studied to reveal their local structure and hydrogen bond networks.
Collapse
Affiliation(s)
- Tzu-Jen Lin
- Institute of Atomic and Molecular Sciences
- Academic Sinica
- Taipei
- Taiwan
| | - Cheng-Rong Hsing
- Institute of Atomic and Molecular Sciences
- Academic Sinica
- Taipei
- Taiwan
| | - Ching-Ming Wei
- Institute of Atomic and Molecular Sciences
- Academic Sinica
- Taipei
- Taiwan
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences
- Academic Sinica
- Taipei
- Taiwan
| |
Collapse
|
25
|
Malloum A, Fifen JJ, Dhaouadi Z, Nana Engo SG, Jaidane NE. Structures and spectroscopy of protonated ammonia clusters at different temperatures. Phys Chem Chem Phys 2016; 18:26827-26843. [DOI: 10.1039/c6cp03240k] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protonated ammonia clusters are all Eigen structures and the first solvation shell of the related ammonium ion core is saturated by four ammonia molecules.
Collapse
Affiliation(s)
- Alhadji Malloum
- Department of Physics
- Faculty of Science
- The University of Ngaoundere
- Ngaoundere
- Cameroon
| | - Jean Jules Fifen
- Department of Physics
- Faculty of Science
- The University of Ngaoundere
- Ngaoundere
- Cameroon
| | - Zoubeida Dhaouadi
- Laboratoire de Spectroscopie Atomique Moléculaire et Applications
- Faculté des Sciences de Tunis
- Université de Tunis El Manar
- Campus Universitaire
- Tunis
| | - Serge Guy Nana Engo
- Department of Physics
- Faculty of Science
- The University of Ngaoundere
- Ngaoundere
- Cameroon
| | - Nejm-Eddine Jaidane
- Laboratoire de Spectroscopie Atomique Moléculaire et Applications
- Faculté des Sciences de Tunis
- Université de Tunis El Manar
- Campus Universitaire
- Tunis
| |
Collapse
|
26
|
Bouchet A, Schütz M, Dopfer O. Competing Insertion and External Binding Motifs in Hydrated Neurotransmitters: Infrared Spectra of Protonated Phenylethylamine Monohydrate. Chemphyschem 2015; 17:232-43. [PMID: 26584245 DOI: 10.1002/cphc.201500939] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Indexed: 01/29/2023]
Abstract
Hydration has a drastic impact on the structure and function of flexible biomolecules, such as aromatic ethylamino neurotransmitters. The structure of monohydrated protonated phenylethylamine (H(+) PEA-H2 O) is investigated by infrared photodissociation (IRPD) spectroscopy of cold cluster ions by using rare-gas (Rg=Ne and Ar) tagging and dispersion-corrected density functional theory calculations at the B3LYP-D3/aug-cc-pVTZ level. Monohydration of this prototypical neurotransmitter gives an insight into the first step of the formation of its solvation shell, especially regarding the competition between intra- and intermolecular interactions. The spectra of Rg-tagged H(+) PEA-H2 O reveal the presence of a stable insertion structure in which the water molecule is located between the positively charged ammonium group and the phenyl ring of H(+) PEA, acting both as a hydrogen bond acceptor (NH(+) ⋅⋅⋅O) and donor (OH⋅⋅⋅π). Two other nearly equivalent isomers, in which water is externally H bonded to one of the free NH groups, are also identified. The balance between insertion and external hydration strongly depends on temperature.
Collapse
Affiliation(s)
- Aude Bouchet
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany
| | - Markus Schütz
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany.
| |
Collapse
|
27
|
Ogata Y, Kawashima Y, Takahashi K, Tachikawa M. Theoretical vibrational spectra of OH(-)(H2O)2: the effect of quantum distribution and vibrational coupling. Phys Chem Chem Phys 2015; 17:25505-15. [PMID: 26365920 DOI: 10.1039/c5cp03632a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We performed ab initio path integral molecular dynamics simulations for the hydroxide-water cluster, OH(-)(H2O)2, at 50 K, 100 K, and 150 K to investigate its flexible structure. From our simulations, we found that nuclear quantum effects enhance hydroxide hydrogen atom inversion and the conformational change between isomers occurs by simultaneous rotation of the free hydrogen atom. We propose the importance of including the transition state conformer with C2 symmetry, for the description of this system at temperatures realized in predissociation experiments. Temperature dependence of relative populations of each conformer along with multidimensional vibrational calculations were used to simulate the vibrational spectra and compare with the experimental spectra of Johnson and coworkers. We assign the doublet peaks seen in the experiment at 2500 to 3000 cm(-1), as the mixture of the ionic hydrogen bonded OH stretching overtone, ionic hydrogen bonded OH bending overtone, and the combination band of the ionic hydrogen bonded OH stretch and bend, which are modulated by the van der Waals OO vibrations. We concluded that for OH(-)(H2O)2, the vibrational couplings between the ionic hydrogen bonded motion and floppy modes contribute to the broadening of peaks observed in the 2500 to 3000 cm(-1) region.
Collapse
Affiliation(s)
- Yudai Ogata
- Graduate school of Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan.
| | | | | | | |
Collapse
|
28
|
Shimamori T, Fujii A. Infrared Spectroscopy of Warm and Neutral Phenol–Water Clusters. J Phys Chem A 2015; 119:1315-22. [DOI: 10.1021/jp512495v] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Takuto Shimamori
- Department of Chemistry, Graduate School
of Science, Tohoku University, Sendai 980-8578, Japan
| | - Asuka Fujii
- Department of Chemistry, Graduate School
of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
29
|
Klyne J, Schmies M, Fujii M, Dopfer O. Stepwise Microhydration of Aromatic Amide Cations: Formation of Water Solvation Network Revealed by Infrared Spectra of Formanilide+–(H2O)n Clusters (n ≤ 5). J Phys Chem B 2015; 119:1388-406. [DOI: 10.1021/jp511421h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Johanna Klyne
- Institut
für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Matthias Schmies
- Institut
für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Masaaki Fujii
- Chemical
Resources Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Otto Dopfer
- Institut
für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| |
Collapse
|
30
|
Shishido R, Li YC, Tsai CW, Bing D, Fujii A, Kuo JL. An infrared spectroscopic and theoretical study on (CH3)3N–H+–(H2O)n, n = 1–22: highly polarized hydrogen bond networks of hydrated clusters. Phys Chem Chem Phys 2015; 17:25863-76. [DOI: 10.1039/c5cp01487e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Highly polarized water networks are found in the micro hydaration of protonated trimethylamine.
Collapse
Affiliation(s)
- Ryunosuke Shishido
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Ying-Cheng Li
- Department of Physics
- National Taiwan University
- Taipei 10617
- Taiwan
- Institute of Atomic and Molecular Sciences
| | - Chen-Wei Tsai
- Department of Physics
- National Taiwan University
- Taipei 10617
- Taiwan
- Institute of Atomic and Molecular Sciences
| | - Dan Bing
- Pujiang Institute
- Nanjing Tech University
- Nanjing
- China
| | - Asuka Fujii
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei
- Taiwan
| |
Collapse
|
31
|
Li YC, Hamashima T, Yamazaki R, Kobayashi T, Suzuki Y, Mizuse K, Fujii A, Kuo JL. Hydrogen-bonded ring closing and opening of protonated methanol clusters H+(CH3OH)n (n = 4–8) with the inert gas tagging. Phys Chem Chem Phys 2015; 17:22042-53. [DOI: 10.1039/c5cp03379a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Temperature dependence of hydrogen bond network structures of protonated methanol clusters is explored by IR spectroscopy and DFT simulations.
Collapse
Affiliation(s)
- Ying-Cheng Li
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taiwan
| | - Toru Hamashima
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Ryoko Yamazaki
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Tomohiro Kobayashi
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Yuta Suzuki
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Kenta Mizuse
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Asuka Fujii
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taiwan
| |
Collapse
|
32
|
Katada M, Shishido R, Fujii A. Infrared spectroscopy of large-sized neutral and protonated ammonia clusters. Phys Chem Chem Phys 2014; 16:7595-601. [DOI: 10.1039/c4cp00178h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Size selective IR spectroscopy shows the nature of hydrogen bond networks in neutral and protonated ammonia clusters.
Collapse
Affiliation(s)
- Marusu Katada
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578, Japan
| | - Ryunosuke Shishido
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578, Japan
| | - Asuka Fujii
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578, Japan
| |
Collapse
|
33
|
|
34
|
Kobayashi T, Shishido R, Mizuse K, Fujii A, Kuo JL. Structures of hydrogen bond networks formed by a few tens of methanol molecules in the gas phase: size-selective infrared spectroscopy of neutral and protonated methanol clusters. Phys Chem Chem Phys 2013; 15:9523-30. [DOI: 10.1039/c3cp50985k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|