Wild R, Nötzold M, Simpson M, Tran TD, Wester R. Tunnelling measured in a very slow ion-molecule reaction.
Nature 2023;
615:425-429. [PMID:
36859549 DOI:
10.1038/s41586-023-05727-z]
[Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/12/2023] [Indexed: 03/03/2023]
Abstract
Quantum tunnelling reactions play an important role in chemistry when classical pathways are energetically forbidden1, be it in gas-phase reactions, surface diffusion or liquid-phase chemistry. In general, such tunnelling reactions are challenging to calculate theoretically, given the high dimensionality of the quantum dynamics, and also very difficult to identify experimentally2-4. Hydrogenic systems, however, allow for accurate first-principles calculations. In this way the rate of the gas-phase proton-transfer tunnelling reaction of hydrogen molecules with deuterium anions, H2 + D- → H- + HD, has been calculated5, but has so far lacked experimental verification. Here we present high-sensitivity measurements of the reaction rate carried out in a cryogenic 22-pole ion trap. We observe an extremely low rate constant of (5.2 ± 1.6) × 10-20 cm3 s-1. This measured value agrees with quantum tunnelling calculations, serving as a benchmark for molecular theory and advancing the understanding of fundamental collision processes. A deviation of the reaction rate from linear scaling, which is observed at high H2 densities, can be traced back to previously unobserved heating dynamics in radiofrequency ion traps.
Collapse