1
|
Kolocouris A, Arkin I, Glykos NM. A proof-of-concept study of the secondary structure of influenza A, B M2 and MERS- and SARS-CoV E transmembrane peptides using folding molecular dynamics simulations in a membrane mimetic solvent. Phys Chem Chem Phys 2022; 24:25391-25402. [PMID: 36239696 DOI: 10.1039/d2cp02881f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Here, we have carried out a proof-of-concept molecular dynamics (MD) simulation with adaptive tempering in a membrane mimetic environment to study the folding of single-pass membrane peptides. We tested the influenza A M2 viroporin, influenza B M2 viroporin, and protein E from coronaviruses MERS-Cov-2 and SARS-CoV-2 peptides with known experimental secondary structures in membrane bilayers. The two influenza-derived peptides are significantly different in the peptide sequence and secondary structure and more polar than the two coronavirus-derived peptides. Through a total of more than 50 μs of simulation time that could be accomplished in trifluoroethanol (TFE), as a membrane model, we characterized comparatively the folding behavior, helical stability, and helical propensity of these transmembrane peptides that match perfectly their experimental secondary structures, and we identified common motifs that reflect their quaternary organization and known (or not) biochemical function. We showed that BM2 is organized into two structurally distinct parts: a significantly more stable N-terminal half, and a fast-converting C-terminal half that continuously folds and unfolds between α-helical structures and non-canonical structures, which are mostly turns. In AM2, both the N-terminal half and C-terminal half are very flexible. In contrast, the two coronavirus-derived transmembrane peptides are much more stable and fast helix-formers when compared with the influenza ones. In particular, the SARS-derived peptide E appears to be the fastest and most stable helix-former of all the four viral peptides studied, with a helical structure that persists almost without disruption for the whole of its 10 μs simulation. By comparing the results with experimental observations, we benchmarked TFE in studying the conformation of membrane and hydrophobic peptides. This work provided accurate results suggesting a methodology to run long MD simulations and predict structural properties of biologically important membrane peptides.
Collapse
Affiliation(s)
- Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Greece.
| | - Isaiah Arkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, 91904, Israel
| | - Nicholas M Glykos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Alexandroupolis, 68100, Greece.
| |
Collapse
|
2
|
Gkogka I, Glykos NM. Folding molecular dynamics simulation of T-peptide, a HIV viral entry inhibitor: Structure, dynamics, and comparison with the experimental data. J Comput Chem 2022; 43:942-952. [PMID: 35333419 DOI: 10.1002/jcc.26850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 11/11/2022]
Abstract
Peptide T is a synthetic octapeptide fragment, which corresponds to the region 185-192 of the gp120 HIV coat protein and functions as a viral entry inhibitor. In this work, a folding molecular dynamics simulation of peptide T in a membrane-mimicking (DMSO) solution was performed with the aim of characterizing the peptide's structural and dynamical properties. We show that peptide T is highly flexible and dynamic. The main structural characteristics observed were rapidly interconverting short helical stretches and turns, with a notable preference for the formation of β-turns. The simulation also indicated that the C-terminal part appears to be more stable than the rest of the peptide, with the most preferred conformation for residues 5-8 being a β-turn. In order to validate the accuracy of the simulations, we compared our results with the experimental NMR data obtained for the T-peptide in the same solvent. In agreement with the simulation, the NMR data indicated the presence of a preferred structure in solution that was consistent with a β-turn comprising the four C-terminal residues. An additional comparison between the experimental and simulation-derived chemical shifts also showed a reasonable agreement between experiment and simulation, further validating the simulation-derived structural characterization of the T-peptide. We conclude that peptide folding simulations produce physically relevant results even when performed with organic solvents that were not part of the force field parameterization procedure.
Collapse
Affiliation(s)
- Ioanna Gkogka
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Alexandroupolis, Greece
| | - Nicholas M Glykos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Alexandroupolis, Greece
| |
Collapse
|
3
|
Mitsikas DA, Glykos NM. A molecular dynamics simulation study on the propensity of Asn-Gly-containing heptapeptides towards β-turn structures: Comparison with ab initio quantum mechanical calculations. PLoS One 2020; 15:e0243429. [PMID: 33270807 PMCID: PMC7714341 DOI: 10.1371/journal.pone.0243429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/23/2020] [Indexed: 11/19/2022] Open
Abstract
Both molecular mechanical and quantum mechanical calculations play an important role in describing the behavior and structure of molecules. In this work, we compare for the same peptide systems the results obtained from folding molecular dynamics simulations with previously reported results from quantum mechanical calculations. More specifically, three molecular dynamics simulations of 5 μs each in explicit water solvent were carried out for three Asn-Gly-containing heptapeptides, in order to study their folding and dynamics. Previous data, based on quantum mechanical calculations within the DFT framework have shown that these peptides adopt β-turn structures in aqueous solution, with type I’ β-turn being the most preferred motif. The results from our analyses indicate that at least for the given systems, force field and simulation protocol, the two methods diverge in their predictions. The possibility of a force field-dependent deficiency is examined as a possible source of the observed discrepancy.
Collapse
Affiliation(s)
- Dimitrios A. Mitsikas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University campus, Alexandroupolis, Greece
| | - Nicholas M. Glykos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University campus, Alexandroupolis, Greece
- * E-mail:
| |
Collapse
|
4
|
Stylianakis I, Shalev A, Scheiner S, Sigalas MP, Arkin IT, Glykos N, Kolocouris A. The balance between side-chain and backbone-driven association in folding of the α-helical influenza A transmembrane peptide. J Comput Chem 2020; 41:2177-2188. [PMID: 32735736 DOI: 10.1002/jcc.26381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/07/2022]
Abstract
The correct balance between attractive, repulsive and peptide hydrogen bonding interactions must be attained for proteins to fold correctly. To investigate these important contributors, we sought a comparison of the folding between two 25-residues peptides, the influenza A M2 protein transmembrane domain (M2TM) and the 25-Ala (Ala25 ). M2TM forms a stable α-helix as is shown by circular dichroism (CD) experiments. Molecular dynamics (MD) simulations with adaptive tempering show that M2TM monomer is more dynamic in nature and quickly interconverts between an ensemble of various α-helical structures, and less frequently turns and coils, compared to one α-helix for Ala25 . DFT calculations suggest that folding from the extended structure to the α-helical structure is favored for M2TM compared with Ala25 . This is due to CH⋯O attractive interactions which favor folding to the M2TM α-helix, and cannot be described accurately with a force field. Using natural bond orbital (NBO) analysis and quantum theory atoms in molecules (QTAIM) calculations, 26 CH⋯O interactions and 22 NH⋯O hydrogen bonds are calculated for M2TM. The calculations show that CH⋯O hydrogen bonds, although individually weaker, have a cumulative effect that cannot be ignored and may contribute as much as half of the total hydrogen bonding energy, when compared to NH⋯O, to the stabilization of the α-helix in M2TM. Further, a strengthening of NH⋯O hydrogen bonding interactions is calculated for M2TM compared to Ala25 . Additionally, these weak CH⋯O interactions can dissociate and associate easily leading to the ensemble of folded structures for M2TM observed in folding MD simulations.
Collapse
Affiliation(s)
- Ioannis Stylianakis
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Ariella Shalev
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, Israel
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Michael P Sigalas
- Department of Chemistry, Laboratory of Applied Quantum Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Isaiah T Arkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, Israel
| | - Nikolas Glykos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Antonios Kolocouris
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Molecular simulation of peptides coming of age: Accurate prediction of folding, dynamics and structures. Arch Biochem Biophys 2019; 664:76-88. [DOI: 10.1016/j.abb.2019.01.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/24/2022]
|
6
|
Georgoulia PS, Glykos NM. Folding Molecular Dynamics Simulation of a gp41-Derived Peptide Reconcile Divergent Structure Determinations. ACS OMEGA 2018; 3:14746-14754. [PMID: 31458149 PMCID: PMC6643504 DOI: 10.1021/acsomega.8b01579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/23/2018] [Indexed: 06/10/2023]
Abstract
T-20 peptide is the first FDA-approved fusion inhibitor against AIDS/HIV-1 gp41 protein. Part of it, the gp41[659-671] peptide, that contains the complete epitope for the neutralizing 2F5 monoclonal antibody, has been found experimentally in a number of divergent structures. Herein, we attempt to reconcile them by using unbiased large-scale all-atom molecular dynamics folding simulations. We show that our approach can successfully capture the peptide's heterogeneity and reach each and every experimentally determined conformation in sub-angstrom accuracy, whilst preserving the peptide's disordered nature. Our analysis also unveils that the minor refinements within the AMBER99SB family of force fields can lead to appreciable differences in the predicted conformational stability arising from subtle differences in the helical- and β-region of the Ramachandran plot. Our work underlines the contribution of molecular dynamics simulation in structurally characterizing pharmacologically important peptides of ambiguous structure.
Collapse
Affiliation(s)
- Panagiota S Georgoulia
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Alexandroupolis 68100, Greece
| | - Nicholas M Glykos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Alexandroupolis 68100, Greece
| |
Collapse
|
7
|
Frederix PWJM, Patmanidis I, Marrink SJ. Molecular simulations of self-assembling bio-inspired supramolecular systems and their connection to experiments. Chem Soc Rev 2018; 47:3470-3489. [PMID: 29688238 PMCID: PMC5961611 DOI: 10.1039/c8cs00040a] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Indexed: 01/01/2023]
Abstract
In bionanotechnology, the field of creating functional materials consisting of bio-inspired molecules, the function and shape of a nanostructure only appear through the assembly of many small molecules together. The large number of building blocks required to define a nanostructure combined with the many degrees of freedom in packing small molecules has long precluded molecular simulations, but recent advances in computational hardware as well as software have made classical simulations available to this strongly expanding field. Here, we review the state of the art in simulations of self-assembling bio-inspired supramolecular systems. We will first discuss progress in force fields, simulation protocols and enhanced sampling techniques using recent examples. Secondly, we will focus on efforts to enable the comparison of experimentally accessible observables and computational results. Experimental quantities that can be measured by microscopy, spectroscopy and scattering can be linked to simulation output either directly or indirectly, via quantum mechanical or semi-empirical techniques. Overall, we aim to provide an overview of the various computational approaches to understand not only the molecular architecture of nanostructures, but also the mechanism of their formation.
Collapse
Affiliation(s)
- Pim W. J. M. Frederix
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials , University of Groningen , Groningen , The Netherlands . ;
| | - Ilias Patmanidis
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials , University of Groningen , Groningen , The Netherlands . ;
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials , University of Groningen , Groningen , The Netherlands . ;
| |
Collapse
|
8
|
Adamidou T, Arvaniti KO, Glykos NM. Folding Simulations of a Nuclear Receptor Box-Containing Peptide Demonstrate the Structural Persistence of the LxxLL Motif Even in the Absence of Its Cognate Receptor. J Phys Chem B 2017; 122:106-116. [DOI: 10.1021/acs.jpcb.7b10292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Triantafyllia Adamidou
- Department of Molecular Biology
and Genetics, Democritus University of Thrace, University campus, 68100 Alexandroupolis, Greece
| | - Konstantina-Olympia Arvaniti
- Department of Molecular Biology
and Genetics, Democritus University of Thrace, University campus, 68100 Alexandroupolis, Greece
| | - Nicholas M. Glykos
- Department of Molecular Biology
and Genetics, Democritus University of Thrace, University campus, 68100 Alexandroupolis, Greece
| |
Collapse
|
9
|
Baltzis AS, Glykos NM. Characterizing a partially ordered miniprotein through folding molecular dynamics simulations: Comparison with the experimental data. Protein Sci 2015; 25:587-96. [PMID: 26609791 DOI: 10.1002/pro.2850] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/22/2015] [Accepted: 11/15/2015] [Indexed: 12/31/2022]
Abstract
The villin headpiece helical subdomain (HP36) is one of the best known model systems for computational studies of fast-folding all-α miniproteins. HP21 is a peptide fragment-derived from HP36-comprising only the first and second helices of the full domain. Experimental studies showed that although HP21 is mostly unfolded in solution, it does maintain some persistent native-like structure as indicated by the analysis of NMR-derived chemical shifts. Here we compare the experimental data for HP21 with the results obtained from a 15-μs long folding molecular dynamics simulation performed in explicit water and with full electrostatics. We find that the simulation is in good agreement with the experiment and faithfully reproduces the major experimental findings, namely that (a) HP21 is disordered in solution with <10% of the trajectory corresponding to transiently stable structures, (b) the most highly populated conformer is a native-like structure with an RMSD from the corresponding portion of the HP36 crystal structure of <1 Å, (c) the simulation-derived chemical shifts-over the whole length of the trajectory-are in reasonable agreement with the experiment giving reduced χ(2) values of 1.6, 1.4, and 0.8 for the Δδ(13) C(α) , Δδ(13) CO, and Δδ(13) C(β) secondary shifts, respectively (becoming 0.8, 0.7, and 0.3 when only the major peptide conformer is considered), and finally, (d) the secondary structure propensity scores are in very good agreement with the experiment and clearly indicate the higher stability of the first helix. We conclude that folding molecular dynamics simulations can be a useful tool for the structural characterization of even marginally stable peptides.
Collapse
Affiliation(s)
- Athanasios S Baltzis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Alexandroupolis, 68100, Greece
| | - Nicholas M Glykos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Alexandroupolis, 68100, Greece
| |
Collapse
|
10
|
Liu Y, Wang T, Calabrese AN, Carver JA, Cummins SF, Bowie JH. The membrane-active amphibian peptide caerin 1.8 inhibits fibril formation of amyloid β1-42. Peptides 2015; 73:1-6. [PMID: 26275335 DOI: 10.1016/j.peptides.2015.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/04/2015] [Accepted: 08/04/2015] [Indexed: 12/21/2022]
Abstract
The amphibian host-defense peptide caerin 1.8 [(1)GLFKVLGSV(10)AKHLLPHVVP(20)VIAEKL(NH2)] inhibits fibril formation of amyloid β 1-42 [(1)DAEFRHDSG(10)YEVHHQKLVF(20)FAEDVGSNKG(30)AIIGLMVGGV(40)VIA] [Aβ42] (the major precursor of the extracellular fibrillar deposits of Alzheimer's disease). Some truncated forms of caerin 1.8 also inhibit fibril formation of Aβ42. For example, caerin 1.8 (1-13) [(1)GLFKVLGSV(10)AKHL(NH2) and caerin 1.8 (22-25) [KVLGSV(10)AKHLLPHVVP(20)VIAEKL(NH2)] show 85% and 75% respectively of the inhibition activity of the parent caerin 1.8. The synthetic peptide KLVFFKKKKKK is a known inhibitor of Aβ42 fibril formation, and was used as a standard in this study. Caerin 1.8 is the more effective fibril inhibitor. IC50 values (± 15%) are caerin 1.8 (75 μM) and KLVFFKKKKKK (370 μM). MALDI mass spectrometry shows the presence of a small peak corresponding to a protonated 1:1 adduct [caerin 1.8/Aβ42]H(+). Molecular dynamics simulation suggests that both hydrogen bonding and hydrophobic interactions between Aβ42 and caerin 1.8 facilitate the formation of a 1:1 complex in water. Fibril formation from Aβ42 has been proposed to be based around the (16)KLVF(20)F region of Aβ42; this region in the 1:1 complex is partially blocked from attachment of a further molecule of Aβ42.
Collapse
Affiliation(s)
- Yanqin Liu
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| | - Tianfang Wang
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Antonio N Calabrese
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| | - John A Carver
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Chemistry, 2601, Australia
| | - Scott F Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - John H Bowie
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia.
| |
Collapse
|
11
|
Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nat Chem 2014; 7:30-7. [PMID: 25515887 DOI: 10.1038/nchem.2122] [Citation(s) in RCA: 538] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/28/2014] [Indexed: 02/07/2023]
Abstract
Peptides that self-assemble into nanostructures are of tremendous interest for biological, medical, photonic and nanotechnological applications. The enormous sequence space that is available from 20 amino acids probably harbours many interesting candidates, but it is currently not possible to predict supramolecular behaviour from sequence alone. Here, we demonstrate computational tools to screen for the aqueous self-assembly propensity in all of the 8,000 possible tripeptides and evaluate these by comparison with known examples. We applied filters to select for candidates that simultaneously optimize the apparently contradicting requirements of aggregation propensity and hydrophilicity, which resulted in a set of design rules for self-assembling sequences. A number of peptides were subsequently synthesized and characterized, including the first reported tripeptides that are able to form a hydrogel at neutral pH. These tools, which enable the peptide sequence space to be searched for supramolecular properties, enable minimalistic peptide nanotechnology to deliver on its promise.
Collapse
|
12
|
Koukos PI, Glykos NM. Folding Molecular Dynamics Simulations Accurately Predict the Effect of Mutations on the Stability and Structure of a Vammin-Derived Peptide. J Phys Chem B 2014; 118:10076-84. [DOI: 10.1021/jp5046113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Panagiotis I. Koukos
- Department of Molecular Biology
and Genetics, Democritus University of Thrace, University campus, 68100 Alexandroupolis, Greece
| | - Nicholas M. Glykos
- Department of Molecular Biology
and Genetics, Democritus University of Thrace, University campus, 68100 Alexandroupolis, Greece
| |
Collapse
|