1
|
Josino LPC, Alves CN, Lima AH. A molecular model to study FosA enzyme inhibition. J Mol Graph Model 2021; 107:107978. [PMID: 34217024 DOI: 10.1016/j.jmgm.2021.107978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/25/2022]
Abstract
Fosfomycin resistance protein (FosA) is a metalloenzyme known for catalyzing a nucleophilic addition reaction of glutathione to the epoxide ring of Fosfomycin, a broad-spectrum antibiotic used to combat Gram-positive pathogens. The reaction leads fosfomycin to lose its pharmacological effect, thus promotes antibiotic resistance. A small-molecule FosA inhibitor has been discovered. ANY1 (3-bromo-6-[3-(3-bromo-2-oxo-1H-pyrazolo[1,5-a]pyrimidin-6-yl)-4-nitro-1H-pyrazol-5-yl]-1H-pyrazolo[1,5-a]pyrimidin-2-one) is competitive with the antibiotic for binding the active site of the enzyme. Through Molecular Mechanics methods, using the AMBER force field, we carry out molecular dynamics simulations and binding free energy calculations to investigate the most important interactions between the enzyme and inhibitor. Our results were able to reproduce the trend of experimental data with R2 of 77.51%. Furthermore, we have shown that electrostatic and van der Waals interactions, as well as cavitation energies, are favorable for maintaining the enzyme-inhibitor complex, while reactive field energies and non-polar interactions act in an unfavorable way for interactions between FosA and ANY1.
Collapse
Affiliation(s)
- Luiz P C Josino
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, 66075-110, Belém, Pará, Brazil
| | - Cláudio Nahum Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, 66075-110, Belém, Pará, Brazil
| | - Anderson H Lima
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, 66075-110, Belém, Pará, Brazil.
| |
Collapse
|
2
|
A QM/MM Evaluation of the Missing Step in the Reduction Mechanism of HMG-CoA by Human HMG-CoA Reductase. Processes (Basel) 2021. [DOI: 10.3390/pr9071085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Statins are important drugs in the regulation of cholesterol levels in the human body that have as a primary target the enzyme β-hydroxy-β-methylglutaryl-CoA reductase (HMGR). This enzyme plays a crucial role in the mevalonate pathway, catalyzing the four-electron reduction of HMG-CoA to mevalonate. A second reduction step of this reaction mechanism has been the subject of much speculation in the literature, with different conflicting theories persisting to the present day. In this study, the different mechanistic hypotheses were evaluated with atomic-level detail through a combination of molecular dynamics simulations (MD) and quantum mechanics/molecular mechanics (QM/MM) calculations. The obtained Gibbs free activation and Gibbs free reaction energy (15 kcal mol−1 and −40 kcal mol−1) show that this hydride step takes place with the involvement of a cationic His405 and Lys639, and a neutral Glu98, while Asp715 remains in an anionic state. The results provide an atomic-level portrait of this step, clearly demonstrating the nature and protonation state of the amino acid residues involved, the energetics associated, and the structure and charge of the key participating atoms in the several intermediate states, finally elucidating this missing step.
Collapse
|
3
|
Lima AH, Silva JR, Alves C, Lameira J. QM/MM Study of the Fosfomycin Resistance Mechanism Involving FosB Enzyme. ACS OMEGA 2021; 6:12507-12512. [PMID: 34056400 PMCID: PMC8154160 DOI: 10.1021/acsomega.1c00096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/12/2021] [Indexed: 06/01/2023]
Abstract
Multidrug-resistant organisms contain antibiotic-modifying enzymes that facilitate resistance to a variety of antimicrobial compounds. Particularly, the fosfomycin (FOF) drug can be structurally modified by several FOF-modifying enzymes before it reaches the biological target. Among them, FosB is an enzyme that utilizes l-cysteine or bacillithiol in the presence of a divalent metal to open the epoxide ring of FOF and, consequently, inactivate the drug. Here, we have used hybrid quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) simulations to explore the mechanism of the reaction involving FosB and FOF. The calculated free-energy profiles show that the cost to open the epoxide ring of FOF at the C2 atom is ∼3.0 kcal/mol higher than that at the C1 atom. Besides, our QM/MM MD results revealed the critical role of conformation change of Cys9 and Asn50 to release the drug from the active site. Overall, the present study provides insights into the mechanism of FOF-resistant proteins.
Collapse
Affiliation(s)
- Anderson H. Lima
- Laboratório de Planejamento
e Desenvolvimento de Fármacos, Instituto de Ciências
Exatas e Naturais, Universidade Federal
do Pará, Rua Augusto Corrêa, 01, 66075-110, Belém, Pará, Brasil
| | - José Rogério
A. Silva
- Laboratório de Planejamento
e Desenvolvimento de Fármacos, Instituto de Ciências
Exatas e Naturais, Universidade Federal
do Pará, Rua Augusto Corrêa, 01, 66075-110, Belém, Pará, Brasil
| | - Cláudio
Nahum Alves
- Laboratório de Planejamento
e Desenvolvimento de Fármacos, Instituto de Ciências
Exatas e Naturais, Universidade Federal
do Pará, Rua Augusto Corrêa, 01, 66075-110, Belém, Pará, Brasil
| | - Jerônimo Lameira
- Laboratório de Planejamento
e Desenvolvimento de Fármacos, Instituto de Ciências
Exatas e Naturais, Universidade Federal
do Pará, Rua Augusto Corrêa, 01, 66075-110, Belém, Pará, Brasil
| |
Collapse
|
4
|
Wei WJ, Qian HX, Wang WJ, Liao RZ. Computational Understanding of the Selectivities in Metalloenzymes. Front Chem 2018; 6:638. [PMID: 30622942 PMCID: PMC6308299 DOI: 10.3389/fchem.2018.00638] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/07/2018] [Indexed: 01/26/2023] Open
Abstract
Metalloenzymes catalyze many different types of biological reactions with high efficiency and remarkable selectivity. The quantum chemical cluster approach and the combined quantum mechanics/molecular mechanics methods have proven very successful in the elucidation of the reaction mechanism and rationalization of selectivities in enzymes. In this review, recent progress in the computational understanding of various selectivities including chemoselectivity, regioselectivity, and stereoselectivity, in metalloenzymes, is discussed.
Collapse
Affiliation(s)
| | | | | | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Novelli A, Rosi E. Pharmacological properties of oral antibiotics for the treatment of uncomplicated urinary tract infections. J Chemother 2018; 29:10-18. [PMID: 29271734 DOI: 10.1080/1120009x.2017.1380357] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The therapeutic management of uncomplicated bacterial urinary tract infections (UTIs) is based on short-term courses of oral antibiotics. The preferred drugs are nitrofurantoin trimethoprim-sulfamethoxazole, fosfomycin trometamol, fluoroquinolones and β-lactam agents. The choice of agent for treating uncomplicated UTIs should be based on the pharmacokinetic characteristics of the molecule so that clinical benefit is optimized and the risk of antibacterial resistance is minimized. This article discusses the general pharmacokinetic-pharmacodynamic (PK/PD) aspects of antimicrobial chemotherapy, the PK/PD characteristics of oral antimicrobial agents for the treatment of uncomplicated UTIs and the pharmacological and therapeutic strategies for limiting or preventing bacterial resistance.
Collapse
Affiliation(s)
- Andrea Novelli
- a Department of Health Sciences, Clinical Pharmacology and Oncology Section , University of Florence , Florence , Italy
| | - Elia Rosi
- a Department of Health Sciences, Clinical Pharmacology and Oncology Section , University of Florence , Florence , Italy
| |
Collapse
|
6
|
Structure and Dynamics of FosA-Mediated Fosfomycin Resistance in Klebsiella pneumoniae and Escherichia coli. Antimicrob Agents Chemother 2017; 61:AAC.01572-17. [PMID: 28874374 DOI: 10.1128/aac.01572-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/20/2017] [Indexed: 01/05/2023] Open
Abstract
Fosfomycin exhibits broad-spectrum antibacterial activity and is being reevaluated for the treatment of extensively drug-resistant pathogens. Its activity in Gram-negative organisms, however, can be compromised by expression of FosA, a metal-dependent transferase that catalyzes the conjugation of glutathione to fosfomycin, rendering the antibiotic inactive. In this study, we solved the crystal structures of two of the most clinically relevant FosA enzymes: plasmid-encoded FosA3 from Escherichia coli and chromosomally encoded FosA from Klebsiella pneumoniae (FosAKP). The structure, molecular dynamics, catalytic activity, and fosfomycin resistance of FosA3 and FosAKP were also compared to those of FosA from Pseudomonas aeruginosa (FosAPA), for which prior crystal structures exist. E. coli TOP10 transformants expressing FosA3 and FosAKP conferred significantly greater fosfomycin resistance (MIC, >1,024 μg/ml) than those expressing FosAPA (MIC, 16 μg/ml), which could be explained in part by the higher catalytic efficiencies of the FosA3 and FosAKP enzymes. Interestingly, these differences in enzyme activity could not be attributed to structural differences at their active sites. Instead, molecular dynamics simulations and hydrogen-deuterium exchange experiments with FosAKP revealed dynamic interconnectivity between its active sites and a loop structure that extends from the active site of each monomer and traverses the dimer interface. This dimer interface loop is longer and more extended in FosAKP and FosA3 than in FosAPA, and kinetic analyses of FosAKP and FosAPA loop-swapped chimeric enzymes highlighted its importance in FosA activity. Collectively, these data yield novel insights into fosfomycin resistance that could be leveraged to develop new strategies to inhibit FosA and potentiate fosfomycin activity.
Collapse
|
7
|
Moreira C, Ramos MJ, Fernandes PA. Reaction Mechanism ofMycobacterium TuberculosisGlutamine Synthetase Using Quantum Mechanics/Molecular Mechanics Calculations. Chemistry 2016; 22:9218-25. [DOI: 10.1002/chem.201600305] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Cátia Moreira
- UCIBIO, REQUIMTE; Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; 4169-007 Porto Portugal
| | - Maria J. Ramos
- UCIBIO, REQUIMTE; Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; 4169-007 Porto Portugal
| | - Pedro Alexandrino Fernandes
- UCIBIO, REQUIMTE; Departamento de Química e Bioquímica; Faculdade de Ciências; Universidade do Porto; 4169-007 Porto Portugal
| |
Collapse
|
8
|
Oliveira EF, Cerqueira NMFSA, Ramos MJ, Fernandes PA. QM/MM study of the mechanism of reduction of 3-hydroxy-3-methylglutaryl coenzyme A catalyzed by human HMG-CoA reductase. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00356g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Detailing with atomistic resolution the reaction mechanism of human HMG-CoA reductase (HMG-CoA-R) might provide valuable insights for the development of new cholesterol-lowering drugs.
Collapse
Affiliation(s)
- Eduardo F. Oliveira
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| | | | - Maria J. Ramos
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| | - Pedro A. Fernandes
- REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| |
Collapse
|
9
|
Liao RZ, Siegbahn PEM. Mechanism and selectivity of the dinuclear iron benzoyl-coenzyme A epoxidase BoxB. Chem Sci 2015; 6:2754-2764. [PMID: 28706665 PMCID: PMC5489048 DOI: 10.1039/c5sc00313j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/02/2015] [Indexed: 12/22/2022] Open
Abstract
DFT calculations are used to elucidate the reaction mechanism and selectivity of BoxB catalyzed benzoyl-CoA epoxidation.
Benzoyl-CoA epoxidase is a dinuclear iron enzyme that catalyzes the epoxidation reaction of the aromatic ring of benzoyl-CoA with chemo-, regio- and stereo-selectivity. It has been suggested that this enzyme may also catalyze the deoxygenation reaction of epoxide, suggesting a unique bifunctionality among the diiron enzymes. We report a density functional theory study of this enzyme aimed at elucidating its mechanism and the various selectivities. The epoxidation is suggested to start with the binding of the O2 molecule to the diferrous center to generate a diferric peroxide complex, followed by concerted O–O bond cleavage and epoxide formation. Two different pathways have been located, leading to (2S,3R)-epoxy and (2R,3S)-epoxy products, with barriers of 17.6 and 20.4 kcal mol–1, respectively. The barrier difference is 2.8 kcal mol–1, corresponding to a diastereomeric excess of about 99 : 1. Further isomerization from epoxide to phenol is found to have quite a high barrier, which cannot compete with the product release step. After product release into solution, fast epoxide–oxepin isomerization and racemization can take place easily, leading to a racemic mixture of (2S,3R) and (2R,3S) products. The deoxygenation of epoxide to regenerate benzoyl-CoA by a diferrous form of the enzyme proceeds via a stepwise mechanism. The C2–O bond cleavage happens first, coupled with one electron transfer from one iron center to the substrate, to form a radical intermediate, which is followed by the second C3–O bond cleavage. The first step is rate-limiting with a barrier of only 10.8 kcal mol–1. Further experimental studies are encouraged to verify our results.
Collapse
Affiliation(s)
- Rong-Zhen Liao
- Key Laboratory for Large-Format Battery Materials and System , Ministry of Education , School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China .
| | - Per E M Siegbahn
- Department of Organic Chemistry , Arrhenius Laboratory , Stockholm University , SE-10691 Stockholm , Sweden .
| |
Collapse
|
10
|
Goerigk L, Collyer CA, Reimers JR. Recommending Hartree–Fock Theory with London-Dispersion and Basis-Set-Superposition Corrections for the Optimization or Quantum Refinement of Protein Structures. J Phys Chem B 2014; 118:14612-26. [DOI: 10.1021/jp510148h] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Lars Goerigk
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Charles A. Collyer
- School
of Molecular Bioscience, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jeffrey R. Reimers
- Centre
for Quantum and Molecular Structure, College of Sciences, Shanghai University, Shanghai 200444, China
- School
of Physics and Advanced Materials, The University of Technology, Sydney, New South Wales 2007, Australia
| |
Collapse
|
11
|
Li Z, Wu Y, Feng LJ, Wu R, Luo HB. Ab Initio QM/MM Study Shows a Highly Dissociated SN2 Hydrolysis Mechanism for the cGMP-Specific Phosphodiesterase-5. J Chem Theory Comput 2014; 10:5448-57. [DOI: 10.1021/ct500761d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Zhe Li
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yinuo Wu
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Ling-Jun Feng
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Ruibo Wu
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Hai-Bin Luo
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|