1
|
Graham ZA, Padilla Perez DJ. Correlated evolution of conspicuous colouration and burrowing in crayfish. Proc Biol Sci 2024; 291:20240632. [PMID: 38981529 PMCID: PMC11335007 DOI: 10.1098/rspb.2024.0632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/02/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024] Open
Abstract
Conspicuous colours have fascinated biologists for centuries, leading to research on the evolution and functional significance of colour traits. In many cases, research suggests that conspicuous colours are adaptive and serve a function in sexual or aposematic signalling. In other cases, a lack of evidence for the adaptive value of conspicuous colours garners interest from biologists, such as when organisms that live underground and are rarely exposed to the surface are nevertheless colourful. Here, we use phylogenetic comparative methods to investigate colour evolution throughout freshwater crayfishes that vary in burrowing ability. Within the taxa we analysed, conspicuous colours have evolved independently over 50 times, and these colours are more common in semi-terrestrial crayfishes that construct extensive burrows. The intuitive but not evolutionarily justified assumption when presented with these results is to assume that these colours are adaptive. But contrary to this intuition, we discuss the hypothesis that colouration in crayfish is neutral. Supporting these ideas, the small population sizes and reduced gene flow within semi-terrestrial burrowing crayfishes may lead to the fixation of colour-phenotype mutations. Overall, our work brings into question the traditional view of animal colouration as a perfectly adapted phenotype.
Collapse
Affiliation(s)
- Zackary A. Graham
- Department of Organismal Biology, Ecology, and Zoo Science, West Liberty University, 208 University Drive, West Liberty, WV26074, USA
| | | |
Collapse
|
2
|
Telegina TA, Vechtomova YL, Aybush AV, Buglak AA, Kritsky MS. Isomerization of carotenoids in photosynthesis and metabolic adaptation. Biophys Rev 2023; 15:887-906. [PMID: 37974987 PMCID: PMC10643480 DOI: 10.1007/s12551-023-01156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/22/2023] [Indexed: 11/19/2023] Open
Abstract
In nature, carotenoids are present as trans- and cis-isomers. Various physical and chemical factors like light, heat, acids, catalytic agents, and photosensitizers can contribute to the isomerization of carotenoids. Living organisms in the process of evolution have developed different mechanisms of adaptation to light stress, which can also involve isomeric forms of carotenoids. Particularly, light stress conditions can enhance isomerization processes. The purpose of this work is to review the recent studies on cis/trans isomerization of carotenoids as well as the role of carotenoid isomers for the light capture, energy transfer, photoprotection in light-harvesting complexes, and reaction centers of the photosynthetic apparatus of plants and other photosynthetic organisms. The review also presents recent studies of carotenoid isomers for the biomedical aspects, showing cis- and trans-isomers differ in bioavailability, antioxidant activity and biological activity, which can be used for therapeutic and prophylactic purposes.
Collapse
Affiliation(s)
- T. A. Telegina
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 2, 119071 Moscow, Russia
| | - Yuliya L. Vechtomova
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 2, 119071 Moscow, Russia
| | - A. V. Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, Building 1, 119991 Moscow, Russia
| | - A. A. Buglak
- Saint Petersburg State University, 7-9 Universitetskaya Emb., 199034 Saint Petersburg, Russia
| | - M. S. Kritsky
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 2, 119071 Moscow, Russia
| |
Collapse
|
3
|
Kyhoiesh HAK, Al-Adilee KJ. Synthesis, spectral characterization and biological activities of Ag(I), Pt(IV) and Au(III) complexes with novel azo dye ligand (N, N, O) derived from 2-amino-6-methoxy benzothiazole. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02072-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Wang J, Durbeej B. Thermal Fluctuations in Conjugation and their Effect on Calculated Excitation Energies: A Case Study on the Astaxanthin Carotenoid. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Wang
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials Jiangsu Engineering Laboratory for Environment Functional Materials School of Chemistry and Chemical Engineering Huaiyin Normal University No. 111 West Changjiang Road 223300 Huaian Jiangsu Province China
| | - Bo Durbeej
- Division of Theoretical Chemistry IFM Linköping University 581 83 Linköping Sweden
| |
Collapse
|
5
|
Marcolin G, Collini E. Solvent-Dependent Characterization of Fucoxanthin through 2D Electronic Spectroscopy Reveals New Details on the Intramolecular Charge-Transfer State Dynamics. J Phys Chem Lett 2021; 12:4833-4840. [PMID: 33999637 PMCID: PMC8279730 DOI: 10.1021/acs.jpclett.1c00851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/12/2021] [Indexed: 05/27/2023]
Abstract
The electronic state manifolds of carotenoids and their relaxation dynamics are the object of intense investigation because most of the subtle details regulating their photophysics are still unknown. In order to contribute to this quest, here, we present a solvent-dependent 2D Electronic Spectroscopy (2DES) characterization of fucoxanthin, a carbonyl carotenoid involved in the light-harvesting process of brown algae. The 2DES technique allows probing its ultrafast relaxation dynamics in the first 1000 fs after photoexcitation with a 10 fs time resolution. The obtained results help shed light on the dynamics of the first electronic state manifold and, in particular, on an intramolecular charge-transfer state (ICT), whose photophysical properties are particularly elusive given its (almost) dark nature.
Collapse
|
6
|
Color-specific porosity in double pigmented natural 3d-nanoarchitectures of blue crab shell. Sci Rep 2020; 10:3019. [PMID: 32080287 PMCID: PMC7033127 DOI: 10.1038/s41598-020-60031-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/06/2020] [Indexed: 11/09/2022] Open
Abstract
3D-engineered nano-architectures with various functionalities are still difficult to obtain and translate for real-world applications. However, such nanomaterials are naturally abundant and yet wasted, but could trigger huge interest for blue bioeconomy, provided that our understanding of their ultrastructure-function is achieved. To date, the Bouligand pattern in crustaceans shell structure is believed to be unique. Here we demonstrated that in blue crab Callinectes sapidus, the 3D-nanoarchitecture is color-specific, while the blue and red-orange pigments interplay in different nano-sized channels and pores. Thinnest pores of about 20 nm are found in blue shell. Additionally, the blue pigment co-existence in specific Bouligand structure is proved for the green crab Carcinus aestuarii, although the crab does not appear blue. The pigments interplay, simultaneously detected by Raman spectroscopy in color-specific native cuticles, overturns our understanding in crustaceans coloration and may trigger the selective use of particular colored natural nanoarchitectures for broaden area of applications.
Collapse
|
7
|
Denk O, Zheng K, Zigmantas D, Žídek K. Compressive imaging of transient absorption dynamics on the femtosecond timescale. OPTICS EXPRESS 2019; 27:10234-10246. [PMID: 31045167 DOI: 10.1364/oe.27.010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
Femtosecond spectroscopy is an important tool used for tracking rapid photoinduced processes in a variety of materials. To spatially map the processes in a sample would substantially expand the method's capabilities. This is, however, difficult to achieve, due to the necessity of using low-noise detection and maintaining feasible data acquisition time. Here, we demonstrate realization of an imaging pump-probe setup, featuring sub-100 fs temporal resolution, by using a straightforward modification of a standard pump-probe technique, which uses a randomly structured probe beam. The structured beam, made by a diffuser, enabled us to computationally reconstruct the maps of transient absorption dynamics based on the concept of compressed sensing. We demonstrate the setup's functionality in two proof-of-principle experiments, where we achieve spatial resolution of 20 μm. The presented concept provides a feasible route to imaging, by using the pump-probe technique and ultrafast spectroscopy in general.
Collapse
|
8
|
Barnsley JE, Tay EJ, Gordon KC, Thomas DB. Frequency dispersion reveals chromophore diversity and colour-tuning mechanism in parrot feathers. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172010. [PMID: 30109049 PMCID: PMC6083696 DOI: 10.1098/rsos.172010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Variation in animal coloration is often viewed as the result of chemically distinct pigments conferring different hues. The role of molecular environment on hue tends to be overlooked as analyses are mostly performed on free pigments extracted from the integument. Here we analysed psittacofulvin pigments within parrot feathers to explore whether the in situ organization of pigments may have an effect on hue. Resonance Raman spectra from a red region of a yellow-naped amazon Amazona auropalliata tail feather show frequency dispersion, a phenomenon that is related to the presence of a range of molecular conformations (and multiple chromophores) in the pigment, whereas spectra from a yellow region on the same feather do not show the same evidence for multiple chromophores. Our findings are consistent with non-isomeric psittacofulvin pigments behaving as a single chromophore in yellow feather barbs, which implies that psittacofulvins are dispersed into a structurally disordered mixture in yellow feathers compared with red feathers. Frequency dispersion in red barbs may instead indicate that pigments are structurally organized through molecule-molecule interactions. Major differences in the hues of parrot feathers are thus associated with differences in the organization of pigments within feathers.
Collapse
Affiliation(s)
- Jonathan E. Barnsley
- Department of Chemistry, University of Otago, Dunedin, New Zealand
- The Dodd-Walls Centre, University of Otago, Dunedin, New Zealand
| | - Elliot J. Tay
- Department of Chemistry, University of Otago, Dunedin, New Zealand
- The Dodd-Walls Centre, University of Otago, Dunedin, New Zealand
| | - Keith C. Gordon
- Department of Chemistry, University of Otago, Dunedin, New Zealand
- The Dodd-Walls Centre, University of Otago, Dunedin, New Zealand
| | - Daniel B. Thomas
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| |
Collapse
|
9
|
Loco D, Buda F, Lugtenburg J, Mennucci B. The Dynamic Origin of Color Tuning in Proteins Revealed by a Carotenoid Pigment. J Phys Chem Lett 2018; 9:2404-2410. [PMID: 29683674 DOI: 10.1021/acs.jpclett.8b00763] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the microscopic origin of the color tuning in pigment-protein complexes is a challenging yet fundamental issue in photoactive biological systems. Here, we propose a possible interpretation by using a state-of-the-art multiscale strategy based on the integration of quantum chemistry and polarizable atomistic embeddings into a dynamic description. By means of such a strategy we are able to resolve the long-standing dispute over the coloration mechanism in the crustacyanin protein. It is shown that the combination of the dynamical flexibility of the carotenoid pigments (astaxanthin) with the responsive protein environment is essential to obtain quantitative predictions of the spectral tuning. The strong linear correlation between the excitation energies and the bond length alternation in the long-chain carotenoids modulated by the dynamical protein environment is a novel finding explaining the high color tunability in crustacyanin.
Collapse
Affiliation(s)
- Daniele Loco
- Dipartimento di Chimica e Chimica Industriale , University of Pisa , via G. Moruzzi 13 , 56124 , Pisa , Italy
| | - Francesco Buda
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2300 RA Leiden , The Netherlands
| | - Johan Lugtenburg
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2300 RA Leiden , The Netherlands
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale , University of Pisa , via G. Moruzzi 13 , 56124 , Pisa , Italy
| |
Collapse
|
10
|
Jiang LL, Liu WL, Yang YQ. Raman and Infrared Spectra for All-trans-astaxanthin in Dimethyl Sulfoxide Solvent. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1703054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Li-lin Jiang
- Teaching Affairs Office, Hezhou University, Hezhou 542899, China
| | - Wei-long Liu
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Yan-qiang Yang
- National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
| |
Collapse
|
11
|
Budd AM, Hinton TM, Tonks M, Cheers S, Wade NM. Rapid expansion of pigmentation genes in penaeid shrimp with absolute preservation of function. ACTA ACUST UNITED AC 2017; 220:4109-4118. [PMID: 28851818 DOI: 10.1242/jeb.164988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/23/2017] [Indexed: 12/25/2022]
Abstract
Crustaceans form their distinct patterns and colours through the interaction of the carotenoid astaxanthin with a protein called crustacyanin (CRCN). Presently, the expression of just two CRCN genes is thought to provide the protein subunits that combine to form the crustacyanin complex and associated carotenoid colour change from red to blue. This study aimed to explore the genetic complexity underlying the production of pigmentation and camouflage in penaeid shrimp. We isolated 35 new CRCN genes from 12 species, and their sequence analysis indicated that this gene family has undergone significant expansion and diversification in this lineage. Despite this duplication and sequence divergence, the structure of the CRCN proteins and their functional role in shrimp colour production has been strictly conserved. Using CRCN isoforms from Penaeus monodon as an example, we showed that isoforms were differentially expressed, and that subtle phenotypes were produced by the specific downregulation of individual isoforms. These findings demonstrate that our knowledge of the molecular basis of pigmentation in shrimp was overly simplistic, and suggests that multiple copies of the CRCN genes within species may be advantageous for colour production. This result is of interest for the origin and evolution of pigmentation in crustaceans, and the mechanisms by which gene function is maintained, diversified or sub-functionalized.
Collapse
Affiliation(s)
- Alyssa M Budd
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, St Lucia, Queensland 4067, Australia
| | - Tracey M Hinton
- CSIRO Health and Biosecurity, Australian Animal Health Laboratories, Geelong, Victoria 3220, Australia
| | - Mark Tonks
- CSIRO Oceans and Atmosphere, Ecosciences Precinct, Dutton Park, Queensland 4102, Australia
| | - Sue Cheers
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, St Lucia, Queensland 4067, Australia
| | - Nicholas M Wade
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, St Lucia, Queensland 4067, Australia .,ARC Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
12
|
Butkus V, Alster J, Bašinskaitė E, Augulis RN, Neuhaus P, Valkunas L, Anderson HL, Abramavicius D, Zigmantas D. Discrimination of Diverse Coherences Allows Identification of Electronic Transitions of a Molecular Nanoring. J Phys Chem Lett 2017; 8:2344-2349. [PMID: 28493708 DOI: 10.1021/acs.jpclett.7b00612] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The role of quantum coherence in photochemical functions of molecular systems such as photosynthetic complexes is a broadly debated topic. Coexistence and intermixing of electronic and vibrational coherences has been proposed to be responsible for the observed long-lived coherences and high energy transfer efficiency. However, clear experimental evidence of coherences with different origins operating at the same time has been elusive. In this work, multidimensional spectra obtained from a six-porphyrin nanoring system are analyzed in detail with support from theoretical modeling. We uncover a great diversity of separable electronic, vibrational, and mixed coherences and show their cooperation in shaping the spectroscopic response. The results permit direct assignment of electronic and vibronic states and characterization of the excitation dynamics. The clear disentanglement of coherences in molecules with extended π-conjugation opens up new avenues for exploring coherent phenomena and understanding their importance for the function of complex systems.
Collapse
Affiliation(s)
- Vytautas Butkus
- Department of Theoretical Physics, Faculty of Physics, Vilnius University , Sauletekio Avenue 9-III, 10222 Vilnius, Lithuania
- Center for Physical Sciences and Technology , Sauletekio Avenue 3, 10257 Vilnius, Lithuania
| | - Jan Alster
- Department of Chemical Physics, Lund University , P.O. Box 124, 22100 Lund, Sweden
| | - Eglė Bašinskaitė
- Department of Theoretical Physics, Faculty of Physics, Vilnius University , Sauletekio Avenue 9-III, 10222 Vilnius, Lithuania
- Department of Chemical Physics, Lund University , P.O. Box 124, 22100 Lund, Sweden
| | - Ramu Nas Augulis
- Center for Physical Sciences and Technology , Sauletekio Avenue 3, 10257 Vilnius, Lithuania
- Department of Chemical Physics, Lund University , P.O. Box 124, 22100 Lund, Sweden
| | - Patrik Neuhaus
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory , Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Leonas Valkunas
- Department of Theoretical Physics, Faculty of Physics, Vilnius University , Sauletekio Avenue 9-III, 10222 Vilnius, Lithuania
- Center for Physical Sciences and Technology , Sauletekio Avenue 3, 10257 Vilnius, Lithuania
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory , Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Darius Abramavicius
- Department of Theoretical Physics, Faculty of Physics, Vilnius University , Sauletekio Avenue 9-III, 10222 Vilnius, Lithuania
| | - Donatas Zigmantas
- Department of Chemical Physics, Lund University , P.O. Box 124, 22100 Lund, Sweden
| |
Collapse
|
13
|
Katsikini M. Detailed spectroscopic study of the role of Br and Sr in coloured parts of the Callinectes sapidus crab claw. J Struct Biol 2016; 195:1-10. [DOI: 10.1016/j.jsb.2016.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 11/25/2022]
|
14
|
Perlík V, Seibt J, Cranston LJ, Cogdell RJ, Lincoln CN, Savolainen J, Šanda F, Mančal T, Hauer J. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters. J Chem Phys 2016; 142:212434. [PMID: 26049454 DOI: 10.1063/1.4919548] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system's Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.
Collapse
Affiliation(s)
- Václav Perlík
- Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, Prague 121 16, Czech Republic
| | - Joachim Seibt
- Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, Prague 121 16, Czech Republic
| | - Laura J Cranston
- Institute of Molecular Cell and System Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre, 120 University Place, Glasgow G12 8TA, Scotland
| | - Richard J Cogdell
- Institute of Molecular Cell and System Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre, 120 University Place, Glasgow G12 8TA, Scotland
| | - Craig N Lincoln
- Photonics Institute, Vienna University of Technology, Gusshausstrasse 27, 1040 Vienna, Austria
| | - Janne Savolainen
- Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum, Germany
| | - František Šanda
- Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, Prague 121 16, Czech Republic
| | - Tomáš Mančal
- Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, Prague 121 16, Czech Republic
| | - Jürgen Hauer
- Photonics Institute, Vienna University of Technology, Gusshausstrasse 27, 1040 Vienna, Austria
| |
Collapse
|
15
|
Gamiz-Hernandez AP, Angelova IN, Send R, Sundholm D, Kaila VRI. Protein-Induced Color Shift of Carotenoids in β-Crustacyanin. Angew Chem Int Ed Engl 2015. [PMID: 26220698 DOI: 10.1002/anie.201501609] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
β-Crustacyanin (β-CR) is a pigment protein responsible for the blue color of lobsters. We show using correlated ab initio calculations how the protein environment tunes the chromophores of β-CR through electrostatic and steric effects.
Collapse
Affiliation(s)
- Ana P Gamiz-Hernandez
- Department Chemie, Technische Universität München (TUM), Lichtenbergstraße 4, 85747 Garching (Germany)
| | | | - Robert Send
- BASF SE, Quantum Chemistry Group, GVM/M - B009, 67056 Ludwigshafen (Germany)
| | - Dage Sundholm
- Department of Chemistry, University of Helsinki, A.I. Virtanens plats 1, 00014 Helsinki (Finland)
| | - Ville R I Kaila
- Department Chemie, Technische Universität München (TUM), Lichtenbergstraße 4, 85747 Garching (Germany).
| |
Collapse
|
16
|
Gamiz-Hernandez AP, Angelova IN, Send R, Sundholm D, Kaila VRI. Protein-induzierte Farbverschiebung von Carotenoiden in β-Crustacyanin. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Musser AJ, Maiuri M, Brida D, Cerullo G, Friend RH, Clark J. The nature of singlet exciton fission in carotenoid aggregates. J Am Chem Soc 2015; 137:5130-9. [PMID: 25825939 PMCID: PMC4440407 DOI: 10.1021/jacs.5b01130] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Singlet exciton fission allows the fast and efficient generation of two spin triplet states from one photoexcited singlet. It has the potential to improve organic photovoltaics, enabling efficient coupling to the blue to ultraviolet region of the solar spectrum to capture the energy generally lost as waste heat. However, many questions remain about the underlying fission mechanism. The relation between intermolecular geometry and singlet fission rate and yield is poorly understood and remains one of the most significant barriers to the design of new singlet fission sensitizers. Here we explore the structure-property relationship and examine the mechanism of singlet fission in aggregates of astaxanthin, a small polyene. We isolate five distinct supramolecular structures of astaxanthin generated through self-assembly in solution. Each is capable of undergoing intermolecular singlet fission, with rates of triplet generation and annihilation that can be correlated with intermolecular coupling strength. In contrast with the conventional model of singlet fission in linear molecules, we demonstrate that no intermediate states are involved in the triplet formation: instead, singlet fission occurs directly from the initial 1B(u) photoexcited state on ultrafast time scales. This result demands a re-evaluation of current theories of polyene photophysics and highlights the robustness of carotenoid singlet fission.
Collapse
Affiliation(s)
- Andrew J Musser
- †Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Margherita Maiuri
- ‡IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy
| | - Daniele Brida
- §Department of Physics and Center for Applied Photonics, University of Konstanz, D-78457 Konstanz, Germany
| | - Giulio Cerullo
- ‡IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy
| | - Richard H Friend
- †Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Jenny Clark
- ∥Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| |
Collapse
|
18
|
Begum S, Cianci M, Durbeej B, Falklöf O, Hädener A, Helliwell JR, Helliwell M, Regan AC, Ian F. Watt C. On the origin and variation of colors in lobster carapace. Phys Chem Chem Phys 2015; 17:16723-32. [DOI: 10.1039/c4cp06124a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present evidence that astaxanthin enolate may form in a protein complex environment, and is associated with a large bathochromic absorption shift to give the blue–black color of lobsters.
Collapse
Affiliation(s)
- Shamima Begum
- School of Chemistry
- University of Manchester
- Manchester
- UK
| | | | - Bo Durbeej
- Division of Computational Physics
- IFM
- Linköping University
- Sweden
| | - Olle Falklöf
- Division of Computational Physics
- IFM
- Linköping University
- Sweden
| | | | | | | | | | | |
Collapse
|
19
|
Prum RO, LaFountain AM, Berg CJ, Tauber MJ, Frank HA. Mechanism of carotenoid coloration in the brightly colored plumages of broadbills (Eurylaimidae). J Comp Physiol B 2014; 184:651-72. [PMID: 24647990 DOI: 10.1007/s00360-014-0816-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/03/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
Abstract
The plumage carotenoids of six species from five genera of broadbills (Eurylaimidae) have been examined. These plumages are crimson, violet, purple-maroon, or yellow. Two genera also have brilliant green plumages that are produced by a combination of structural coloration and unknown carotenoids. Six different carotenoids from nine different plumage patches were identified, including two previously unknown molecules, using high-performance liquid chromatography, mass spectrometry, and MS/MS fragment analysis. The yellow pigment in Eurylaimus javanicus and Eurylaimus ochromalus is identified as the novel carotenoid, 7,8-dihydro-3'-dehydro-lutein. The yellow and green plumages of Psarisomus dalhousiae contain the unmodified dietary carotenoids lutein and zeaxanthin. The brilliant green feathers of Calyptomena viridis contain a mixture of lutein and two other xanthophylls that have previously been found only in woodpeckers (Picinae). The crimson and violet colors of Cymbirhynchus, Sarcophanops, and Eurylaimus are produced by a novel pigment, which is identified as 2,3-didehydro-papilioerythrinone. The molecular structure of this carotenoid was confirmed using (1)H nuclear magnetic resonance, correlated two-dimensional spectroscopy, and two-dimensional nuclear Overhauser effect spectroscopy. Resonance Raman (rR) spectroscopy carried out at room and low temperatures was used to probe the configuration and conformation of 2,3-didehydro-papilioerythrinone in situ within crimson C. macrorhynchos and purple-red E. javanicus feathers. The rR spectra reveal that the pigment is in an all-trans configuration and appears to be relatively planar in the feathers. The likely metabolic pathways for the production of broadbill carotenoids from dietary precursors are discussed.
Collapse
Affiliation(s)
- Richard O Prum
- Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, 21 Sachem Street, New Haven, CT, 06511, USA,
| | | | | | | | | |
Collapse
|
20
|
Butkus V, Valkunas L, Abramavicius D. Vibronic phenomena and exciton–vibrational interference in two-dimensional spectra of molecular aggregates. J Chem Phys 2014; 140:034306. [DOI: 10.1063/1.4861466] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
21
|
Distinctive character of electronic and vibrational coherences in disordered molecular aggregates. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.09.043] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|