1
|
Gan Z, Gloor CJ, Yan L, Zhong X, You W, Moran AM. Elucidating phonon dephasing mechanisms in layered perovskites with coherent Raman spectroscopies. J Chem Phys 2024; 161:074202. [PMID: 39158047 DOI: 10.1063/5.0216472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024] Open
Abstract
Organic-inorganic hybrid perovskite quantum wells exhibit electronic structures with properties intermediate between those of inorganic semiconductors and molecular crystals. In these systems, periodic layers of organic spacer molecules occupy the interstitial spaces between perovskite sheets, thereby confining electronic excitations to two dimensions. Here, we investigate spectroscopic line broadening mechanisms for phonons coupled to excitons in lead-iodide layered perovskites with phenyl ethyl ammonium (PEA) and azobenzene ethyl ammonium (AzoEA) spacer cations. Using a modified Elliot line shape analysis for the absorbance and photoluminescence spectra, polaron binding energies of 11.2 and 17.5 meV are calculated for (PEA)2PbI4 and (AzoEA)2PbI4, respectively. To determine whether the polaron stabilization processes influence the dephasing mechanisms of coupled phonons, five-pulse coherent Raman spectroscopies are applied to the two systems under electronically resonant conditions. The prominence of inhomogeneous line broadening mechanisms detected in (AzoEA)2PbI4 suggests that thermal fluctuations involving the deformable organic phase broaden the distributions of phonon frequencies within the quantum wells. In addition, our data indicate that polaron stabilization primarily involves photoinduced reorganization of the organic phases for both systems, whereas the impulsively excited phonons represent less than 10% of the total polaron binding energy. The signal generation mechanisms associated with our fifth-order coherent Raman experiments are explored with a perturbative model in which cumulant expansions are used to account for time-coincident vibrational dephasing and polaron stabilization processes.
Collapse
Affiliation(s)
- Zijian Gan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Camryn J Gloor
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Liang Yan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Xiaowei Zhong
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew M Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
2
|
Ren P, Li Z, Sun C, Fang W, Men Z. Intramolecular Vibration Energy-Transfer-Driven Cascaded Stimulated Raman Scattering and Four-Wave Mixing in Benzene Series. J Phys Chem Lett 2021; 12:6119-6125. [PMID: 34181421 DOI: 10.1021/acs.jpclett.1c01577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cascaded stimulated Raman scattering (SRS) of benzene, bromobenzene, chlorobenzene, ethylbenzene, and toluene was investigated by a pulsed Nd:YAG laser with 532 nm wavelength. The results showed that the third-order Stokes SRS of the ring skeleton vibration (CC at 3006 cm-1) accompanied by another higher-frequency Stokes SRS of the CH stretching vibration (at 3066 cm-1), which arose only when the third-order Stokes SRS of the ring skeleton was produced, can be attributed to the vibration energy transfer between vibration energy levels of CC and CH. The Stokes and anti-Stokes SRS rings, which originated from the intramolecular energy-transfer-enhanced four-wave mixing (FWM) processes, can be observed only in the forward direction along different angles apart from the pump beam direction. The phenomenon also existed in other derivatives of benzene. We propose the intramolecular energy-transfer-enhanced SRS for the first time, which can be used for a broadband Raman laser.
Collapse
Affiliation(s)
- Panpan Ren
- Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China
| | - Zhanlong Li
- Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China
| | - Chenglin Sun
- Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China
| | - Wenhui Fang
- Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China
- School of Science, Changchun University of Science and Technology, Changchun 130022, China
| | - Zhiwei Men
- Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
3
|
Fang C, Tang L. Mapping Structural Dynamics of Proteins with Femtosecond Stimulated Raman Spectroscopy. Annu Rev Phys Chem 2020; 71:239-265. [PMID: 32075503 DOI: 10.1146/annurev-physchem-071119-040154] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The structure-function relationships of biomolecules have captured the interest and imagination of the scientific community and general public since the field of structural biology emerged to enable the molecular understanding of life processes. Proteins that play numerous functional roles in cellular processes have remained in the forefront of research, inspiring new characterization techniques. In this review, we present key theoretical concepts and recent experimental strategies using femtosecond stimulated Raman spectroscopy (FSRS) to map the structural dynamics of proteins, highlighting the flexible chromophores on ultrafast timescales. In particular, wavelength-tunable FSRS exploits dynamic resonance conditions to track transient-species-dependent vibrational motions, enabling rational design to alter functions. Various ways of capturing excited-state chromophore structural snapshots in the time and/or frequency domains are discussed. Continuous development of experimental methodologies, synergistic correlation with theoretical modeling, and the expansion to other nonequilibrium, photoswitchable, and controllable protein systems will greatly advance the chemical, physical, and biological sciences.
Collapse
Affiliation(s)
- Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA;
| | - Longteng Tang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA;
| |
Collapse
|
4
|
Cheshire TP, Moran AM. Susceptibility of two-dimensional resonance Raman spectroscopies to cascades involving solute and solvent molecules. J Chem Phys 2019; 151:104203. [PMID: 31521086 DOI: 10.1063/1.5115401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two-dimensional resonance Raman (2DRR) spectroscopies have been used to investigate the structural heterogeneity of ensembles and chemical reaction mechanisms in recent years. Our previous work suggests that the intensities of artifacts may be comparable to the desired 2DRR response for some chemical systems and experimental approaches. In a type of artifact known as a "cascade," the four-wave mixing signal field radiated by one molecule induces a four-wave mixing process in a second molecule. We consider the susceptibility of 2DRR spectroscopy to various types of signal cascades in the present work. Calculations are conducted using empirical parameters obtained for a molecule with an intramolecular charge-transfer transition in acetonitrile. For a fully impulsive pulse sequence, it is shown that "parallel" cascades involving two solute molecules are generally more intense than that of the desired 2DRR response when the solute's mode displacements are 1.0 or less. In addition, we find that the magnitudes of parallel cascades involving both solute and solvent molecules (i.e., a solute-solvent cascade) may exceed that of the 2DRR response when the solute possesses small mode displacements. It is tempting to assume that solute-solvent cascades possess negligible intensities because the off-resonant Raman cross sections of solvents are usually 4-6 orders of magnitude smaller than that of the electronically resonant solute; however, the present calculations show that the difference in solute and solvent concentrations can fully compensate for the difference in Raman cross sections under common experimental conditions. Implications for control experiments and alternate approaches for 2DRR spectroscopy are discussed.
Collapse
Affiliation(s)
- Thomas P Cheshire
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew M Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
5
|
Taylor MA, Zhu L, Rozanov ND, Stout KT, Chen C, Fang C. Delayed vibrational modulation of the solvated GFP chromophore into a conical intersection. Phys Chem Chem Phys 2019; 21:9728-9739. [PMID: 31032505 DOI: 10.1039/c9cp01077g] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Green fluorescent protein (GFP) has revolutionized bioimaging and life sciences. Its successes have inspired modification of the chromophore structure and environment to tune emission properties, but outside the protein cage, the chromophore is essentially non-fluorescent. In this study, we employ the tunable femtosecond stimulated Raman spectroscopy (FSRS) and transient absorption (TA) to map the energy dissipation pathways of GFP model chromophore (HBDI) in basic aqueous solution. Strategic tuning of the Raman pump to 550 nm exploits the stimulated emission band to enhance excited state vibrational motions as HBDI navigates the non-equilibrium potential energy landscape to pass through a conical intersection. The time-resolved FSRS uncovers prominent anharmonic couplings between a global out-of-plane bending mode of ∼227 cm-1 and two modes at ∼866 and 1572 cm-1 before HBDI reaches the twisted intramolecular charge transfer (TICT) state on the ∼3 ps time scale. Remarkably, the wavelet transform analysis reveals a ∼500 fs delayed onset of the coupling peaks, in correlation with the emergence of an intermediate charge-separated state en route to the TICT state. This mechanism is corroborated by the altered coupling matrix for the HBDI Raman modes in the 50% (v/v) water-glycerol mixture, and a notable lengthening of the picosecond time constant. The real-time molecular "movie" of the general rotor-like HBDI isomerization reaction following photoexcitation represents a significant advance in comprehending the photochemical reaction pathways of the solvated GFP chromophore, therefore providing a crucial foundation to enable rational design of diverse nanomachines from efficient molecular rotors to bright fluorescent probes.
Collapse
Affiliation(s)
- Miles A Taylor
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Fang C, Tang L, Oscar BG, Chen C. Capturing Structural Snapshots during Photochemical Reactions with Ultrafast Raman Spectroscopy: From Materials Transformation to Biosensor Responses. J Phys Chem Lett 2018; 9:3253-3263. [PMID: 29799757 DOI: 10.1021/acs.jpclett.8b00373] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chemistry studies the composition, structure, properties, and transformation of matter. A mechanistic understanding of the pertinent processes is required to translate fundamental knowledge into practical applications. The current development of ultrafast Raman as a powerful time-resolved vibrational technique, particularly femtosecond stimulated Raman spectroscopy (FSRS), has shed light on the structure-energy-function relationships of various photosensitive systems. This Perspective reviews recent work incorporating optical innovations, including the broad-band up-converted multicolor array (BUMA) into a tunable FSRS setup, and demonstrates its resolving power to watch metal speciation and photolysis, leading to high-quality thin films, and fluorescence modulation of chimeric protein biosensors for calcium ion imaging. We discuss advantages of performing FSRS in the mixed time-frequency domain and present strategies to delineate mechanisms by tracking low-frequency modes and systematically modifying chemical structures with specific functional groups. These unique insights at the chemical-bond level have started to enable the rational design and precise control of functional molecular machines in optical, materials, energy, and life sciences.
Collapse
Affiliation(s)
- Chong Fang
- Department of Chemistry , Oregon State University , 153 Gilbert Hall , Corvallis , Oregon 97331 , United States
| | - Longteng Tang
- Department of Chemistry , Oregon State University , 153 Gilbert Hall , Corvallis , Oregon 97331 , United States
| | - Breland G Oscar
- Department of Chemistry , Oregon State University , 153 Gilbert Hall , Corvallis , Oregon 97331 , United States
| | - Cheng Chen
- Department of Chemistry , Oregon State University , 153 Gilbert Hall , Corvallis , Oregon 97331 , United States
| |
Collapse
|
7
|
Batignani G, Fumero G, Mukamel S, Scopigno T. Energy flow between spectral components in 2D broadband stimulated Raman spectroscopy. Phys Chem Chem Phys 2016; 17:10454-61. [PMID: 25802897 DOI: 10.1039/c4cp05361c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We introduce a general theoretical description of non resonant impulsive femtosecond stimulated Raman spectroscopy in a multimode harmonic model. In this technique an ultrashort actinic pulse creates coherences of low frequency modes and is followed by a paired narrowband Raman pulse and a broadband probe pulse. Using closed-time-path-loop (CTPL) diagrams, the response on both the red and the blue sides of the broadband pulse with respect to the narrowband Raman pulse is calculated, the process couples high and low frequency modes, which share the same ground state. The transmitted intensity oscillates between the red and the blue side, while the total number of photons is conserved. The total energy of the probe signal is periodically modulated in time by the coherence created in the low frequency modes.
Collapse
Affiliation(s)
- G Batignani
- Dipartimento di Fisica, Universitá di Roma "Sapienza", I-00185 Roma, Italy
| | | | | | | |
Collapse
|
8
|
Dietze DR, Mathies RA. Femtosecond Stimulated Raman Spectroscopy. Chemphyschem 2016; 17:1224-51. [DOI: 10.1002/cphc.201600104] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel R. Dietze
- Department of Chemistry; University of California in Berkeley; CA Berkeley 94720 USA
| | - Richard A. Mathies
- Department of Chemistry; University of California in Berkeley; CA Berkeley 94720 USA
| |
Collapse
|
9
|
Molesky BP, Guo Z, Moran AM. Femtosecond stimulated Raman spectroscopy by six-wave mixing. J Chem Phys 2015; 142:212405. [DOI: 10.1063/1.4914095] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Brian P. Molesky
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Zhenkun Guo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew M. Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
10
|
Hoffman DP, Ellis SR, Mathies RA. Characterization of a Conical Intersection in a Charge-Transfer Dimer with Two-Dimensional Time-Resolved Stimulated Raman Spectroscopy. J Phys Chem A 2014; 118:4955-65. [DOI: 10.1021/jp5041986] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David P. Hoffman
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Scott R. Ellis
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Richard A. Mathies
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Fingerhut BP, Dorfman KE, Mukamel S. Probing the Conical Intersection Dynamics of the RNA Base Uracil by UV-Pump Stimulated-Raman-Probe Signals; Ab Initio Simulations. J Chem Theory Comput 2014; 10:1172-1188. [PMID: 24803857 PMCID: PMC3958139 DOI: 10.1021/ct401012u] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Indexed: 11/29/2022]
Abstract
![]()
Nonadiabatic electron
and nuclear dynamics of photoexcited molecules
involving conical intersections is of fundamental importance in many
reactions such as the self-protection mechanism of DNA and RNA bases
against UV irradiation. Nonlinear vibrational spectroscopy can provide
an ultrafast sensitive probe for these processes. We employ a simulation
protocol that combines nonadiabatic on-the-fly molecular dynamics
with a mode-tracking algorithm for the simulation of femtosecond stimulated
Raman spectroscopy (SRS) signals of the high frequency C–H-
and N–H-stretch vibrations of the photoexcited RNA base uracil.
The simulations rely on a microscopically derived expression that
takes into account the path integral of the excited state evolution
and the pulse shapes. Analysis of the joint time/frequency resolution
of the technique reveals a matter chirp contribution that limits the
inherent temporal resolution. Characteristic signatures of relaxation
dynamics mediated in the vicinity of conical intersection are predicted.
The C–H and N–H spectator modes provide high sensitivity
to their local environment and act as local probes with submolecular
and high temporal resolution.
Collapse
Affiliation(s)
- Benjamin P Fingerhut
- Department of Chemistry, University of California , Irvine, California 92697-2025, United States
| | - Konstantin E Dorfman
- Department of Chemistry, University of California , Irvine, California 92697-2025, United States
| | - Shaul Mukamel
- Department of Chemistry, University of California , Irvine, California 92697-2025, United States
| |
Collapse
|