1
|
Nye DB, Lecomte JTJ. Replacement of the Distal Histidine Reveals a Noncanonical Heme Binding Site in a 2-on-2 Hemoglobin. Biochemistry 2018; 57:5785-5796. [PMID: 30213188 PMCID: PMC6217817 DOI: 10.1021/acs.biochem.8b00752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heme ligation in hemoglobin is typically assumed by the "proximal" histidine. Hydrophobic contacts, ionic interactions, and the ligation bond secure the heme between two α-helices denoted E and F. Across the hemoglobin superfamily, several proteins also use a "distal" histidine, making the native state a bis-histidine complex. The group 1 truncated hemoglobin from Synechocystis sp. PCC 6803, GlbN, is one such bis-histidine protein. Ferric GlbN, in which the distal histidine (His46 or E10) has been replaced with a leucine, though expected to bind a water molecule and yield a high-spin iron complex at neutral pH, has low-spin spectral properties. Here, we applied nuclear magnetic resonance and electronic absorption spectroscopic methods to GlbN modified with heme and amino acid replacements to identify the distal ligand in H46L GlbN. We found that His117, a residue located in the C-terminal portion of the protein and on the proximal side of the heme, is responsible for the formation of an alternative bis-histidine complex. Simultaneous coordination by His70 and His117 situates the heme in a binding site different from the canonical site. This new holoprotein form is achieved with only local conformational changes. Heme affinity in the alternative site is weaker than in the normal site, likely because of strained coordination and a reduced number of specific heme-protein interactions. The observation of an unconventional heme binding site has important implications for the interpretation of mutagenesis results and globin homology modeling.
Collapse
Affiliation(s)
- Dillon B. Nye
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Juliette T. J. Lecomte
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, United States
| |
Collapse
|
2
|
|
3
|
Lu H, Zhu L, Zhang C, Wang Z, Lv Y, Chen K, Cui Y. Highly uniform SERS-active microchannel on hydrophobic PDMS: a balance of high reproducibility and sensitivity for detection of proteins. RSC Adv 2017. [DOI: 10.1039/c6ra25173k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
SERS-active microchannels on hydrophobic polydimethylsiloxane (PDMS) with both high reproducibility and sensitivity are fabricated. Proteins might denature while drying on the SERS-active substrate, but keep native structures in the microchannels.
Collapse
Affiliation(s)
- Hui Lu
- Advanced Photonics Center
- Southeast University
- Nanjing 210096
- China
| | - Li Zhu
- Advanced Photonics Center
- Southeast University
- Nanjing 210096
- China
| | - Chuanlong Zhang
- Advanced Photonics Center
- Southeast University
- Nanjing 210096
- China
| | - Zhile Wang
- Advanced Photonics Center
- Southeast University
- Nanjing 210096
- China
| | - Yiru Lv
- Advanced Photonics Center
- Southeast University
- Nanjing 210096
- China
| | - Kexiang Chen
- Advanced Photonics Center
- Southeast University
- Nanjing 210096
- China
| | - Yiping Cui
- Advanced Photonics Center
- Southeast University
- Nanjing 210096
- China
| |
Collapse
|
4
|
Orevi T, Rahamim G, Amir D, Kathuria S, Bilsel O, Matthews CR, Haas E. Sequential Closure of Loop Structures Forms the Folding Nucleus during the Refolding Transition of the Escherichia coli Adenylate Kinase Molecule. Biochemistry 2015; 55:79-91. [DOI: 10.1021/acs.biochem.5b00849] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Tomer Orevi
- The
Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel 52900
| | - Gil Rahamim
- The
Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel 52900
| | - Dan Amir
- The
Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel 52900
| | - Sagar Kathuria
- Department
of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Osman Bilsel
- Department
of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - C. Robert Matthews
- Department
of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Elisha Haas
- The
Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel 52900
| |
Collapse
|
5
|
Mizukami T, Abe Y, Maki K. Evidence for a Shared Mechanism in the Formation of Urea-Induced Kinetic and Equilibrium Intermediates of Horse Apomyoglobin from Ultrarapid Mixing Experiments. PLoS One 2015; 10:e0134238. [PMID: 26244984 PMCID: PMC4526358 DOI: 10.1371/journal.pone.0134238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/07/2015] [Indexed: 11/24/2022] Open
Abstract
In this study, the equivalence of the kinetic mechanisms of the formation of urea-induced kinetic folding intermediates and non-native equilibrium states was investigated in apomyoglobin. Despite having similar structural properties, equilibrium and kinetic intermediates accumulate under different conditions and via different mechanisms, and it remains unknown whether their formation involves shared or distinct kinetic mechanisms. To investigate the potential mechanisms of formation, the refolding and unfolding kinetics of horse apomyoglobin were measured by continuous- and stopped-flow fluorescence over a time range from approximately 100 μs to 10 s, along with equilibrium unfolding transitions, as a function of urea concentration at pH 6.0 and 8°C. The formation of a kinetic intermediate was observed over a wider range of urea concentrations (0–2.2 M) than the formation of the native state (0–1.6 M). Additionally, the kinetic intermediate remained populated as the predominant equilibrium state under conditions where the native and unfolded states were unstable (at ~0.7–2 M urea). A continuous shift from the kinetic to the equilibrium intermediate was observed as urea concentrations increased from 0 M to ~2 M, which indicates that these states share a common kinetic folding mechanism. This finding supports the conclusion that these intermediates are equivalent. Our results in turn suggest that the regions of the protein that resist denaturant perturbations form during the earlier stages of folding, which further supports the structural equivalence of transient and equilibrium intermediates. An additional folding intermediate accumulated within ~140 μs of refolding and an unfolding intermediate accumulated in <1 ms of unfolding. Finally, by using quantitative modeling, we showed that a five-state sequential scheme appropriately describes the folding mechanism of horse apomyoglobin.
Collapse
Affiliation(s)
- Takuya Mizukami
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Yukiko Abe
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Kosuke Maki
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- * E-mail:
| |
Collapse
|
6
|
Lapidus LJ, Acharya S, Schwantes CR, Wu L, Shukla D, King M, DeCamp SJ, Pande VS. Complex pathways in folding of protein G explored by simulation and experiment. Biophys J 2015; 107:947-55. [PMID: 25140430 DOI: 10.1016/j.bpj.2014.06.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 01/28/2023] Open
Abstract
The B1 domain of protein G has been a classic model system of folding for decades, the subject of numerous experimental and computational studies. Most of the experimental work has focused on whether the protein folds via an intermediate, but the evidence is mostly limited to relatively slow kinetic observations with a few structural probes. In this work we observe folding on the submillisecond timescale with microfluidic mixers using a variety of probes including tryptophan fluorescence, circular dichroism, and photochemical oxidation. We find that each probe yields different kinetics and compare these observations with a Markov State Model constructed from large-scale molecular dynamics simulations and find a complex network of states that yield different kinetics for different observables. We conclude that there are many folding pathways before the final folding step and that these paths do not have large free energy barriers.
Collapse
Affiliation(s)
- Lisa J Lapidus
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan.
| | - Srabasti Acharya
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan
| | | | - Ling Wu
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan
| | - Diwakar Shukla
- Department of Chemistry, Stanford University, Stanford, California; Simbios Program, Stanford University, Stanford, California
| | - Michael King
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan
| | - Stephen J DeCamp
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan
| | - Vijay S Pande
- Department of Chemistry, Stanford University, Stanford, California; Simbios Program, Stanford University, Stanford, California; Department of Structural Biology, Stanford University, Stanford, California; Biophysics Program, Stanford University, Stanford, California; Department of Computer Science, Stanford University, Stanford, California
| |
Collapse
|
7
|
Jennaro TS, Beaty MR, Kurt-Yilmaz N, Luskin BL, Cavagnero S. Burial of nonpolar surface area and thermodynamic stabilization of globins as a function of chain elongation. Proteins 2014; 82:2318-31. [DOI: 10.1002/prot.24590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/11/2014] [Accepted: 04/12/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Theodore S. Jennaro
- Department of Chemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
| | - Matthew R. Beaty
- Department of Chemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
| | - Neşe Kurt-Yilmaz
- Department of Chemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
| | - Benjamin L. Luskin
- Department of Chemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
| | - Silvia Cavagnero
- Department of Chemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
| |
Collapse
|
8
|
Kathuria SV, Chan A, Graceffa R, Nobrega RP, Matthews CR, Irving TC, Perot B, Bilsel O. Advances in turbulent mixing techniques to study microsecond protein folding reactions. Biopolymers 2013; 99:888-96. [PMID: 23868289 PMCID: PMC3843316 DOI: 10.1002/bip.22355] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 07/03/2013] [Indexed: 02/01/2023]
Abstract
Recent experimental and computational advances in the protein folding arena have shown that the readout of the one-dimensional sequence information into three-dimensional structure begins within the first few microseconds of folding. The initiation of refolding reactions has been achieved by several means, including temperature jumps, flash photolysis, pressure jumps, and rapid mixing methods. One of the most commonly used means of initiating refolding of chemically denatured proteins is by turbulent flow mixing with refolding dilution buffer, where greater than 99% mixing efficiency has been achieved within 10's of microseconds. Successful interfacing of turbulent flow mixers with complementary detection methods, including time-resolved Fluorescence Spectroscopy (trFL), Förster Resonance Energy Transfer, Circular Dichroism, Small-Angle X-ray Scattering, Hydrogen Exchange followed by Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy, Infrared Spectroscopy (IR), and Fourier Transform IR Spectroscopy, has made this technique very attractive for monitoring various aspects of structure formation during folding. Although continuous-flow (CF) mixing devices interfaced with trFL detection have a dead time of only 30 µs, burst phases have been detected in this time scale during folding of peptides and of large proteins (e.g., CheY and TIM barrels). Furthermore, a major limitation of the CF mixing technique has been the requirement of large quantities of sample. In this brief communication, we will discuss the recent flurry of activity in micromachining and microfluidics, guided by computational simulations, which are likely to lead to dramatic improvements in time resolution and sample consumption for CF mixers over the next few years.
Collapse
Affiliation(s)
- Sagar V. Kathuria
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605
| | - Alexander Chan
- Department of Mechanical and Industrial Engineering, Engineering Laboratory, University of Massachusetts, Box 32210-219, Amherst, MA, 01003-2210
| | - Rita Graceffa
- BioCAT, Department of Biological and Chemical Science, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616
| | - R. Paul Nobrega
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605
| | - C. Robert Matthews
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605
| | - Thomas C. Irving
- BioCAT, Department of Biological and Chemical Science, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616
| | - Blair Perot
- Department of Mechanical and Industrial Engineering, Engineering Laboratory, University of Massachusetts, Box 32210-219, Amherst, MA, 01003-2210
| | - Osman Bilsel
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605
| |
Collapse
|