1
|
Allahyarov E, Löwen H, Denton AR. Structural correlations in highly asymmetric binary charged colloidal mixtures. Phys Chem Chem Phys 2022; 24:15439-15451. [PMID: 35708479 DOI: 10.1039/d2cp01343f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We explore structural correlations of strongly asymmetric mixtures of binary charged colloids within the primitive model of electrolytes considering large charge and size ratios of 10 and higher. Using computer simulations with explicit microions, we obtain the partial pair correlation functions between the like-charged colloidal macroions. Interestingly the big-small correlation peak amplitude is smaller than that of the big-big and small-small macroion correlation peaks, which is unfamiliar for additive repulsive interactions. Extracting optimal effective microion-averaged pair interactions between the macroions, we find that on top of non-additive Yukawa-like repulsions an additional shifted Gaussian attractive potential between the small macroions is needed to accurately reproduce their correct pair correlations. For small Coulomb couplings, the behavior is reproduced in a coarse-grained theory with microion-averaged effective interactions between the macroions. However, the accuracy of the theory deteriorates with increasing Coulomb coupling. We emphasize the relevance of entropic interactions exerted by the microions on the macroions. Our results are experimentally verifiable in binary mixtures of micron-sized colloids and like-charge nanoparticles.
Collapse
Affiliation(s)
- Elshad Allahyarov
- Theoretical Department, Joint Institute for High Temperatures, Russian Academy of Sciences (IVTAN), 13/19 Izhorskaya Street, Moscow 125412, Russia. .,Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine Universität Düsseldorf, Universitätstrasse 1, 40225 Düsseldorf, Germany.,Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106-7202, USA
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine Universität Düsseldorf, Universitätstrasse 1, 40225 Düsseldorf, Germany
| | - Alan R Denton
- Department of Physics, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
2
|
Moradi M, He Q, Willing GA. Tuning the stabilization mechanism of nanoparticle-regulated complex fluids. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Weight BM, Denton AR. Structure and stability of charged colloid-nanoparticle mixtures. J Chem Phys 2018; 148:114904. [DOI: 10.1063/1.5004443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Braden M. Weight
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| | - Alan R. Denton
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| |
Collapse
|
4
|
Denton AR. Effective electrostatic interactions in colloid-nanoparticle mixtures. Phys Rev E 2017; 96:062610. [PMID: 29347449 DOI: 10.1103/physreve.96.062610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Interparticle interactions and bulk properties of colloidal suspensions can be substantially modified by the addition of nanoparticles. Extreme asymmetries in size and charge between colloidal particles and nanoparticles present severe computational challenges to molecular-scale modeling of such complex systems. We present a statistical mechanical theory of effective electrostatic interactions that can greatly ease large-scale modeling of charged colloid-nanoparticle mixtures. By applying a sequential coarse-graining procedure, we show that a multicomponent mixture of charged colloids, nanoparticles, counterions, and coions can be mapped first onto a binary mixture of colloids and nanoparticles and then onto a one-component model of colloids alone. In a linear-response approximation, the one-component model is governed by a single effective pair potential and a one-body volume energy, whose parameters depend nontrivially on nanoparticle size, charge, and concentration. To test the theory, we perform molecular dynamics simulations of the two-component and one-component models and compute structural properties. For moderate electrostatic couplings, colloid-colloid radial distribution functions and static structure factors agree closely between the two models, validating the sequential coarse-graining approach. Nanoparticles of sufficient charge and concentration enhance screening of electrostatic interactions, weakening correlations between charged colloids and destabilizing suspensions, consistent with experiments.
Collapse
Affiliation(s)
- Alan R Denton
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| |
Collapse
|
5
|
Kazi SN, Badarudin A, Zubir MNM, Ming HN, Misran M, Sadeghinezhad E, Mehrali M, Syuhada NI. Investigation on the use of graphene oxide as novel surfactant to stabilize weakly charged graphene nanoplatelets. NANOSCALE RESEARCH LETTERS 2015; 10:212. [PMID: 25995712 PMCID: PMC4435691 DOI: 10.1186/s11671-015-0882-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/26/2015] [Indexed: 05/21/2023]
Abstract
This paper presents a unique synergistic behavior between a graphene oxide (GO) and graphene nanoplatelet (GnP) composite in an aqueous medium. The results showed that GO stabilized GnP colloid near its isoelectric point and prevented rapid agglomeration and sedimentation. It was considered that a rarely encountered charge-dependent electrostatic interaction between the highly charged GO and weakly charged GnP particles kept GnP suspended at its rapid coagulation and phase separation pH. Sedimentation and transmission electron microscope (TEM) micrograph images revealed the evidence of highly stable colloidal mixtures while zeta potential measurement provided semi-quantitative explanation on the mechanism of stabilization. GnP suspension was confirmed via UV-vis spectral data while contact angle measurement elucidated the close resemblance to an aqueous solution indicating the ability of GO to mediate the flocculation prone GnP colloids. About a tenfold increase in viscosity was recorded at a low shear rate in comparison to an individual GO solution due to a strong interaction manifested between participating colloids. An optimum level of mixing ratio between the two constituents was also obtained. These new findings related to an interaction between charge-based graphitic carbon materials would open new avenues for further exploration on the enhancement of both GO and GnP functionalities particularly in mechanical and electrical domains.
Collapse
Affiliation(s)
- Salim Newaz Kazi
- />Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Jalan Universiti, 50603 Kuala Lumpur, Malaysia
| | - Ahmad Badarudin
- />Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Jalan Universiti, 50603 Kuala Lumpur, Malaysia
| | - Mohd Nashrul Mohd Zubir
- />Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Jalan Universiti, 50603 Kuala Lumpur, Malaysia
| | - Huang Nay Ming
- />Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, Jalan Universiti, 50603 Kuala Lumpur, Malaysia
| | - Misni Misran
- />Department of Chemistry, Faculty of Science, University of Malaya, Jalan Universiti, 50603 Kuala Lumpur, Malaysia
| | - Emad Sadeghinezhad
- />Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Jalan Universiti, 50603 Kuala Lumpur, Malaysia
| | - Mohammad Mehrali
- />Department of Mechanical Engineering and Advanced Material Research Centre, University of Malaya, Jalan Universiti, 50603 Kuala Lumpur, Malaysia
| | - Nur Ily Syuhada
- />Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, Jalan Universiti, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Wang H, Wang Y, Liu S, Yu J, Xu W, Guo Y, Huang J. An RNA aptamer-based electrochemical biosensor for sensitive detection of malachite green. RSC Adv 2014. [DOI: 10.1039/c4ra09850a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A RNA aptamer-based electrochemical biosensing strategy has been developed for sensitive and selective detection of malachite green.
Collapse
Affiliation(s)
- Hongzhi Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, P. R. China
| | - Yu Wang
- College of Biological Sciences and Technology
- University of Jinan
- Jinan 250022, P. R. China
| | - Su Liu
- College of Resources and Environment
- University of Jinan
- Jinan 250022, P. R. China
| | - Jinghua Yu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, P. R. China
| | - Wei Xu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, P. R. China
| | - Yuna Guo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022, P. R. China
| | - Jiadong Huang
- College of Biological Sciences and Technology
- University of Jinan
- Jinan 250022, P. R. China
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
| |
Collapse
|
7
|
Guerrero-García GI, González-Mozuelos P, Olvera de la Cruz M. Large counterions boost the solubility and renormalized charge of suspended nanoparticles. ACS NANO 2013; 7:9714-9723. [PMID: 24180597 DOI: 10.1021/nn404477b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Colloidal particles are ubiquitous in biology and in everyday products such as milk, cosmetics, lubricants, paints, or drugs. The stability and aggregation of colloidal suspensions are of paramount importance in nature and in diverse nanotechnological applications, including the fabrication of photonic materials and scaffolds for biological assemblies, gene therapy, diagnostics, targeted drug delivery, and molecular labeling. Electrolyte solutions have been extensively used to stabilize and direct the assembly of colloidal particles. In electrolytes, the effective electrostatic interactions among the suspended colloids can be changed over various length scales by tuning the ionic concentration. However, a major limitation is gelation or flocculation at high salt concentrations. This is explained by classical theories, which show that the electrostatic repulsion among charged colloids is significantly reduced at high electrolyte concentrations. As a result, these screened colloidal particles are expected to aggregate due to short-range attractive interactions or dispersion forces as the salt concentration increases. We discuss here a robust, tunable mechanism for colloidal stability by which large counterions prevent highly charged nanoparticles from aggregating in salt solutions with concentrations up to 1 M. Large counterions are shown to generate a thicker ionic cloud in the proximity of each charged colloid, which strengthens short-range repulsions among colloidal particles and also increases the corresponding renormalized colloidal charge perceived at larger separation distances. These effects thus provide a reliable stabilization mechanism in a broad range of biological and synthetic colloidal suspensions.
Collapse
|
8
|
Huang H, Ruckenstein E. Repulsive force between two microparticles decorated with highly charged nanoparticles. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|