1
|
Somashekharappa GM, Paul M, Govind C, Mathew R, Karunakaran V. Ultrafast Intermolecular Interaction Dynamics between NIR-Absorbing Unsymmetrical Squaraines and PCBM: Effects of Halogen Substitution. J Phys Chem B 2022; 126:4509-4519. [PMID: 35679578 DOI: 10.1021/acs.jpcb.1c10840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
Among near-infrared (NIR) dyes, squaraine derivatives are applied as efficient sensitizers in optoelectronic and biomedical devices due to their simple synthesis, intense absorption, and emission and exceptional photochemical stability. The fundamental understanding of the structure-property relationships of sensitizers provides the insight to increase the efficiency of such devices. Here, unsymmetrical squaraine derivatives (ABSQs) with donor-acceptor-donor (D-A-D') architectures having N,N-dimethyl amino anthracene and benzothiazole (ABSQ-H) halogenated with fluoride (ABSQ-F), chloride (ABSQ-Cl), and bromide (ABSQ-Br) were synthesized to understand the effect of halogen on the photophysical properties and intermolecular interaction dynamics with phenyl-C61-butyric acid methyl ester (PCBM), which is used widely as an electron acceptor in bulk heterojunction-based devices. Interestingly, ABSQ-H exhibited intense absorption (ε ∼ 6.72 × 104 M-1 cm-1) spectra centered at ∼660 nm. Upon halogen substitution, a bathochromic shift in the absorption spectra with an increase of molar absorptivity was observed (ε ∼ 8.59 × 104 M-1 cm-1), which is beneficial for NIR light harvesting. The femtosecond transient absorption spectra of ABSQs revealed that the polarity of the solvent controlled the excited-state relaxation dynamics. Upon addition of PCBM, the fluorescence intensity and dynamics of halogenated ABSQs were quenched, and the formation of a squaraine radical cation was observed, reflecting the occurrence of intermolecular charge-transfer dynamics between ABSQs and PCBM. Thus, the observation of a bathochromic shift with intense absorption and an efficient intermolecular interaction with PCBM upon halogenation of ABSQs provide a design strategy for the development of unsymmetrical squaraine derivatives for bulk heterojunction-based optoelectronic devices.
Collapse
Affiliation(s)
- Guruprasad M Somashekharappa
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Megha Paul
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chinju Govind
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ranimol Mathew
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Venugopal Karunakaran
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Ghosh A, Ghosh S, Ghosh G, Patra A. Implications of relaxation dynamics of collapsed conjugated polymeric nanoparticles for light-harvesting applications. Phys Chem Chem Phys 2021; 23:14549-14563. [DOI: 10.1039/d1cp01618k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
The mechanism of the formation of nanoparticles (collapsed state) from the extended state of polymers and their ultrafast excited state relaxation dynamics are illustrated.
Collapse
Affiliation(s)
- Arnab Ghosh
- School of Materials Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Srijon Ghosh
- School of Materials Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Goutam Ghosh
- School of Materials Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Amitava Patra
- School of Materials Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
- Institute of Nano Science and Technology
| |
Collapse
|
3
|
Gibbons DJ, Farawar A, Mazzella P, Leroy-Lhez S, Williams RM. Making triplets from photo-generated charges: observations, mechanisms and theory. Photochem Photobiol Sci 2020; 19:136-158. [DOI: 10.1039/c9pp00399a] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/17/2023]
Abstract
Photo-excitation of electron donor–acceptor systems can lead to the generation of a charge separated state (CT). Sometimes the charge recombination occurs mainly to the local triplet excited state (T1). How does the spin flip?
Collapse
Affiliation(s)
- Dáire J. Gibbons
- Molecular Photonics Group
- Van't Hoff Institute for Molecular Sciences (HIMS)
- Universiteit van Amsterdam
- 1098 XH Amsterdam
- Netherlands
| | - Aram Farawar
- Molecular Photonics Group
- Van't Hoff Institute for Molecular Sciences (HIMS)
- Universiteit van Amsterdam
- 1098 XH Amsterdam
- Netherlands
| | - Paul Mazzella
- Molecular Photonics Group
- Van't Hoff Institute for Molecular Sciences (HIMS)
- Universiteit van Amsterdam
- 1098 XH Amsterdam
- Netherlands
| | - Stéphanie Leroy-Lhez
- PEIRENE – EA7500
- Faculty of Sciences and Technology – University of Limoges
- 87060 Limoges
- France
| | - René M. Williams
- Molecular Photonics Group
- Van't Hoff Institute for Molecular Sciences (HIMS)
- Universiteit van Amsterdam
- 1098 XH Amsterdam
- Netherlands
| |
Collapse
|
4
|
Wan Y, Wiederrecht GP, Schaller RD, Johnson JC, Huang L. Transport of Spin-Entangled Triplet Excitons Generated by Singlet Fission. J Phys Chem Lett 2018; 9:6731-6738. [PMID: 30403874 DOI: 10.1021/acs.jpclett.8b02944] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 05/08/2023]
Abstract
Singlet fission provides a promising route for overcoming the Shockley-Queisser limit in solar cells using organic materials. Despite singlet fission dynamics having been extensively investigated, the transport of the various intermediates in relation to the singlet and triplet states is largely unknown. Here we employ temperature-dependent ultrafast transient absorption microscopy to image the transport of singlet fission intermediates in single crystals of tetracene. These measurements suggest a mobile singlet fission intermediate state at low temperatures, with a diffusion constant of 36 cm2s-1 at 5 K, approaching that for the free singlet excitons, which we attribute to the spin-entangled correlated triplet pair state 1[TT]. These results indicate that 1[TT] could transport with a similar mechanism as the bright singlet excitons, which has important implications in designing materials for singlet fission and spintronic applications.
Collapse
Affiliation(s)
- Yan Wan
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Gary P Wiederrecht
- Center for Nanoscale Materials , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Richard D Schaller
- Center for Nanoscale Materials , Argonne National Laboratory , Argonne , Illinois 60439 , United States
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Justin C Johnson
- National Renewable Energy Laboratory , 15013 Denver West Pkwy , Golden , Colorado 80401 , United States
| | - Libai Huang
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
5
|
Chen HC, Jiang BH, Hsu CP, Tsai YY, Jeng RJ, Chen CP, Wong KT. The Twisted Benzo[ghi
]-Perylenetriimide Dimer as a 3D Electron Acceptor for Fullerene-Free Organic Photovoltaics. Chemistry 2018; 24:17590-17597. [DOI: 10.1002/chem.201804088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Hung-Cheng Chen
- Department of Chemistry; National (Taiwan) University; Taipei 10617 Taiwan
| | - Bing-Huang Jiang
- Institute of Polymer Science and Engineering, and Advanced Research Center for Green Materials Science and Technology; National (Taiwan) University; Taipei 10617 Taiwan
| | - Chao-Ping Hsu
- Institute of Chemistry; Academia Sinica; Taipei 11529 Taiwan
| | - Yao-Yu Tsai
- Department of Materials Engineering; Ming Chi University of Technology; New Taipei City 243 Taiwan
| | - Ru-Jong Jeng
- Institute of Polymer Science and Engineering, and Advanced Research Center for Green Materials Science and Technology; National (Taiwan) University; Taipei 10617 Taiwan
| | - Chih-Ping Chen
- Department of Materials Engineering; Ming Chi University of Technology; New Taipei City 243 Taiwan
| | - Ken-Tsung Wong
- Department of Chemistry; National (Taiwan) University; Taipei 10617 Taiwan
| |
Collapse
|
6
|
Espinoza EM, Clark JA, Derr JB, Bao D, Georgieva B, Quina FH, Vullev VI. How Do Amides Affect the Electronic Properties of Pyrene? ACS OMEGA 2018; 3:12857-12867. [PMID: 31458010 PMCID: PMC6644773 DOI: 10.1021/acsomega.8b01581] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/09/2018] [Accepted: 09/24/2018] [Indexed: 05/12/2023]
Abstract
The electronic properties of amide linkers, which are intricate components of biomolecules, offer a wealth of unexplored possibilities. Herein, we demonstrate how the different modes of attaching an amide to a pyrene chromophore affect the electrochemical and optical properties of the chromophore. Thus, although they cause minimal spectral shifts, amide substituents can improve either the electron-accepting or electron-donating capabilities of pyrene. Specifically, inversion of the amide orientation shifts the reduction potentials by 200 mV. These trends indicate that, although amides affect to a similar extent the energies of the ground and singlet excited states of pyrene, the effects on the doublet states of its radical ions are distinctly different. This behavior reflects the unusually strong orientation dependence of the resonance effects of amide substituents, which should extend to amide substituents on other types of chromophores in general. These results represent an example where the Hammett sigma constants fail to predict substituent effects on electrochemical properties. On the other hand, Swain-Lupton parameters are found to be in good agreement with the observed trends. Examination of the frontier orbitals of the pyrene derivatives and their components reveals the underlying reason for the observed amide effects on the electronic properties of this polycyclic aromatic hydrocarbon and points to key molecular-design strategies for electronic and energy-conversion systems.
Collapse
Affiliation(s)
- Eli M. Espinoza
- Department
of Chemistry, Department of Bioengineering, Department of Biochemistry, and Materials Science
and Engineering Program, University of California, Riverside, California 92521, United States
- Instituto
de Química, Universidade de São
Paulo, Avenida Lineu
Prestes 748, Cidade Universitária, São
Paulo 05508-000, Brazil
| | - John A. Clark
- Department
of Chemistry, Department of Bioengineering, Department of Biochemistry, and Materials Science
and Engineering Program, University of California, Riverside, California 92521, United States
| | - James B. Derr
- Department
of Chemistry, Department of Bioengineering, Department of Biochemistry, and Materials Science
and Engineering Program, University of California, Riverside, California 92521, United States
| | - Duoduo Bao
- Department
of Chemistry, Department of Bioengineering, Department of Biochemistry, and Materials Science
and Engineering Program, University of California, Riverside, California 92521, United States
| | - Boriana Georgieva
- Department
of Chemistry, Department of Bioengineering, Department of Biochemistry, and Materials Science
and Engineering Program, University of California, Riverside, California 92521, United States
| | - Frank H. Quina
- Instituto
de Química, Universidade de São
Paulo, Avenida Lineu
Prestes 748, Cidade Universitária, São
Paulo 05508-000, Brazil
- E-mail: (F.H.Q.)
| | - Valentine I. Vullev
- Department
of Chemistry, Department of Bioengineering, Department of Biochemistry, and Materials Science
and Engineering Program, University of California, Riverside, California 92521, United States
- E-mail: (V.I.V.)
| |
Collapse
|
7
|
Manna MK, Shokri S, Wiederrecht GP, Gosztola DJ, Ayitou AJL. New perspectives for triplet-triplet annihilation based photon upconversion using all-organic energy donor & acceptor chromophores. Chem Commun (Camb) 2018; 54:5809-5818. [PMID: 29748666 DOI: 10.1039/c8cc01553h] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Abstract
It is recognized that metal organic complexes that serve as sensitizers can present various degrees of challenges viz. synthesis and stability for photonic applications such as triplet-triplet annihilation based photon upconversion (TTA-PUC). Presently, researchers, including our group, are turning their attention toward purely organic triplet sensitizers, which can be handled more easily for photon management science. In this review, we surveyed recently developed all-organic chromophoric systems that were devised and used for TTA-PUC research. Knowing that TTA-PUC research has mainly been focused on the design and synthesis of the triplet sensitizers, we detailed the underlying photophysics and thermodynamics that served as the starting point for the synthesis of the purely organic chromophores in question. Accordingly, this review details triplet sensitizers that operate on (i) spin-orbit coupling or heavy atom effect, (ii) Baird-type aromaticity and antiaromaticity, (iii) open-shell characteristics or doublet excited state and (iv) thermally activated delayed fluorescence.
Collapse
Affiliation(s)
- Manoj K Manna
- Department of Chemistry, Illinois Institute of Technology, 3101 S Dearborn Street South, Chicago, IL 60616, USA.
| | | | | | | | | |
Collapse
|
8
|
Shokri S, Li J, Manna MK, Wiederrecht GP, Gosztola DJ, Ugrinov A, Jockusch S, Rogachev AY, Ayitou AJL. A Naphtho-p-quinodimethane Exhibiting Baird’s (Anti)Aromaticity, Broken Symmetry, and Attractive Photoluminescence. J Org Chem 2017; 82:10167-10173. [DOI: 10.1021/acs.joc.7b01647] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Affiliation(s)
- Siamak Shokri
- Department
of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Jingbai Li
- Department
of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Manoj K. Manna
- Department
of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Gary P. Wiederrecht
- Center
for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - David J. Gosztola
- Center
for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Angel Ugrinov
- Department
of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58106, United States
| | - Steffen Jockusch
- Department
of Chemistry, Columbia University, New York, New York 10025, United States
| | - Andrey Yu Rogachev
- Department
of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - A. Jean-Luc Ayitou
- Department
of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| |
Collapse
|
9
|
Huo MM, Hu R, Yan W, Wang YT, Chee KWA, Wang Y, Zhang JP. Acceptor Side-Chain Effects on the Excited State Dynamics of Two-Dimensional-Like Conjugated Copolymers in Solution. Molecules 2017; 22:E1398. [PMID: 28841145 PMCID: PMC6151795 DOI: 10.3390/molecules22091398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/14/2017] [Accepted: 08/18/2017] [Indexed: 11/16/2022] Open
Abstract
Excited state dynamics of two-dimensional-like conjugated copolymers PFDCN and PFSDCN based on alternating fluorene and triphenylamine main chains and malononitrile pendant acceptor groups with thiophene as π-bridge, have been investigated by using transient absorption spectroscopy. There is an additional conjugated -C=C- bond in PFDCN, which distinguishes it from PFSDCN. The lowest energy absorption band of each copolymer absorption spectrum is attributed to the π-π* transition with intramolecular charge-transfer, which has a lower fluorescence contribution than those of higher energy absorption bands. The optical excitation of either PFDCN or PFSDCN solution generates polaron pairs that then self-localize and evolve to a bound singlet exciton within a few picoseconds. Due to the additional conjugated -C=C- bond in the acceptor side-chain, PFDCN has a stronger intramolecular charge-transfer characteristic compared with PFSDCN, therefore exhibiting a longer self-localization time (7 ps vs. 3 ps for PFSDCN) and a shorter fluorescence lifetime (1.48 ns vs. 1.60 ns for PFSDCN).
Collapse
Affiliation(s)
- Ming-Ming Huo
- Qingdao Research Center for Advanced Photonic Technologies, Laser Research Institute, Shandong Academy of Sciences, Qingdao 266100, China.
| | - Rong Hu
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Wei Yan
- Qingdao Research Center for Advanced Photonic Technologies, Laser Research Institute, Shandong Academy of Sciences, Qingdao 266100, China.
| | - Yi-Tong Wang
- Qingdao Research Center for Advanced Photonic Technologies, Laser Research Institute, Shandong Academy of Sciences, Qingdao 266100, China.
- Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China.
| | - Kuan W A Chee
- Qingdao Research Center for Advanced Photonic Technologies, Laser Research Institute, Shandong Academy of Sciences, Qingdao 266100, China.
- Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China.
| | - Yong Wang
- Qingdao Research Center for Advanced Photonic Technologies, Laser Research Institute, Shandong Academy of Sciences, Qingdao 266100, China.
| | - Jian-Ping Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
10
|
Chen HC, Hsu CP, Reek JNH, Williams RM, Brouwer AM. Highly Soluble Benzo[ghi]perylenetriimide Derivatives: Stable and Air-Insensitive Electron Acceptors for Artificial Photosynthesis. CHEMSUSCHEM 2015; 8:3639-50. [PMID: 26395847 PMCID: PMC4648035 DOI: 10.1002/cssc.201500950] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/13/2015] [Indexed: 06/05/2023]
Abstract
A series of new benzo[ghi]perylenetriimide (BPTI) derivatives has been synthesized and characterized. These remarkably soluble BPTI derivatives show strong optical absorption in the range of λ=300-500 nm and have a high triplet-state energy of 1.67 eV. A cyanophenyl substituent renders BPTI such a strong electron acceptor (Ered =-0.11 V vs. the normal hydrogen electrode) that electron-trapping reactions with O2 and H2 O do not occur. The BPTI radical anion on a fluorine-doped tin oxide|TiO2 electrode is persistent up to tens of seconds (t1/2 =39 s) in air-saturated buffer solution. As a result of favorable packing, theoretical electron mobilities (10(-2) ∼10(-1) cm(2) V(-1) s(-1)) are high and similar to the experimental values observed for perylene diimide and C60 derivatives. Our studies show the potential of the cyanophenyl-modified BPTI compounds as electron acceptors in devices for artificial photosynthesis in water splitting that are also very promising nonfullerene electron-transport materials for organic solar cells.
Collapse
Affiliation(s)
- Hung-Cheng Chen
- Van ‘t Hoff Institute for Molecular Sciences, University of AmsterdamP.O. Box 94157, 1090, GD, Amsterdam (The Netherlands) E-mail:
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica128 Section 2 Academia Road, Nankang, Taipei, 11529 (Taiwan)
| | - Joost N H Reek
- Van ‘t Hoff Institute for Molecular Sciences, University of AmsterdamP.O. Box 94157, 1090, GD, Amsterdam (The Netherlands) E-mail:
| | - René M Williams
- Van ‘t Hoff Institute for Molecular Sciences, University of AmsterdamP.O. Box 94157, 1090, GD, Amsterdam (The Netherlands) E-mail:
| | - Albert M Brouwer
- Van ‘t Hoff Institute for Molecular Sciences, University of AmsterdamP.O. Box 94157, 1090, GD, Amsterdam (The Netherlands) E-mail:
| |
Collapse
|
11
|
Synthesis, characterization, optical and electrochemical properties of a new chiral multichromophoric system based on perylene and naphthalene diimides. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2014.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/24/2022]
|
12
|
Yamaji M, Okamoto H, Hakoshima Y, Shinmyozu T. Photophysical and Photochemical Processes of Excited Singlet and Triplet [3n]Cyclophanes (n = 2–6) Studied by Emission Measurements and Steady-State and Laser Flash Photolyses. J Phys Chem A 2015; 119:1867-74. [DOI: 10.1021/jp511105v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/20/2023]
Affiliation(s)
- Minoru Yamaji
- Division
of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Hideki Okamoto
- Division
of Earth, Life, and Molecular Sciences, Graduate School of Natural
Sciences and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | |
Collapse
|