1
|
Chang Z, Satija A, Lucht RP. Two-color polarization spectroscopy measurements of Zeeman state-to-state collision induced transitions of nitric oxide in binary gas mixtures. J Chem Phys 2023; 159:244309. [PMID: 38153153 DOI: 10.1063/5.0177626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023] Open
Abstract
We investigated collision induced transitions in the (0, 0) band of the A2Σ+-X2Π electronic transition of nitric oxide (NO) using two-color polarization spectroscopy (TCPS). Two sets of TCPS spectra for 1% NO, diluted in different buffer gases at 295 K and 1 atm, were obtained with the pump beam tuned to the R11(11.5) and OP12(1.5) transitions. The buffer gases were He, Ar, and N2. The probe was scanned while the pump beam was tuned to the line center. Theoretical TCPS spectra, calculated by solving the density matrix formulation of the time-dependent Schrödinger wave equation, were compared with the experimental spectra. A collision model based on the modified exponential-gap law was used to model the rotational level-to-rotational level collision dynamics. A model for collisional transfer from an initial to a final Zeeman state was developed based on the difference in cosine of the rotational quantum number J projection angle with the z-axis for the two Zeeman states. Rotational energy transfer rates and Zeeman state collisional dynamics were varied to obtain good agreement between theory and experiment for the two different TCPS pump transitions and for the three different buffer gases. One key finding, in agreement with quasi-classical trajectory calculations, is that the spin-rotation changing transition rate in the A2Σ+ level of NO is almost zero for rotational quantum numbers ≥8. It was necessary to set this rate to near zero to obtain agreement with the TCPS spectra.
Collapse
Affiliation(s)
- Ziqiao Chang
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Aman Satija
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Robert P Lucht
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
2
|
Bridgers A, Urquilla JA, Im J, Petit AS. Theoretical Study of the Photochemical Mechanisms of the Electronic Quenching of NO( A2Σ +) with CH 4, CH 3OH, and CO 2. J Phys Chem A 2023; 127:7228-7240. [PMID: 37552562 PMCID: PMC10476188 DOI: 10.1021/acs.jpca.3c03981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/15/2023] [Indexed: 08/10/2023]
Abstract
The electronic quenching of NO(A2Σ+) with molecular partners occurs through complex non-adiabatic dynamics that occurs on multiple coupled potential energy surfaces. Moreover, the propensity for NO(A2Σ+) electronic quenching depends heavily on the strength and nature of the intermolecular interactions between NO(A2Σ+) and the molecular partner. In this paper, we explore the electronic quenching mechanisms of three systems: NO(A2Σ+) + CH4, NO(A2Σ+) + CH3OH, and NO(A2Σ+) + CO2. Using EOM-EA-CCSD calculations, we rationalize the very low electronic quenching cross-section of NO(A2Σ+) + CH4 as well as the outcomes observed in previous NO + CH4 photodissociation studies. Our analysis of NO(A2Σ+) + CH3OH suggests that it will undergo facile electronic quenching mediated by reducing the intermolecular distance and significantly stretching the O-H bond of CH3OH. For NO(A2Σ+) + CO2, intermolecular attractions lead to a series of low-energy ON-OCO conformations in which the CO2 is significantly bent. For both the NO(A2Σ+) + CH3OH and NO(A2Σ+) + CO2 systems, we see evidence of the harpoon mechanism and low-energy conical intersections between NO(A2Σ+) + M and NO(X2Π) + M. Overall, this work provides the first detailed theoretical study on the NO(A2Σ+) + M potential energy surface of each of these systems and will inform future velocity map imaging experiments.
Collapse
Affiliation(s)
- Aerial
N. Bridgers
- Department of Chemistry and Biochemistry, California State University—Fullerton, Fullerton, California 92834-6866, United
States
| | - Justin A. Urquilla
- Department of Chemistry and Biochemistry, California State University—Fullerton, Fullerton, California 92834-6866, United
States
| | - Julia Im
- Department of Chemistry and Biochemistry, California State University—Fullerton, Fullerton, California 92834-6866, United
States
| | - Andrew S. Petit
- Department of Chemistry and Biochemistry, California State University—Fullerton, Fullerton, California 92834-6866, United
States
| |
Collapse
|
3
|
Luxford TM, Sharples TR, Fournier M, Soulié C, Paterson MJ, McKendrick KG, Costen ML. Differential Cross Sections for Pair-Correlated Rotational Energy Transfer in NO(A 2Σ +) + N 2, CO, and O 2: Signatures of Quenching Dynamics. J Phys Chem A 2023; 127:6251-6266. [PMID: 37481777 PMCID: PMC10405210 DOI: 10.1021/acs.jpca.3c03606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/07/2023] [Indexed: 07/25/2023]
Abstract
A crossed molecular beam, velocity-map ion-imaging apparatus has been used to determine differential cross sections (DCSs), as a function of collider final internal energy, for rotationally inelastic scattering of NO(A2Σ+, v = 0, j = 0.5f1) with N2, CO, and O2, at average collision energies close to 800 cm-1. DCSs are strongly forward scattered for all three colliders for all observed NO(A) final rotational states, N'. For collisions with N2 and CO, the fraction of NO(A) that is scattered sideways and backward increases with increasing N', as does the internal rotational excitation of the colliders, with N2 having the highest internal excitation. In contrast, the DCSs for collisions with O2 are essentially only forward scattered, with little rotational excitation of the O2. The sideways and backward scattering expected from low-impact-parameter collisions, and the rotational excitation expected from the orientational dependence of published van der Waals potential energy surfaces (PESs), are absent in the observed NO(A) + O2 results. This is consistent with the removal of these short-range scattering trajectories via facile electronic quenching of NO(A) by O2, in agreement with the literature determination of the coupled NO-O2 PESs and the associated conical intersections. In contrast, collisions at high-impact parameter that predominately sample the attractive van der Waals minimum do not experience quenching and are inelastically forward scattered with low rotational excitation.
Collapse
|
4
|
Sun ZF, Scheidsbach RJA, van Hemert MC, van der Avoird A, Suits AG, Parker DH. Imaging rotational energy transfer: comparative stereodynamics in CO + N 2 and CO + CO inelastic scattering. Phys Chem Chem Phys 2023. [PMID: 37377093 DOI: 10.1039/d3cp02229c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
State-to-state rotational energy transfer in collisions of ground ro-vibrational state 13CO molecules with N2 molecules has been studied using the crossed molecular beam method under kinematically equivalent conditions used for 13CO + CO rotationally inelastic scattering described in a previously published report (Sun et al., Science, 2020, 369, 307-309). The collisionally excited 13CO molecule products are detected by the same (1 + 1' + 1'') VUV (Vacuum Ultra-Violet) resonance enhanced multiphoton ionization scheme coupled with velocity map ion imaging. We present differential cross sections and scattering angle resolved rotational angular momentum alignment moments extracted from experimentally measured 13CO + N2 scattering images and compare them with theoretical predictions from quasi-classical trajectories (QCT) on a newly calculated 13CO-N2 potential energy surface (PES). Good agreement between experiment and theory is found, which confirms the accuracy of the 13CO-N2 potential energy surface for the 1460 cm-1 collision energy studied by experiment. Experimental results for 13CO + N2 are compared with those for 13CO + CO collisions. The angle-resolved product rotational angular momentum alignment moments for the two scattering systems are very similar, which indicates that the collision induced alignment dynamics observed for both systems are dominated by a hard-shell nature. However, compared to the 13CO + CO measurements, the primary rainbow maximum in the DCSs for 13CO + N2 is peaked consistently at more backward scattering angles and the secondary maximum becomes much less obvious, implying that the 13CO-N2 PES is less anisotropic. In addition, a forward scattering component with high rotational excitation seen for 13CO + CO does not appear for 13CO-N2 in the experiment and is not predicted by QCT theory. Some of these differences in collision dynamics behaviour can be predicted by a comparison between the properties of the PESs for the two systems. More specific behaviour is also predicted from analysis of the dependence on the relative collision geometry of 13CO + N2 trajectories compared to 13CO + CO trajectories, which shows the special 'do-si-do' pathway invoked for 13CO + CO is not effective for 13CO + N2 collisions.
Collapse
Affiliation(s)
- Zhong-Fa Sun
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Roy J A Scheidsbach
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Marc C van Hemert
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Ad van der Avoird
- Theoretical Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Arthur G Suits
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - David H Parker
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, China.
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Leng JG, Sharples TR, McKendrick KG, Costen ML. Stereodynamics of rotational energy transfer in NO( A2Σ +) + Kr collisions. Phys Chem Chem Phys 2022; 24:6525-6534. [PMID: 35257129 DOI: 10.1039/d1cp05960b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A crossed molecular beam, velocity-map ion imaging apparatus has been used to determine differential cross sections (DCSs) and angle-resolved rotational angular momentum alignment moments for the state-resolved rotationally inelastic scattering of NO(A2Σ+, v = 0, j = 0.5 f1) with Kr at an average collision energy of 785 cm-1. The experimental results are compared to close-coupled quantum scattering (QS) calculations performed on a literature ab initio potential energy surface (J. Kłos et al., J. Chem. Phys., 2008, 129, 244303). DCSs are very strongly forward scattered, with weaker side and backward scattered peaks becoming progressively more important at higher-N'. Good agreement is found between experimental and QS DCSs, indicating that the PES is an accurate reflection of the NO(A)-Kr interaction energies. Partial wave analysis of the QS DCSs isolates multiple scattering mechanisms contributing to the DCSs, including L-type rainbows and Fraunhofer diffraction. Measured alignment moments are not well described by a hard-shell kinematic apse scattering model, showing deviations in the forward scattering hemisphere that are in agreement with QS calculations and arise from attractive regions of the PES. These discrepancies emphasise that established scattering mechanisms for molecules such as NO with lighter noble gases cannot be extrapolated safely to heavier, more polarisable members of the series.
Collapse
Affiliation(s)
- Joseph G Leng
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Thomas R Sharples
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | | | - Matthew L Costen
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
6
|
Guardado JL, Urquilla JA, Kidwell NM, Petit AS. Reactive quenching of NO (A 2Σ +) with H 2O leads to HONO: a theoretical analysis of the reactive and nonreactive electronic quenching mechanisms. Phys Chem Chem Phys 2022; 24:26717-26730. [DOI: 10.1039/d2cp04214b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this study, we develop a mechanistic understanding of the pathways for nonreactive and reactive electronic quenching of NO (A2Σ+) with H2O. In doing so, we identify a photochemical mechanism for HONO production in the upper atmosphere.
Collapse
Affiliation(s)
- José L. Guardado
- Department of Chemistry and Biochemistry, California State University – Fullerton, Fullerton, CA 92834-6866, USA
| | - Justin A. Urquilla
- Department of Chemistry and Biochemistry, California State University – Fullerton, Fullerton, CA 92834-6866, USA
| | - Nathanael M. Kidwell
- Department of Chemistry, The College of William and Mary, Williamsburg, VA 23187-8795, USA
| | - Andrew S. Petit
- Department of Chemistry and Biochemistry, California State University – Fullerton, Fullerton, CA 92834-6866, USA
| |
Collapse
|
7
|
Guardado JL, Hood DJ, Luong K, Kidwell NM, Petit AS. Stereodynamic Control of Collision-Induced Nonadiabatic Dynamics of NO ( A2Σ +) with H 2, N 2, and CO: Intermolecular Interactions Drive Collision Outcomes. J Phys Chem A 2021; 125:8803-8815. [PMID: 34606268 DOI: 10.1021/acs.jpca.1c05653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intermolecular interactions, stereodynamics, and coupled potential energy surfaces (PESs) all play a significant role in determining the outcomes of molecular collisions. A detailed knowledge of such processes is often essential for a proper interpretation of spectroscopic observations. For example, nitric oxide (NO), an important radical in combustion and atmospheric chemistry, is commonly quantified using laser-induced fluorescence on the A2Σ+ ← X2Π transition band. However, the electronic quenching of NO (A2Σ+) with other molecular species provides alternative nonradiative pathways that compete with fluorescence. While the cross sections and rate constants of NO (A2Σ+) electronic quenching have been experimentally measured for a number of important molecular collision partners, the underlying photochemical mechanisms responsible for the electronic quenching are not well understood. In this paper, we describe the development of high-quality PESs that provide new physical insights into the intermolecular interactions and conical intersections that facilitate the branching between the electronic quenching and scattering of NO (A2Σ+) with H2, N2, and CO. The PESs are calculated at the EOM-EA-CCSD/d-aug-cc-pVTZ//EOM-EA-CCSD/aug-cc-pVDZ level of theory, an approach that ensures a balanced treatment of the valence and Rydberg electronic states and an accurate description of the open-shell character of NO. Our PESs show that H2 is incapable of electronically quenching NO (A2Σ+) at low collision energies; instead, the two molecules will likely undergo scattering. The PESs of NO (A2Σ+) with N2 and CO are highly anisotropic and demonstrate evidence of electron transfer from NO (A2Σ+) into the lowest unoccupied molecular orbital of the collision partner, that is, the harpoon mechanism. In the case of ON + CO, the PES becomes strongly attractive at longer intermolecular distances and funnels population to a conical intersection between NO (A2Σ+) + CO and NO (X2Π) + CO. In contrast, for ON + N2, the conical intersection is preceded by an ∼0.40 eV barrier. Overall, our work shines new light into the impact of coupled PESs on the nonadiabatic dynamics of open-shell systems.
Collapse
Affiliation(s)
- José L Guardado
- Department of Chemistry and Biochemistry, California State University-Fullerton, Fullerton, California 92834-6866, United States
| | - David J Hood
- Department of Chemistry, The College of William and Mary, Williamsburg, Virginia 23187-8795, United States
| | - Kate Luong
- Department of Chemistry and Biochemistry, California State University-Fullerton, Fullerton, California 92834-6866, United States
| | - Nathanael M Kidwell
- Department of Chemistry, The College of William and Mary, Williamsburg, Virginia 23187-8795, United States
| | - Andrew S Petit
- Department of Chemistry and Biochemistry, California State University-Fullerton, Fullerton, California 92834-6866, United States
| |
Collapse
|
8
|
Van Tat P, Thai Hoa T. Ab Initio Intermolecular Potential Energy Surfaces and Cross Second Virial Coefficients for the Dimer N 2-NO. ACS OMEGA 2020; 5:12539-12549. [PMID: 32548438 PMCID: PMC7271377 DOI: 10.1021/acsomega.0c01540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Ab initio intermolecular potential energy surfaces (PES) of N2-NO have been constructed at the level of theory CCSD(T) with the augmented correlation-consistent basis sets aug-cc-pVmZ (with m = 2, 3, 4). The nitrogen in the closed-shell electronic configuration X1Σ+ and nitric oxide in the open-shell electronic configuration A2Σ+ were employed to calculate ab initio intermolecular interaction energies. The two new ab initio 5-site intermolecular pair potentials at the theoretical level CCSD(T)/aug-cc-pVmZ (with m = 4, 24) were developed appropriately and are suitable for N2-NO dimer by using the nonlinear least-squares fitting method combining MIO and Levenberg-Marquardt algorithms. The correlation quality of these two potentials was found to be very good with R 2 values in the range of 0.98372 to 0.99775. The cross second virial coefficients B 12(T) of the N2-NO dimer were calculated in the temperature range of 100 to 470 K using the two ab initio 5-site potentials. The discrepancies between the calculated results and the experimental data can be acceptable.
Collapse
Affiliation(s)
- Pham Van Tat
- Department
for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
- Faculty
of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 758307, Viet Nam
| | - Tran Thai Hoa
- Department
of Chemistry, University of Sciences, Hue
University, Hue City 530000, Viet Nam
| |
Collapse
|
9
|
Brouard M, Chadwick H, Gordon SDS, Heid CG, Hornung B, Nichols B, Kłos J, Jambrina PG, Aoiz FJ. Differential cross sections and collision-induced rotational alignment in inelastic scattering of NO(X) by Xe. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2002020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Mark Brouard
- The Department of Chemistry, University of Oxford, The Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Helen Chadwick
- The Department of Chemistry, University of Oxford, The Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Sean D. S. Gordon
- The Department of Chemistry, University of Oxford, The Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Cornelia G. Heid
- The Department of Chemistry, University of Oxford, The Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Balazs Hornung
- The Department of Chemistry, University of Oxford, The Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Bethan Nichols
- The Department of Chemistry, University of Oxford, The Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jacek Kłos
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Pablo G. Jambrina
- Departamento de Química Física, Facultad de Ciencias Químicas, University of Salamanca, Salamanca, Spain
| | - F. Javier Aoiz
- Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
10
|
Blackshaw KJ, Quartey NK, Korb RT, Hood DJ, Hettwer CD, Kidwell NM. Imaging the nonreactive collisional quenching dynamics of NO (A 2Σ +) radicals with O 2 (X 3Σ g -). J Chem Phys 2019; 151:104304. [PMID: 31521090 DOI: 10.1063/1.5109112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nitric oxide (NO) radicals are ubiquitous chemical intermediates present in the atmosphere and in combustion processes, where laser-induced fluorescence is extensively used on the NO (A2Σ+ ← X2Π) band to report on fuel-burning properties. However, accurate fluorescence quantum yields and NO concentration measurements are impeded by electronic quenching of NO (A2Σ+) to NO (X2Π) with colliding atomic and molecular species. To improve predictive combustion models and develop a molecular-level understanding of NO (A2Σ+) quenching, we report the velocity map ion images and product state distributions of NO (X2Π, v″ = 0, J″, Fn, Λ) following nonreactive collisional quenching of NO (A2Σ+) with molecular oxygen, O2 (X3Σg -). A novel dual-flow pulse valve nozzle is constructed and implemented to carry out the NO (A2Σ+) electronic quenching studies and to limit NO2 formation. The isotropic ion images reveal that the NO-O2 system evolves through a long-lived NO3 collision complex prior to formation of products. Furthermore, the corresponding total kinetic energy release distributions support that O2 collision coproducts are formed primarily in the c1Σu - electronic state with NO (X2Π, v″ = 0, J″, Fn, Λ). The product state distributions also indicate that NO (X2Π) is generated with a propensity to occupy the Π(A″) Λ-doublet state, which is consistent with the NO π* orbital aligned perpendicular to nuclear rotation. The deviations between experimental results and statistical phase space theory simulations illustrate the key role that the conical intersection plays in the quenching dynamics to funnel population to product rovibronic levels.
Collapse
Affiliation(s)
- K Jacob Blackshaw
- Department of Chemistry, The College of William and Mary, Williamsburg, Virginia 23187-8795, USA
| | - Naa-Kwarley Quartey
- Department of Chemistry, The College of William and Mary, Williamsburg, Virginia 23187-8795, USA
| | - Robert T Korb
- Department of Chemistry, The College of William and Mary, Williamsburg, Virginia 23187-8795, USA
| | - David J Hood
- Department of Chemistry, The College of William and Mary, Williamsburg, Virginia 23187-8795, USA
| | - Christian D Hettwer
- Department of Chemistry, The College of William and Mary, Williamsburg, Virginia 23187-8795, USA
| | - Nathanael M Kidwell
- Department of Chemistry, The College of William and Mary, Williamsburg, Virginia 23187-8795, USA
| |
Collapse
|
11
|
Chandler DW, Houston PL, Parker DH. Perspective: Advanced particle imaging. J Chem Phys 2017; 147:013601. [PMID: 28688442 PMCID: PMC5648558 DOI: 10.1063/1.4983623] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/18/2017] [Indexed: 11/14/2022] Open
Abstract
Since the first ion imaging experiment [D. W. Chandler and P. L. Houston, J. Chem. Phys. 87, 1445-1447 (1987)], demonstrating the capability of collecting an image of the photofragments from a unimolecular dissociation event and analyzing that image to obtain the three-dimensional velocity distribution of the fragments, the efficacy and breadth of application of the ion imaging technique have continued to improve and grow. With the addition of velocity mapping, ion/electron centroiding, and slice imaging techniques, the versatility and velocity resolution have been unmatched. Recent improvements in molecular beam, laser, sensor, and computer technology are allowing even more advanced particle imaging experiments, and eventually we can expect multi-mass imaging with co-variance and full coincidence capability on a single shot basis with repetition rates in the kilohertz range. This progress should further enable "complete" experiments-the holy grail of molecular dynamics-where all quantum numbers of reactants and products of a bimolecular scattering event are fully determined and even under our control.
Collapse
Affiliation(s)
- David W Chandler
- Sandia National Laboratories, Combustion Research Facility, Livermore, California 94550, USA
| | - Paul L Houston
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - David H Parker
- Department of Laser and Molecular Physics, Radboud University of Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
12
|
Luxford TFM, Sharples TR, McKendrick KG, Costen ML. Pair-correlated stereodynamics for diatom-diatom rotational energy transfer: NO(A2Σ+) + N2. J Chem Phys 2017; 147:013912. [DOI: 10.1063/1.4979487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Thomas F. M. Luxford
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Thomas R. Sharples
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Kenneth G. McKendrick
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Matthew. L. Costen
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
13
|
Luxford TFM, Sharples TR, McKendrick KG, Costen ML. Experimental testing of ab initio potential energy surfaces: Stereodynamics of NO(A 2Σ +) + Ne inelastic scattering at multiple collision energies. J Chem Phys 2016; 145:174304. [PMID: 27825214 DOI: 10.1063/1.4966688] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a crossed molecular beam velocity-map ion imaging study of state-to-state rotational energy transfer of NO(A2Σ+, v = 0, N = 0, j = 0.5) in collisions with Ne atoms. From these measurements, we report differential cross sections and angle-resolved rotational angular momentum alignment moments for product states N' = 3 and 5-10 for collisions at an average energy of 523 cm-1, and N' = 3 and 5-14 for collisions at an average energy of 1309 cm-1, respectively. The experimental results are compared to the results of close-coupled quantum scattering calculations on two literature ab initio potential energy surfaces (PESs) [Pajón-Suárez et al., Chem. Phys. Lett. 429, 389 (2006) and Cybulski and Fernández, J. Phys. Chem. A 116, 7319 (2012)]. The differential cross sections from both experiment and theory show clear rotational rainbow structures at both collision energies, and comparison of the angles observed for the rainbow peaks leads to the conclusion that Cybulski and Fernández PES better represents the NO(A2Σ+)-Ne interaction at the collision energies used here. Sharp, forward scattered (<10°), peaks are observed in the experimental differential cross sections for a wide range of N' at both collision energies, which are not reproduced by theory on either PES. We identify these as L-type rainbows, characteristic of attractive interactions, and consistent with a shallow well in the collinear Ne-N-O geometry, similar to that calculated for the NO(A2Σ+)-Ar surface [Kłos et al., J. Chem. Phys. 129, 244303 (2008)], but absent from both of the NO(A2Σ+)-Ne surfaces tested here. The angle-resolved alignment moments calculated by quantum scattering theory are generally in good agreement with the experimental results, but both experiment and quantum scattering theories are dramatically different to the predictions of a classical rigid-shell, kinematic-apse conservation model. Strong oscillations are resolved in the experimental alignment moments as a function of scattering angle, confirming and extending the preliminary report of this behavior [Steill et al., J. Phys. Chem. A 117, 8163 (2013)]. These oscillations are correlated with structure in the differential cross section, suggesting an interference effect is responsible for their appearance.
Collapse
Affiliation(s)
- Thomas F M Luxford
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Thomas R Sharples
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Kenneth G McKendrick
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Matthew L Costen
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
14
|
Imaging quantum stereodynamics through Fraunhofer scattering of NO radicals with rare-gas atoms. Nat Chem 2016; 9:226-233. [DOI: 10.1038/nchem.2640] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/08/2016] [Indexed: 11/08/2022]
|
15
|
Luxford TFM, Sharples TR, Townsend D, McKendrick KG, Costen ML. Comparative stereodynamics in molecule-atom and molecule-molecule rotational energy transfer: NO(A(2)Σ(+)) + He and D2. J Chem Phys 2016; 145:084312. [PMID: 27586927 DOI: 10.1063/1.4961258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a crossed molecular beam scattering study, using velocity-map ion-imaging detection, of state-to-state rotational energy transfer for NO(A(2)Σ(+)) in collisions with the kinematically identical colliders He and D2. We report differential cross sections and angle-resolved rotational angular momentum polarization moments for transfer of NO(A, v = 0, N = 0, j = 0.5) to NO(A, v = 0, N' = 3, 5-12) in collisions with He and D2 at respective average collision energies of 670 cm(-1) and 663 cm(-1). Quantum scattering calculations on a literature ab initio potential energy surface for NO(A)-He [J. Kłos et al., J. Chem. Phys. 129, 244303 (2008)] yield near-quantitative agreement with the experimental differential scattering cross sections and good agreement with the rotational polarization moments. This confirms that the Kłos et al. potential is accurate within the experimental collisional energy range. Comparison of the experimental results for NO(A) + D2 and He collisions provides information on the hitherto unknown NO(A)-D2 potential energy surface. The similarities in the measured scattering dynamics of NO(A) imply that the general form of the NO(A)-D2 potential must be similar to that calculated for NO(A)-He. A consistent trend for the rotational rainbow maximum in the differential cross sections for NO(A) + D2 to peak at more forward angles than those for NO(A) + He is consistent with the NO(A)-D2 potential being more anisotropic with respect to NO(A) orientation. No evidence is found in the experimental measurements for coincident rotational excitation of the D2, consistent with the potential having low anisotropy with respect to D2. The NO(A) + He polarization moments deviate systematically from the predictions of a hard-shell, kinematic-apse scattering model, with larger deviations as N' increases, which we attribute to the shallow gradient of the anisotropic repulsive NO(A)-He potential energy surface.
Collapse
Affiliation(s)
- Thomas F M Luxford
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Thomas R Sharples
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Dave Townsend
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Kenneth G McKendrick
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Matthew L Costen
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
16
|
Holmes-Ross HL, Valenti RJ, Yu HG, Hall GE, Lawrance WD. Rotational and angular distributions of NO products from NO-Rg (Rg = He, Ne, Ar) complex photodissociation. J Chem Phys 2016; 144:044309. [PMID: 26827219 DOI: 10.1063/1.4940690] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present the results of an investigation into the rotational and angular distributions of the NO à state fragment following photodissociation of the NO-He, NO-Ne, and NO-Ar van der Waals complexes excited via the à ← X̃ transition. For each complex, the dissociation is probed for several values of Ea, the available energy above the dissociation threshold. For NO-He, the Ea values probed were 59, 172, and 273 cm(-1); for NO-Ne they were 50 and 166 cm(-1); and for NO-Ar they were 44, 94, 194, and 423 cm(-1). The NO à state rotational distributions arising from NO-He are cold, with most products in low angular momentum states. NO-Ne leads to broader NO rotational distributions but they do not extend to the maximum possible given the energy available. In the case of NO-Ar, the distributions extend to the maximum allowed at that energy and show the unusual shapes associated with the rotational rainbow effect reported in previous studies. This is the only complex for which a rotational rainbow effect is observed at the chosen Ea values. Product angular distributions have also been measured for the NO à photodissociation product for the three complexes. NO-He produces nearly isotropic fragments, but the anisotropy parameter, β, for NO-Ne and NO-Ar photofragments shows a surprising change in sign from negative to positive as Ea increases within the unstructured excitation profile. Franck-Condon selection of a broader distribution of geometries including more linear geometries at lower excitation energies and more T-shaped geometries at higher energies can account for the changing recoil anisotropy. Two-dimensional wavepacket calculations are reported to model the rotational state distributions and the bound-continuum absorption spectra.
Collapse
Affiliation(s)
- Heather L Holmes-Ross
- School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Rebecca J Valenti
- School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Hua-Gen Yu
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| | - Gregory E Hall
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| | - Warren D Lawrance
- School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| |
Collapse
|
17
|
Sharples TR, Luxford TFM, Townsend D, McKendrick KG, Costen ML. Rotationally inelastic scattering of NO(A(2)Σ(+)) + Ar: Differential cross sections and rotational angular momentum polarization. J Chem Phys 2015; 143:204301. [PMID: 26627953 DOI: 10.1063/1.4935962] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present the implementation of a new crossed-molecular beam, velocity-map ion-imaging apparatus, optimized for collisions of electronically excited molecules. We have applied this apparatus to rotational energy transfer in NO(A(2)Σ(+), v = 0, N = 0, j = 0.5) + Ar collisions, at an average energy of 525 cm(-1). We report differential cross sections for scattering into NO(A(2)Σ(+), v = 0, N' = 3, 5, 6, 7, 8, and 9), together with quantum scattering calculations of the differential cross sections and angle dependent rotational alignment. The differential cross sections show dramatic forward scattered peaks, together with oscillatory behavior at larger scattering angles, while the rotational alignment moments are also found to oscillate as a function of scattering angle. In general, the quantum scattering calculations are found to agree well with experiment, reproducing the forward scattering and oscillatory behavior at larger scattering angles. Analysis of the quantum scattering calculations as a function of total rotational angular momentum indicates that the forward scattering peak originates from the attractive minimum in the potential energy surface at the N-end of the NO. Deviations in the quantum scattering predictions from the experimental results, for scattering at angles greater than 10°, are observed to be more significant for scattering to odd final N'. We suggest that this represents inaccuracies in the potential energy surface, and in particular in its representation of the difference between the N- and O-ends of the molecule, as given by the odd-order Legendre moments of the surface.
Collapse
Affiliation(s)
- Thomas R Sharples
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Thomas F M Luxford
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Dave Townsend
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Kenneth G McKendrick
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Matthew L Costen
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
18
|
Suits AG, Bishwakarma CK, Song L, Groenenboom GC, van der Avoird A, Parker DH. Direct Extraction of Alignment Moments from Inelastic Scattering Images. J Phys Chem A 2015; 119:5925-31. [PMID: 25377301 DOI: 10.1021/jp509381q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We present a novel means of analyzing velocity-map images of angular momentum polarization in inelastic scattering. In this approach, linear combinations of angular distributions obtained by integrating select regions of images for two probe laser polarizations directly yield the alignment-free differential cross sections and the differential alignment moments. No fitting is needed in the analysis. The method relies on the fact that the angular distribution for out-of-plane scattering is encoded in the distribution along the relative velocity vector, and this may be recovered quantitatively owing to the redundancy of the in-plane and out-of-plane scattering for the horizontal polarization case.
Collapse
Affiliation(s)
- Arthur G Suits
- †Institute for Molecules and Materials, Radboud University, 6525, Nijmegen, The Netherlands.,‡Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | | - Lei Song
- †Institute for Molecules and Materials, Radboud University, 6525, Nijmegen, The Netherlands
| | - Gerrit C Groenenboom
- †Institute for Molecules and Materials, Radboud University, 6525, Nijmegen, The Netherlands
| | - Ad van der Avoird
- †Institute for Molecules and Materials, Radboud University, 6525, Nijmegen, The Netherlands
| | - David H Parker
- †Institute for Molecules and Materials, Radboud University, 6525, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Zhang X, Eyles CJ, Ding D, Stolte S. The modified quasi-quantum treatment of rotationally inelastic NO(X)-He scattering. Phys Chem Chem Phys 2015; 17:4067-75. [PMID: 25589218 DOI: 10.1039/c4cp01733a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A modified quasi-quantum treatment (MQQT) of molecular scattering has been developed to account for the softness of the repulsive part of the anisotropic atom-molecule PES. A contour of the PES is chosen such that the barrier height is just large enough to reflect the incoming kinetic energy, directed anti-parallel to the hard shell normal at the site of impact. The resulting rotationally inelastic quantum state resolved DCSs and ICSs of He + NO(X) at Ecol = 508 cm(-1) are compared to those obtained from regular QQT and from quantum mechanically exact calculations performed on the full highest quality ab initio Vsum PES. The MQQT parity changing DCSs for Δj ≤ 4 exhibit much better agreement with the QM DCSs than is obtained using regular QQT, particularly in the forward scattered direction. The improvements upon the remaining MQQT DCSs with respect to the regular QQT were minor, due to the near incompressible hard shell character of the n ≠ 1 or 3 anisotropic Legendre polynomial terms of the PES.
Collapse
Affiliation(s)
- Xia Zhang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012, China.
| | | | | | | |
Collapse
|
20
|
Brouard M, Chadwick H, Gordon SDS, Hornung B, Nichols B, Kłos J, Aoiz FJ, Stolte S. Fully quantum state-resolved inelastic scattering of NO(X) + Kr: Differential cross sections and product rotational alignment. J Chem Phys 2014; 141:164306. [DOI: 10.1063/1.4897558] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- M. Brouard
- The Department of Chemistry, University of Oxford, The Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - H. Chadwick
- The Department of Chemistry, University of Oxford, The Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - S. D. S. Gordon
- The Department of Chemistry, University of Oxford, The Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - B. Hornung
- The Department of Chemistry, University of Oxford, The Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - B. Nichols
- The Department of Chemistry, University of Oxford, The Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - J. Kłos
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - F. J. Aoiz
- Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - S. Stolte
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
21
|
McGurk SJ, Halpern JB, McKendrick KG, Costen ML. Parity-dependent rotational energy transfer in CN(A(2)Π, ν = 4, j F(1)ε) + N2, O2, and CO2 collisions. J Phys Chem A 2014; 118:2007-17. [PMID: 24552624 PMCID: PMC4004332 DOI: 10.1021/jp4123503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report state-resolved total removal cross sections and state-to-state rotational energy transfer (RET) cross sections for collisions of CN(A(2)Π, ν = 4, j F1ε) with N2, O2, and CO2. CN(X(2)Σ(+)) was produced by 266 nm photolysis of ICN in a thermal bath (296 K) of the collider gas. A circularly polarized pulse from a dye laser prepared CN(A(2)Π, ν = 4) in a range of F1e rotational states, j = 2.5, 3.5, 6.5, 11.5, 13.5, and 18.5. These prepared states were monitored using the circularly polarized output of an external cavity diode laser by frequency-modulated (FM) spectroscopy on the CN(A-X)(4,2) band. The FM Doppler profiles were analyzed as a function of pump-probe delay to determine the time dependence of the population of the initially prepared states. Kinetic analysis of the resulting time dependences was used to determine total removal cross sections from the initially prepared levels. In addition, a range of j' F1e and j' F2f product states resulting from rotational energy transfer out of the j = 6.5 F1e initial state were probed, from which state-to-state RET cross sections were measured. The total removal cross sections lie in the order CO2 > N2 > O2, with evidence for substantial cross sections for electronic and/or reactive quenching of CN(A, ν = 4) to unobserved products with CO2 and O2. This is supported by the magnitude of the state-to-state RET cross sections, where a deficit of transferred population is apparent for CO2 and O2. A strong propensity for conservation of rotational parity in RET is observed for all three colliders. Spin-orbit-changing cross sections are approximately half of those of the respective conserving cross sections. These results are in marked disagreement with previous experimental observations with N2 as a collider but are in good agreement with quantum scattering calculations from the same study ( Khachatrian et al. J. Phys. Chem. A 2009 , 113 , 3922 ). Our results with CO2 as a collider are similarly in strong disagreement with a related experimental study ( Khachatrian et al. J. Phys. Chem. A 2009 , 113 , 13390 ). We therefore propose that the previous experiments substantially underestimated the spin-orbit-changing cross sections for collisions with both N2 and CO2, suggesting that even approximate quantum scattering calculations may be more successful for such molecule-molecule systems than was previously concluded.
Collapse
Affiliation(s)
- Stephen J McGurk
- Institute of Chemical Sciences, Heriot-Watt University , Edinburgh EH14 4AS, United Kingdom
| | | | | | | |
Collapse
|
22
|
Chadwick H, Brouard M, Perkins T, Aoiz F. Collisional depolarisation in electronically excited radicals. INT REV PHYS CHEM 2014. [DOI: 10.1080/0144235x.2014.891855] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
McGurk SJ, McKendrick KG, Costen ML, Alexander MH, Dagdigian PJ. Parity-dependent oscillations in collisional polarization transfer: CN(A²Π, v = 4) + Ar. J Chem Phys 2013; 139:124304. [PMID: 24089764 DOI: 10.1063/1.4821602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the first systematic experimental and theoretical study of the state-to-state transfer of rotational angular momentum orientation in a (2)Π-rare gas system. CN(X(2)Σ(+)) was produced by pulsed 266 nm photolysis of ICN in a thermal bath (296 K) of Ar collider gas. A pulsed circularly polarized tunable dye laser prepared CN(A(2)Π, v = 4) in two fully state-selected initial levels, j = 6.5 F1e and j = 10.5 F2f, with a known laboratory-frame orientation. Both the prepared levels and a range of product levels, j' F1e and j' F2f, were monitored using the circular polarized output of a tunable diode laser via cw frequency-modulated (FM) spectroscopy in stimulated emission on the CN(A-X) (4,2) band. The FM Doppler lineshapes for co-rotating and counter-rotating pump-and-probe geometries reveal the time-dependence of the populations and orientations. Kinetic fitting was used to extract the state-to-state population transfer rate constants and orientation multipole transfer efficiencies (MTEs), which quantify the degree of conservation of initially prepared orientation in the product level. Complementary full quantum scattering (QS) calculations were carried out on recently computed ab initio potential energy surfaces. Collision-energy-dependent tensor cross sections for ranks K = 0 and 1 were computed for transitions from both initial levels to all final levels. These quantities were integrated over the thermal collision energy distribution to yield predictions of the experimentally observed state-to-state population transfer rate constants and MTEs. Excellent agreement between experiment and theory is observed for both measured quantities. Dramatic oscillations in the MTEs are observed, up to and including changes in the sign of the orientation, as a function of even/odd Δj within a particular spin-orbit and e/f manifold. These oscillations, along with those also observed in the state-to-state rate constants, reflect the rotational parity of the final level. In general, parity-conserving collisions conserve rotational orientation, while parity-changing collisions result in large changes in the orientation. The QS calculations show that the dynamics of the collisions leading to these different outcomes are fundamentally different. We propose that the origin of this behavior lies in interferences between collisions that sample the even and odd-λ terms in the angular expansions of the PESs.
Collapse
Affiliation(s)
- S J McGurk
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | | | | | | | | |
Collapse
|