1
|
Knattrup Y, Kubečka J, Wu H, Jensen F, Elm J. Reparameterization of GFN1-xTB for atmospheric molecular clusters: applications to multi-acid-multi-base systems. RSC Adv 2024; 14:20048-20055. [PMID: 38911834 PMCID: PMC11191700 DOI: 10.1039/d4ra03021d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024] Open
Abstract
Atmospheric molecular clusters, the onset of secondary aerosol formation, are a major part of the current uncertainty in modern climate models. Quantum chemical (QC) methods are usually employed in a funneling approach to identify the lowest free energy cluster structures. However, the funneling approach highly depends on the accuracy of low-cost methods to ensure that important low-lying minima are not missed. Here we present a reparameterized GFN1-xTB model based on the clusteromics I-V datasets for studying atmospheric molecular clusters (AMC), denoted AMC-xTB. The AMC-xTB model reduces the mean of electronic binding energy errors from 7-11.8 kcal mol-1 to roughly 0 kcal mol-1 and the root mean square deviation from 7.6-12.3 kcal mol-1 to 0.81-1.45 kcal mol-1. In addition, the minimum structures obtained with AMC-xTB are closer to the ωB97X-D/6-31++G(d,p) level of theory compared to GFN1-xTB. We employ the new parameterization in two new configurational sampling workflows that include an additional meta-dynamics sampling step using CREST with the AMC-xTB model. The first workflow, denoted the "independent workflow", is a commonly used funneling approach with an additional CREST step, and the second, the "improvement workflow", is where the best configuration currently known in the literature is improved with a CREST + AMC-xTB step. Testing the new workflow we find configurations lower in free energy for all the literature clusters with the largest improvement being up to 21 kcal mol-1. Lastly, by employing the improvement workflow we massively screened 288 new multi-acid-multi-base clusters containing up to 8 different species. For these new multi-acid-multi-base cluster systems we observe that the improvement workflow finds configurations lower in free energy for 245 out of 288 (85.1%) cluster structures. Most of the improvements are within 2 kcal mol-1, but we see improvements up to 8.3 kcal mol-1. Hence, we can recommend this new workflow based on the AMC-xTB model for future studies on atmospheric molecular clusters.
Collapse
Affiliation(s)
- Yosef Knattrup
- Department of Chemistry, Aarhus University Langelandsgade 140, Aarhus C 8000 Denmark +45 28938085
| | - Jakub Kubečka
- Department of Chemistry, Aarhus University Langelandsgade 140, Aarhus C 8000 Denmark +45 28938085
| | - Haide Wu
- Department of Chemistry, Aarhus University Langelandsgade 140, Aarhus C 8000 Denmark +45 28938085
| | - Frank Jensen
- Department of Chemistry, Aarhus University Langelandsgade 140, Aarhus C 8000 Denmark +45 28938085
| | - Jonas Elm
- Department of Chemistry, Aarhus University Langelandsgade 140, Aarhus C 8000 Denmark +45 28938085
| |
Collapse
|
2
|
Zhou S, Hou Y, Kong X. Structural Diversity of Protonated Citric Acid-Ammonia Clusters and Its Atmospheric Implication. J Phys Chem A 2023; 127:8159-8167. [PMID: 37747993 DOI: 10.1021/acs.jpca.3c05160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Various acid-base molecular clusters involving organic species can serve as precursors that play important roles in the formation of an atmospheric aerosol. Due to its structural flexibility and its ability to form multiple hydrogen bonds, citric acid acts as a key species in forming clusters that are critical in the nucleation of related aerosol precursors. Thus, it is provoking to characterize the structures of these clusters at the molecular level. In this paper, protonated citric acid-ammonia clusters of various sizes were generated by electrospray ionization and studied by tandem mass spectrometry. The structures of [(CA)2+NH4]1+ and [(CA)4+NH4]1+ were further characterized by the method of infrared photodissociation (IRPD) spectroscopy. Combined with theoretical calculations, it is found that the most stable structures of the dimeric and tetrameric isomers show the shapes of an ingot and a lantern, respectively. It has been revealed that the temperature has a great effect on the contributions of different isomers for both dimers and tetramers. The dominat isomers are found to have more open structures at higher temperatures, facilitating the growth of clusters through new hydrogen bonds.
Collapse
Affiliation(s)
- Sijin Zhou
- State Key Laboratory of Element-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yameng Hou
- State Key Laboratory of Element-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xianglei Kong
- State Key Laboratory of Element-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Patla A, Subramanian R. Thermodynamic and optical properties of HCOOH(H 2O) n and HCOOH(NH 3)(H 2O) (n-1) clusters at various temperatures and pressures: a computational study. Phys Chem Chem Phys 2023; 25:7869-7880. [PMID: 36857704 DOI: 10.1039/d2cp03908g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Density functional theory has been used to compute the gas-phase geometries, binding energies, ZPE-corrected binding energies, BSSE-corrected binding energies, binding enthalpies, and binding free energies of HCOOH(H2O)n and HCOOH(NH3)(H2O)(n-1) clusters with n = 1-8, 10, 12, 14, 16, 18, and 20. Enthalpies and free energies are calculated for a range of atmospherically relevant temperatures (T) and pressures (P) (from T = 298.15 K, P = 1013.25 hPa to T = 216.65 K, P = 226.32 hPa). The optical properties of those clusters have been studied at the CAM-B3LYP/aug-cc-pVDZ level of theory.
Collapse
Affiliation(s)
- Arnab Patla
- Department of Chemistry, Indian Institute of Technology Patna, 801103, India.
| | - Ranga Subramanian
- Department of Chemistry, Indian Institute of Technology Patna, 801103, India.
| |
Collapse
|
4
|
Kubečka J, Neefjes I, Besel V, Qiao F, Xie HB, Elm J. Atmospheric Sulfuric Acid-Multi-Base New Particle Formation Revealed through Quantum Chemistry Enhanced by Machine Learning. J Phys Chem A 2023; 127:2091-2103. [PMID: 36811954 DOI: 10.1021/acs.jpca.3c00068] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The formation of molecular clusters and secondary aerosols in the atmosphere has a significant impact on the climate. Studies typically focus on the new particle formation (NPF) of sulfuric acid (SA) with a single base molecule (e.g., dimethylamine or ammonia). In this work, we examine the combinations and synergy of several bases. Specifically, we used computational quantum chemistry to perform configurational sampling (CS) of (SA)0-4(base)0-4 clusters with five different types of bases: ammonia (AM), methylamine (MA), dimethylamine (DMA), trimethylamine (TMA), and ethylenediamine (EDA). Overall, we studied 316 different clusters. We used a traditional multilevel funnelling sampling approach augmented by a machine-learning (ML) step. The ML made the CS of these clusters possible by significantly enhancing the speed and quality of the search for the lowest free energy configurations. Subsequently, the cluster thermodynamics properties were evaluated at the DLPNO-CCSD(T0)/aug-cc-pVTZ//ωB97X-D/6-31++G(d,p) level of theory. The calculated binding free energies were used to evaluate the cluster stabilities for population dynamics simulations. The resultant SA-driven NPF rates and synergies of the studied bases are presented to show that DMA and EDA act as nucleators (although EDA becomes weak in large clusters), TMA acts as a catalyzer, and AM/MA is often overshadowed by strong bases.
Collapse
Affiliation(s)
- Jakub Kubečka
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus 8000, Denmark
| | - Ivo Neefjes
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, Helsinki 00140, Finland
| | - Vitus Besel
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, Helsinki 00140, Finland
| | - Fukang Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jonas Elm
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus 8000, Denmark
| |
Collapse
|
5
|
Bready CJ, Fowler VR, Juechter LA, Kurfman LA, Mazaleski GE, Shields GC. The driving effects of common atmospheric molecules for formation of prenucleation clusters: the case of sulfuric acid, formic acid, nitric acid, ammonia, and dimethyl amine. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2022; 2:1469-1486. [PMID: 36561556 PMCID: PMC9648633 DOI: 10.1039/d2ea00087c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022]
Abstract
How secondary aerosols form is critical as aerosols' impact on Earth's climate is one of the main sources of uncertainty for understanding global warming. The beginning stages for formation of prenucleation complexes, that lead to larger aerosols, are difficult to decipher experimentally. We present a computational chemistry study of the interactions between three different acid molecules and two different bases. By combining a comprehensive search routine covering many thousands of configurations at the semiempirical level with high level quantum chemical calculations of approximately 1000 clusters for every possible combination of clusters containing a sulfuric acid molecule, a formic acid molecule, a nitric acid molecule, an ammonia molecule, a dimethylamine molecule, and 0-5 water molecules, we have completed an exhaustive search of the DLPNO-CCSD(T)/CBS//ωB97X-D/6-31++G** Gibbs free energy surface for this system. We find that the detailed geometries of each minimum free energy cluster are often more important than traditional acid or base strength. Addition of a water molecule to a dry cluster can enhance stabilization, and we find that the (SA)(NA)(A)(DMA)(W) cluster has special stability. Equilibrium calculations of SA, FA, NA, A, DMA, and water using our quantum chemical ΔG° values for cluster formation and realistic estimates of the concentrations of these monomers in the atmosphere reveals that nitric acid can drive early stages of particle formation just as efficiently as sulfuric acid. Our results lead us to believe that particle formation in the atmosphere results from the combination of many different molecules that are able to form highly stable complexes with acid molecules such as SA, NA, and FA.
Collapse
Affiliation(s)
- Conor J Bready
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - Vance R Fowler
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - Leah A Juechter
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - Luke A Kurfman
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - Grace E Mazaleski
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - George C Shields
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| |
Collapse
|
6
|
Bready CJ, Vanovac S, Odbadrakh TT, Shields GC. Amino Acids Compete with Ammonia in Sulfuric Acid-Based Atmospheric Aerosol Prenucleation: The Case of Glycine and Serine. J Phys Chem A 2022; 126:5195-5206. [PMID: 35896016 DOI: 10.1021/acs.jpca.2c03539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a computational investigation of the sulfuric acid, glycine, serine, ammonia, and water system to understand if this system can form prenucleation clusters, which are precursors to larger aerosols in the atmosphere. We have performed a comprehensive configurational search of all possible clusters in this system, starting with the four different monomers and zero to five waters. Accurate Gibbs free energies of formation have been calculated with the DLPNO-CCSD(T)/complete basis set (CBS) method on ωb97xd/6-31++G** geometries. For the dry dimers of sulfuric acid, the weakest base, serine, is found to form the most stable complex, which is a consequence of the strong di-ionic complex formed between the bisulfate ion and the protonated serine cation. For the dry dimers without sulfuric acid, the glycine-serine complex is more stable than the glycine-ammonia or serine-ammonia complexes, stemming from the detailed structure and not related to base strength. For the larger complexes, sulfuric acid deprotonates and the proton is shifted to glycine, serine, or ammonia. The two amino acids and ammonia are almost interchangeable and there is no easy way to predict which molecule will be protonated without the calculated results. Assuming reasonable starting concentrations and a closed system of sulfuric acid, glycine, serine, ammonia, and five waters, we predict the concentrations of all possible complexes at two temperatures spanning the troposphere. The most negative ΔG° values are a function of the detailed molecular interactions of these clusters. These details are more important than the base strength of ammonia, glycine, and serine.
Collapse
Affiliation(s)
- Conor J Bready
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Sara Vanovac
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Tuguldur T Odbadrakh
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - George C Shields
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| |
Collapse
|
7
|
Gao J, Wang R, Zhang T, Liu F, Wang W. Effect of methyl hydrogen sulfate on the formation of sulfuric acid‐ammonia clusters: A theoretical study. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiemiao Gao
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an PR China
| | - Rui Wang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment Science Shaanxi University of Technology Hanzhong PR China
| | - Tianlei Zhang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment Science Shaanxi University of Technology Hanzhong PR China
| | - Fengyi Liu
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an PR China
| | - Wenliang Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an PR China
| |
Collapse
|
8
|
Harold SE, Bready CJ, Juechter LA, Kurfman LA, Vanovac S, Fowler VR, Mazaleski GE, Odbadrakh TT, Shields GC. Hydrogen-Bond Topology Is More Important Than Acid/Base Strength in Atmospheric Prenucleation Clusters. J Phys Chem A 2022; 126:1718-1728. [PMID: 35235333 DOI: 10.1021/acs.jpca.1c10754] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We explored the hypothesis that on the nanoscale level, acids and bases might exhibit different behavior than in bulk solution. Our study system consisted of sulfuric acid, formic acid, ammonia, and water. We calculated highly accurate Domain-based Local pair-Natural Orbital- Coupled-Cluster/Complete Basis Set (DLPNO-CCSD(T)/CBS) energies on DFT geometries and used the resulting Gibbs free energies for cluster formation to compute the overall equilibrium constants for every possible cluster. The equilibrium constants combined with the initial monomer concentrations were used to predict the formation of clusters at the top and the bottom of the troposphere. Our results show that formic acid is as effective as ammonia at forming clusters with sulfuric acid and water. The structure of formic acid is uniquely suited to form hydrogen bonds with sulfuric acid. Additionally, it can partner with water to form bridges from one side of sulfuric acid to the other, hence demonstrating that hydrogen bonding topology is more important than acid/base strength in these atmospheric prenucleation clusters.
Collapse
Affiliation(s)
- Shannon E Harold
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Conor J Bready
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Leah A Juechter
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Luke A Kurfman
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Sara Vanovac
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Vance R Fowler
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Grace E Mazaleski
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Tuguldur T Odbadrakh
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - George C Shields
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| |
Collapse
|
9
|
Radola B, Picaud S, Ortega IK. DFT Study of the Formation of Atmospheric Aerosol Precursors from the Interaction between Sulfuric Acid and Benzenedicarboxylic Acid Molecules. J Phys Chem A 2022; 126:1211-1220. [PMID: 35147031 DOI: 10.1021/acs.jpca.1c08936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dicarboxylic acids are ubiquitous products of the photooxidation of volatile organic compounds which are believed to play a significant role in the formation of secondary organic aerosols in the atmosphere. In this paper, we report high-level quantum investigations of the clustering properties of sulfuric acid and benzenedicarboxylic acid molecules. Up to four molecules have been considered in the calculations, and the behavior of the three isomers of the organic diacid species have been compared. The most stable geometries have been characterized together with the corresponding thermodynamic data. From an atmospheric point of view, the results of the DFT calculations show that the organic diacid molecules may significantly enhance the nucleation of small atmospheric clusters, at least from an energetic point of view. In this respect, the phthalic acid isomer seems more efficient than the two other isomers of the benzenedicarboxylic acid, in particular because the internal distance between the two carboxyl groups in the organic diacids appears to play an important role in the stabilization of the H-bond network inside the corresponding heterocluster formed with sulfuric acid molecules.
Collapse
Affiliation(s)
- Bastien Radola
- Institut UTINAM─UMR 6213, CNRS/Université de Bourgogne Franche-Comté, F-25030 Besançon Cedex, France
| | - Sylvain Picaud
- Institut UTINAM─UMR 6213, CNRS/Université de Bourgogne Franche-Comté, F-25030 Besançon Cedex, France
| | - Ismael Kenneth Ortega
- Multi-Physics for Energetics Department, ONERA/Université Paris Saclay, F-91123 Palaiseau, France
| |
Collapse
|
10
|
Chen J. Studies on the conformation, thermodynamics, and evaporation rate characteristics of sulfuric acid and amines molecular clusters. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
11
|
Pal J, Patla A, Subramanian R. Thermodynamic properties of forming methanol-water and ethanol-water clusters at various temperatures and pressures and implications for atmospheric chemistry: A DFT study. CHEMOSPHERE 2021; 272:129846. [PMID: 33582505 DOI: 10.1016/j.chemosphere.2021.129846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
The gas-phase geometries, binding energies, enthalpies, and free energies of methanol-(water)n and ethanol-(water)n clusters containing n=1-10,20,30,40, and 50 water molecules have been calculated using density functional theory. The binding energies are calculated at 0 K. The enthalpies are calculated at a temperature of 298.15 K and pressure of 1013.25 hPa (1 atm). The free energies are calculated at a wide range of temperature (T) and pressure (P) (from T = 298.15 K, P = 1013.25 hPa to T = 216.65 K, P = 226.32 hPa). The results show that the free energy of the formation of a specific cluster from its free molecules is negative (i.e., favorable) only below some critical temperature and pressure, which depends on the cluster's size. One of the most common volatile organic compounds (VOCs) in the troposphere is methanol, ethanol, and atmospheric aerosols containing methanol and ethanol. The Rayleigh scattering properties of methanol-water and ethanol-water clusters have been investigated. The scattering intensities were computed at static (∞ nm) and different wavelengths (700, 600, 500, and 400 nm) of naturally polarized light. Rayleigh scattering intensities increase about 9%-10% at 400 nm compared to the static limit (∞ nm) for both methanol-water and ethanol-water clusters.
Collapse
Affiliation(s)
- Jagannath Pal
- Department of Chemistry, Indian Institute of Technology Patna, 801103, India
| | - Arnab Patla
- Department of Chemistry, Indian Institute of Technology Patna, 801103, India
| | - Ranga Subramanian
- Department of Chemistry, Indian Institute of Technology Patna, 801103, India.
| |
Collapse
|
12
|
Rosati B, Christiansen S, Wollesen de Jonge R, Roldin P, Jensen MM, Wang K, Moosakutty SP, Thomsen D, Salomonsen C, Hyttinen N, Elm J, Feilberg A, Glasius M, Bilde M. New Particle Formation and Growth from Dimethyl Sulfide Oxidation by Hydroxyl Radicals. ACS EARTH & SPACE CHEMISTRY 2021; 5:801-811. [PMID: 33889792 PMCID: PMC8054244 DOI: 10.1021/acsearthspacechem.0c00333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 05/30/2023]
Abstract
Dimethyl sulfide (DMS) is produced by plankton in oceans and constitutes the largest natural emission of sulfur to the atmosphere. In this work, we examine new particle formation from the primary pathway of oxidation of gas-phase DMS by OH radicals. We particularly focus on particle growth and mass yield as studied experimentally under dry conditions using the atmospheric simulation chamber AURA. Experimentally, we show that aerosol mass yields from oxidation of 50-200 ppb of DMS are low (2-7%) and that particle growth rates (8.2-24.4 nm/h) are comparable with ambient observations. An HR-ToF-AMS was calibrated using methanesulfonic acid (MSA) to account for fragments distributed across both the organic and sulfate fragmentation table. AMS-derived chemical compositions revealed that MSA was always more dominant than sulfate in the secondary aerosols formed. Modeling using the Aerosol Dynamics, gas- and particle-phase chemistry kinetic multilayer model for laboratory CHAMber studies (ADCHAM) indicates that the Master Chemical Mechanism gas-phase chemistry alone underestimates experimentally observed particle formation and that DMS multiphase and autoxidation chemistry is needed to explain observations. Based on quantum chemical calculations, we conclude that particle formation from DMS oxidation in the ambient atmosphere will most likely be driven by mixed sulfuric acid/MSA clusters clustering with both amines and ammonia.
Collapse
Affiliation(s)
- Bernadette Rosati
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, Vienna AT-1090, Austria
| | - Sigurd Christiansen
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | | | - Pontus Roldin
- Division
of Nuclear Physics, Lund University, P.O. Box 118, Lund SE-221
00, Sweden
| | - Mads Mørk Jensen
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Kai Wang
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Shamjad P. Moosakutty
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
- Clean Combustion
Research Center, King Abdullah University
of Science and Technology, Thuwal KSA-23955, Saudi Arabia
| | - Ditte Thomsen
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Camilla Salomonsen
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Noora Hyttinen
- Nano
and Molecular Systems Research Unit, University
of Oulu, P.O. Box 3000, Oulu FI-90014, Finland
- Department
of Applied Physics, University of Eastern
Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| | - Jonas Elm
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Anders Feilberg
- Department
of Biological and Chemical Engineering, Aarhus University, Finlandsgade
12, Aarhus N DK-8200, Denmark
| | - Marianne Glasius
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Merete Bilde
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| |
Collapse
|
13
|
Keshavarz F, Kurtén T, Vehkamäki H, Kangasluoma J. Seed-Adsorbate Interactions as the Key of Heterogeneous Butanol and Diethylene Glycol Nucleation on Ammonium Bisulfate and Tetramethylammonium Bromide. J Phys Chem A 2020; 124:10527-10539. [PMID: 33267578 DOI: 10.1021/acs.jpca.0c08373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Condensation particle counter (CPC) instruments are commonly used to detect atmospheric nanoparticles. They operate on the basis of condensing an organic working fluid on the nanoparticle seeds to grow the particles to a detectable size, and at the size of few nanometers, their efficiency depends on how well the working fluid interacts with the seeds under the measurement conditions. This study models the first steps of heterogeneous nucleation of two working fluids commonly used in CPCs (diethylene glycol (DEG) and n-butanol) onto two positively charged seeds, ammonium bisulfate and tetramethylammonium bromide. The nucleation process is modeled on a molecular level using a combination of systematic configurational sampling and density functional theory (DFT). We take into account the conformational flexibility of DEG and n-butanol and determine the key factors that can improve the efficiency of nanoparticle measurements by CPCs. The results show that hydrogen bonding between the seed and the working fluid molecules is central to the adsorption of the first DEG/n-butanol molecules onto the seeds. However, intermolecular hydrogen bonding between the adsorbed molecules can also enhance the nucleation process for the weakly adsorbing vapor molecules. Accordingly, the heterogeneous nucleation probability is higher for working fluid-nanoparticle combinations with a higher potential for hydrogen bonding; in this case, DEG and ammonium bisulfate. Moreover, conformational analysis and methodology evaluations indicate that the consideration of adsorbate conformers and step-wise addition of the vapor molecules to the seeds is not essential for qualitative modeling of heterogeneous nucleation systems, at least for systems where the adsorbate and seed chemical properties are clearly different. This is the first molecular-level modeling study reporting detailed chemical reasons for experimentally observed seed and working fluid preferences in CPCs and reproducing the experimental observations. Our presented approach can be likely used for predicting preferences in similar nucleating systems.
Collapse
Affiliation(s)
- Fatemeh Keshavarz
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
| | - Theo Kurtén
- Department of Chemistry, Faculty of Science, University of Helsinki, FI-00014 Helsinki, Finland
| | - Hanna Vehkamäki
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
| | - Juha Kangasluoma
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland.,Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| |
Collapse
|
14
|
Pal J, Teja PS, Subramanian R. Sodium and lithium ions in aerosol: thermodynamic and rayleigh light scattering properties. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02683-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Besel V, Kubečka J, Kurtén T, Vehkamäki H. Impact of Quantum Chemistry Parameter Choices and Cluster Distribution Model Settings on Modeled Atmospheric Particle Formation Rates. J Phys Chem A 2020; 124:5931-5943. [PMID: 32568535 DOI: 10.1021/acs.jpca.0c03984] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We tested the influence of various parameters on the new particle formation rate predicted for the sulfuric acid-ammonia system using quantum chemistry and cluster distribution dynamics simulations, in our case, Atmospheric Cluster Dynamics Code (ACDC). We found that consistent consideration of the rotational symmetry number of monomers (sulfuric acid and ammonia molecules, and bisulfate and ammonium ions) leads to a significant rise in the predicted particle formation rate, whereas inclusion of the rotational symmetry number of the clusters only changes the results slightly, and only in conditions where charged clusters dominate the particle formation rate. This is because most of the clusters stable enough to participate in new particle formation have a rotational symmetry number of 1, and few exceptions to this rule are positively charged clusters. In contrast, the application of the quasi-harmonic correction for low-frequency vibrational modes tends to generally decrease predicted new particle formation rates and also significantly alters the slope of the formation rate curve plotted against the sulfuric acid concentration, which is a typical convention in atmospheric aerosol science. The impact of the maximum size of the clusters explicitly included in the simulations depends on the simulated conditions. The errors arising from a limited set of clusters are higher for higher evaporation rates, and thus tend to increase with temperature. Similarly, the errors tend to be higher for lower vapor concentrations. The boundary conditions for outgrowing clusters (that are counted as formed particles) have only a small influence on the results, provided that the definition is chemically reasonable and that the set of simulated clusters is sufficiently large. A comparison with data from the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber and a cluster distribution dynamics model using older quantum chemistry input data shows improved agreement when using our new input data and the proposed combination of symmetry and quasi-harmonic corrections.
Collapse
Affiliation(s)
- Vitus Besel
- University of Helsinki, Physicum, Gustaf Hällströmin Katu 2, 00560 Helsinki, Finland
| | - Jakub Kubečka
- University of Helsinki, Physicum, Gustaf Hällströmin Katu 2, 00560 Helsinki, Finland
| | - Theo Kurtén
- University of Helsinki, Chemicum, A. I. Virtasen aukio 1, 00560 Helsinki, Finland
| | - Hanna Vehkamäki
- University of Helsinki, Physicum, Gustaf Hällströmin Katu 2, 00560 Helsinki, Finland
| |
Collapse
|
16
|
Chen D, Li D, Wang C, Luo Y, Liu F, Wang W. Atmospheric implications of hydration on the formation of methanesulfonic acid and methylamine clusters: A theoretical study. CHEMOSPHERE 2020; 244:125538. [PMID: 31835047 DOI: 10.1016/j.chemosphere.2019.125538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 05/20/2023]
Abstract
The effect of hydration on the formation mechanism of clusters consisting of methanesulfonic acid (MSA) and methylamine (MA) is investigated by quantum chemistry (Density Functional Theory, DFT) and kinetics simulation (Atmospheric Chemical Dynamic Code, ACDC) methods. The results showed that the process of hydration is favorable from the thermodynamic point of view, and the presence of water molecules can promote proton transfer significantly. Although MA has a significant influence on the formation rate of MSA-based clusters at the parts per trillion (ppt) levels, the effective nucleation of MSA-MA anhydrous clusters hardly seems to occur under common typical atmospheric conditions. The high concentrations of precursors ([MSA] > 6 × 107 molecules·cm-3 and [MA] > 1 ppt or [MSA] > 1 × 106 molecules·cm-3 and [MA] > 100 ppt) is necessary for the effective nucleation of the MSA-MA system. The formation rate of the MSA-MA system is enhanced significantly by hydration. The formation rate increases with the relative humidity (RH) and reached up to a factor of 2700 at RH = 40%. The formation mechanism of the hydrous system is different from the anhydrous system. The formation of (MSA)2 and (MSA)(MA) dimers is the rate-determining step of the anhydrous and hydrous systems, respectively. In addition, the growth pathway of clusters was complicated by low temperature and simplified by high humidity, respectively. In general, although humidity is a very favorable factor for the formation of the MSA-MA system, the involvement of other species (such as sulfuric acid) may be more effective to promote the nucleation of the MSA-MA system under typical atmospheric environment.
Collapse
Affiliation(s)
- Dongping Chen
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Danfeng Li
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Changwei Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yi Luo
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Fengyi Liu
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wenliang Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
17
|
Wang Y, Verma P, Zhang L, Li Y, Liu Z, Truhlar DG, He X. M06-SX screened-exchange density functional for chemistry and solid-state physics. Proc Natl Acad Sci U S A 2020; 117:2294-2301. [PMID: 31953258 PMCID: PMC7007546 DOI: 10.1073/pnas.1913699117] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Screened-exchange hybrid density functionals are especially recommended for solid-state systems because they combine the advantages of hybrid functionals with the correct physics and lower computational cost associated with the attenuation of Hartree-Fock exchange at long range. We present a screened-exchange hybrid functional, M06-SX, that combines the functional form of the local revM06-L functional with a percentage of short-range nonlocal Hartree-Fock exchange. The M06-SX functional gives good results not only for a large set of training data but also for several databases quite different from the training data. The mean unsigned error (MUE) of the M06-SX functional is 2.85 kcal/mol for 418 atomic and molecular energies (AME418) in Minnesota Database 2019, which is better than all five other screened-exchange hybrid functionals tested in this work. The M06-SX functional also gives especially good results for semiconductor band gaps, molecular dissociation energies, noncovalent interactions, barrier heights, and electronic excitation energies excluding long-range charge transfer excitations. For the LC18 lattice constants database, the M06-SX functional gives an MUE of only 0.034 Å. Therefore, the M06-SX functional is well suited for studying molecular chemistry as well as solid-state physics.
Collapse
Affiliation(s)
- Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410006, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Pragya Verma
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455-0431
- Chemical Theory Center, University of Minnesota, Minneapolis, MN 55455-0431
- Nanoporous Materials Genome Center, University of Minnesota, Minneapolis, MN 55455-0431
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455-0431
| | - Lujia Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410006, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410006, China
| | - Donald G Truhlar
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455-0431;
- Chemical Theory Center, University of Minnesota, Minneapolis, MN 55455-0431
- Nanoporous Materials Genome Center, University of Minnesota, Minneapolis, MN 55455-0431
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455-0431
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China;
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China
| |
Collapse
|
18
|
Ni S, Bai FY, Pan XM. Atmospheric chemistry of thiourea: nucleation with urea and roles in NO2 hydrolysis. Phys Chem Chem Phys 2020; 22:8109-8117. [DOI: 10.1039/c9cp04300d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nucleation with urea and roles in NO2 hydrolysis in the presence of thiourea.
Collapse
Affiliation(s)
- Shuang Ni
- Institute of Functional Material Chemistry
- National & Local United Engineering Lab for Power Battery
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
| | - Feng-Yang Bai
- Institute of Catalysis for Energy and Environment
- College of Chemistry and Chemical Engineering
- Shenyang Normal University
- Shenyang
- People's Republic of China
| | - Xiu-Mei Pan
- Institute of Functional Material Chemistry
- National & Local United Engineering Lab for Power Battery
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
| |
Collapse
|
19
|
Ni S, Bai FY, Pan XM. Can nitrous acid contribute to atmospheric new particle formation from nitric acid and water? NEW J CHEM 2020. [DOI: 10.1039/d0nj02992k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The properties of (HNO3)(HONO)(H2O)n (n = 1–6) clusters are reported including thermodynamics, structures, temperature-dependence, intermolecular forces, optical properties, and evaporation rates.
Collapse
Affiliation(s)
- Shuang Ni
- Institute of Functional Material Chemistry
- National & Local United Engineering Lab for Power Battery
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
| | - Feng-Yang Bai
- Institute of Catalysis for Energy and Environment
- College of Chemistry and Chemical Engineering
- Shenyang Normal University
- Shenyang
- People's Republic of China
| | - Xiu-Mei Pan
- Institute of Functional Material Chemistry
- National & Local United Engineering Lab for Power Battery
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
| |
Collapse
|
20
|
Chen D, Wang W, Li D, Wang W. Atmospheric implication of synergy in methanesulfonic acid–base trimers: a theoretical investigation. RSC Adv 2020; 10:5173-5182. [PMID: 35498315 PMCID: PMC9049051 DOI: 10.1039/c9ra08760e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/24/2019] [Indexed: 11/27/2022] Open
Abstract
Synergy between molecules is ubiquitous in atmospheric clusters and significantly affects new particle formation (NPF). Herein, the effects of the synergy between base molecules on the stability and evaporation of MSA–X–Y (MSA = methanesulfonic acid; X, Y = ammonia (A), methylamine (M), or dimethylamine (D)) trimers were investigated via density functional theory (DFT) and the atmospheric clusters dynamic code (ACDC) method. The results show that proton transfer from MSA to X is exothermal and barrierless due to the synergy between X and Y molecules in MSA–X–Y trimers compared with MSA-X dimers. Cyclic hydrogen bonds are a typical characteristic of the stable trimers. Topological analysis using atoms in molecules (AIM) theory indicates that the electron density (ρ) and Laplacian of the electron density (∇2ρ) at the bond critical points (BCPs) in the trimers exceed the standard range of hydrogen bonds. The affinity for attaching a Y molecule to the MSA–X dimers and the substitution of Y1 (Y = A and MA) by Y2 (Y2 = MA and DMA) in the MSA–X–Y trimers are thermodynamically spontaneous. In addition, the cyclic stabilization energy of the MSA–X–Y trimers increased as the alkalinities of X and Y increased. The total evaporation rate of the trimers decreased as the alkalinities of X and Y increased. Low temperature and high pressure significantly facilitate the formation of trimers. It is further confirmed that synergy plays an important role in atmospheric NPF events. The effects of synergy of between X and Y on the stability of MSA–X–Y trimers were investigated via quantum chemical and kinetics simulation method.![]()
Collapse
Affiliation(s)
- Dongping Chen
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
- P. R. China
| | - Weina Wang
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
- P. R. China
| | - Danfeng Li
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
- P. R. China
| | - Wenliang Wang
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
- P. R. China
| |
Collapse
|
21
|
Wang H, Zhao X, Zuo C, Ma X, Xu F, Sun Y, Zhang Q. A molecular understanding of the interaction of typical aromatic acids with common aerosol nucleation precursors and their atmospheric implications. RSC Adv 2019; 9:36171-36181. [PMID: 35540604 PMCID: PMC9075000 DOI: 10.1039/c9ra07398a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 10/29/2019] [Indexed: 11/29/2022] Open
Abstract
Aromatic acids, which are generated from numerous anthropogenic emissions and secondary transformations, have been considered to play a crucial role in new particle formation. In this study, we performed theoretical calculations at the PW91PW91/6-311++G(3df,3pd) level to investigate the interaction between typical aromatic acids namely benzoic acid (BA), phenylacetic acid (PAA), phthalic acid (PA), isophthalic acid (mPA), and terephthalic acid (PTA) and common atmospheric nucleation precursors namely sulfuric acid (SA), water (H2O), ammonia (NH3), methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA). The geometric analysis, Gibbs free energy analysis, OH/NH-stretching vibrational frequency calculation, and atoms in molecules (AIM) analysis were conducted to determine the interactions in the complexes. The heterodimers formed a six to eight membered ring through four types of hydrogen bond, and the bond strength could be ranked in descending order: SO-H⋯O > O-H⋯O/N > N-H⋯O. The BA/PAA/mPA/PTA-SA complexes had the lowest Gibbs free energy values. PA was more likely to interact with NH3 or amines rather than SA due to an intra-molecular hydrogen bond. Additionally, the aromatic acids have similar ability to interact with SA and NH3 as monocarboxylic/dicarboxylic acid. The formation potential of the heterodimers from aromatic acids with common nucleation precursors in ambient atmosphere was investigated.
Collapse
Affiliation(s)
- Hetong Wang
- Shenzhen Research Institute of Shandong University Shenzhen 518057 P. R. China +86-532-5863198
- Environment Research Institute, Shandong University Qingdao 266237 P. R. China
| | - Xianwei Zhao
- Environment Research Institute, Shandong University Qingdao 266237 P. R. China
| | - Chenpeng Zuo
- Environment Research Institute, Shandong University Qingdao 266237 P. R. China
| | - Xiaohui Ma
- Environment Research Institute, Shandong University Qingdao 266237 P. R. China
| | - Fei Xu
- Shenzhen Research Institute of Shandong University Shenzhen 518057 P. R. China +86-532-5863198
- Environment Research Institute, Shandong University Qingdao 266237 P. R. China
| | - Yanhui Sun
- College of Environment and Safety Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University Qingdao 266237 P. R. China
| |
Collapse
|
22
|
Kulkarni AD. Molecular Hydration of Carbonic Acid: Ab Initio Quantum Chemical and Density Functional Theory Investigation. J Phys Chem A 2019; 123:5504-5516. [PMID: 31244117 DOI: 10.1021/acs.jpca.9b01122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular hydration of carbonic acid (H2CO3) is investigated in terms of bonding patterns in H2CO3···(H2O) n [ n = 1-4] hydrogen-bonded clusters within ab initio quantum chemical and density functional theory (DFT) frameworks. Successive addition of water molecules to H2CO3···H2O entails elongation of O-H (hydroxyl) bond as well as contraction of specific intermolecular hydrogen bonds signifying hydration of carbonic acid; these structural features get markedly enhanced under the continuum solvation framework. A comparison between the structurally similar clusters H2CO3···(H2O) n and HCOOH···(H2O) n [ n = 1-3] brings out the structural stability of the former. The present investigation in conjunction with the binding energy behavior of approaching water molecule(s) should serve as a precursor for pathways exploring aqueous dissociation of H2CO3 for larger clusters, as well as development of force-field potentials for acid dissociation process.
Collapse
Affiliation(s)
- Anant D Kulkarni
- Solid State and Structural Chemistry Unit , Indian Institute of Science , Bangalore 560012 , India
| |
Collapse
|
23
|
Verma P, Wang Y, Ghosh S, He X, Truhlar DG. Revised M11 Exchange-Correlation Functional for Electronic Excitation Energies and Ground-State Properties. J Phys Chem A 2019; 123:2966-2990. [DOI: 10.1021/acs.jpca.8b11499] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Pragya Verma
- Department of Chemistry, Chemical Theory Center, Nanoporous Materials Genome Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Ying Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410006, China
| | - Soumen Ghosh
- Department of Chemistry, Chemical Theory Center, Nanoporous Materials Genome Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry, New York University, Shanghai, Shanghai 200062, China
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, Nanoporous Materials Genome Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
24
|
Kildgaard JV, Mikkelsen KV, Bilde M, Elm J. Hydration of Atmospheric Molecular Clusters II: Organic Acid–Water Clusters. J Phys Chem A 2018; 122:8549-8556. [DOI: 10.1021/acs.jpca.8b07713] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jens Vive Kildgaard
- Department of Energy Conversion and Storage, DTU Energy, 2800 Kgs. Lyngby, Denmark
| | - Kurt V. Mikkelsen
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Merete Bilde
- Department of Chemistry and iClimate, Aarhus University, 8000 Aarhus, Denmark
| | - Jonas Elm
- Department of Chemistry and iClimate, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
25
|
Myllys N, Ponkkonen T, Passananti M, Elm J, Vehkamäki H, Olenius T. Guanidine: A Highly Efficient Stabilizer in Atmospheric New-Particle Formation. J Phys Chem A 2018; 122:4717-4729. [PMID: 29693391 DOI: 10.1021/acs.jpca.8b02507] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of a strong organobase, guanidine, in sulfuric acid-driven new-particle formation is studied using state-of-the-art quantum chemical methods and molecular cluster formation simulations. Cluster formation mechanisms at the molecular level are resolved, and theoretical results on cluster stability are confirmed with mass spectrometer measurements. New-particle formation from guanidine and sulfuric acid molecules occurs without thermodynamic barriers under studied conditions, and clusters are growing close to a 1:1 composition of acid and base. Evaporation rates of the most stable clusters are extremely low, which can be explained by the proton transfers and symmetrical cluster structures. We compare the ability of guanidine and dimethylamine to enhance sulfuric acid-driven particle formation and show that more than 2000-fold concentration of dimethylamine is needed to yield as efficient particle formation as in the case of guanidine. At similar conditions, guanidine yields 8 orders of magnitude higher particle formation rates compared to dimethylamine. Highly basic compounds such as guanidine may explain experimentally observed particle formation events at low precursor vapor concentrations, whereas less basic and more abundant bases such as ammonia and amines are likely to explain measurements at high concentrations.
Collapse
Affiliation(s)
- Nanna Myllys
- Institute for Atmospheric and Earth System Research/Physics , University of Helsinki , P.O. Box 64, 00014 Helsinki , Finland
| | - Tuomo Ponkkonen
- Institute for Atmospheric and Earth System Research/Physics , University of Helsinki , P.O. Box 64, 00014 Helsinki , Finland
| | - Monica Passananti
- Institute for Atmospheric and Earth System Research/Physics , University of Helsinki , P.O. Box 64, 00014 Helsinki , Finland
| | - Jonas Elm
- Department of Chemistry and iClimate , Aarhus University , Langelandsgade 140 , DK-8000 Aarhus , Denmark
| | - Hanna Vehkamäki
- Institute for Atmospheric and Earth System Research/Physics , University of Helsinki , P.O. Box 64, 00014 Helsinki , Finland
| | - Tinja Olenius
- Department of Environmental Science and Analytical Chemistry and Bolin Centre for Climate Research , Stockholm University , Svante Arrhenius väg 8 , SE-114 18 Stockholm , Sweden
| |
Collapse
|
26
|
Kildgaard JV, Mikkelsen KV, Bilde M, Elm J. Hydration of Atmospheric Molecular Clusters: A New Method for Systematic Configurational Sampling. J Phys Chem A 2018; 122:5026-5036. [PMID: 29741906 DOI: 10.1021/acs.jpca.8b02758] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a new systematic configurational sampling algorithm for investigating the potential energy surface of hydrated atmospheric molecular clusters. The algorithm is based on creating a Fibonacci sphere around each atom in the cluster and adding water molecules to each point in nine different orientations. For the sampling of water molecules to existing hydrogen bonds, the cluster is displaced along the hydrogen bond, and a water molecule is placed in between in three different orientations. Generated redundant structures are eliminated based on minimizing the root-mean-square distance of different conformers. Initially, the clusters are sampled using the semiempirical PM6 method and subsequently using density functional theory (M06-2X and ωB97X-D) with the 6-31++G(d,p) basis set. Applying the developed algorithm, we study the hydration of sulfuric acid with up to 15 water molecules. We find that the addition of the first four water molecules "saturate" the sulfuric acid molecule and that they are more thermodynamically favorable than the addition of water molecules 5-15. Using the large generated set of conformers, we assess the performance of approximate methods (ωB97X-D, M06-2X, PW91, and PW6B95-D3) in calculating the binding energies and assigning the global minimum conformation compared to high level CCSD(T)-F12a/VDZ-F12 reference calculations. The tested DFT functionals systematically overestimate the binding energies compared to coupled cluster calculations, and we find that this deficiency can be corrected by a simple scaling factor.
Collapse
Affiliation(s)
| | - Kurt V Mikkelsen
- Department of Chemistry , University of Copenhagen , Copenhagen , Denmark
| | - Merete Bilde
- Department of Chemistry and iClimate , Aarhus University , Aarhus , Denmark
| | - Jonas Elm
- Department of Chemistry and iClimate , Aarhus University , Aarhus , Denmark
| |
Collapse
|
27
|
Hong Y, Liu YR, Wen H, Miao SK, Huang T, Peng XQ, Jiang S, Feng YJ, Huang W. Interaction of oxalic acid with methylamine and its atmospheric implications. RSC Adv 2018; 8:7225-7234. [PMID: 35540338 PMCID: PMC9078381 DOI: 10.1039/c7ra13670f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/01/2018] [Indexed: 11/21/2022] Open
Abstract
Oxalic acid, which is one of the most common dicarboxylic acids, is expected to be an important component of atmospheric aerosols. However, the contribution of oxalic acid to the generation of new particles is still poorly understood. In this study, the structural characteristics and thermodynamics of (C2H2O4)(CH3NH2) n (n = 1-4) were investigated at the PW91PW91/6-311++G(3df,3pd) level of theory. We found that clusters formed by oxalic acid and methylamine are relatively stable, and the more the atoms participating in the formation of a ring-like structure, the more stable is the cluster. In addition, via the analysis of atmospheric relevance, it can be revealed that clusters of (C2H2O4)(CH3NH2) n (n = 1-4) have a noteworthy concentration in the atmosphere, which indicates that these clusters could be participating in new particle formation. Moreover, by comparison with (H2C2O4)(NH3) n (n = 1-6) species, it can be seen that oxalic acid is more readily bound to methylamine than to ammonia, which promotes nucleation or new particle formation. Finally, the Rayleigh scattering properties of clusters of (C2H2O4)(CH3NH2) n (n = 1-4) were investigated for the first time to determine their atmospheric implications.
Collapse
Affiliation(s)
- Yu Hong
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences Hefei Anhui 230031 China
- School of Information Science and Technology, University of Science and Technology of China Hefei Anhui 230026 China
| | - Yi-Rong Liu
- School of Information Science and Technology, University of Science and Technology of China Hefei Anhui 230026 China
| | - Hui Wen
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences Hefei Anhui 230031 China
| | - Shou-Kui Miao
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences Hefei Anhui 230031 China
- School of Information Science and Technology, University of Science and Technology of China Hefei Anhui 230026 China
| | - Teng Huang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences Hefei Anhui 230031 China
| | - Xiu-Qiu Peng
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences Hefei Anhui 230031 China
- School of Information Science and Technology, University of Science and Technology of China Hefei Anhui 230026 China
| | - Shuai Jiang
- School of Information Science and Technology, University of Science and Technology of China Hefei Anhui 230026 China
| | - Ya-Juan Feng
- School of Information Science and Technology, University of Science and Technology of China Hefei Anhui 230026 China
| | - Wei Huang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences Hefei Anhui 230031 China
- School of Information Science and Technology, University of Science and Technology of China Hefei Anhui 230026 China
- CAS Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences Xiamen Fujian 361021 China
| |
Collapse
|
28
|
Han YJ, Feng YJ, Miao SK, Jiang S, Liu YR, Wang CY, Chen J, Wang ZQ, Huang T, Li J, Huang W. Hydration of 3-hydroxy-4,4-dimethylglutaric acid with dimethylamine complex and its atmospheric implications. Phys Chem Chem Phys 2018; 20:25780-25791. [DOI: 10.1039/c8cp04029j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Changes in temperature affects the distribution of isomers, which facilitates the understanding of new particle formation in the atmosphere.
Collapse
|
29
|
Shi X, Zhang R, Sun Y, Xu F, Zhang Q, Wang W. A density functional theory study of aldehydes and their atmospheric products participating in nucleation. Phys Chem Chem Phys 2018; 20:1005-1011. [DOI: 10.1039/c7cp06226e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The products of aldehydes from aldol condensation, hydration, and polymerization reactions can promote new particle formation by stabilizing sulfuric acid.
Collapse
Affiliation(s)
- Xiangli Shi
- Environment Research Institute
- Shandong University
- Jinan 250100
- P. R. China
| | - Ruiming Zhang
- Environment Research Institute
- Shandong University
- Jinan 250100
- P. R. China
| | - Yanhui Sun
- College of Environment and Safety Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Fei Xu
- Environment Research Institute
- Shandong University
- Jinan 250100
- P. R. China
| | - Qingzhu Zhang
- Environment Research Institute
- Shandong University
- Jinan 250100
- P. R. China
| | - Wenxing Wang
- Environment Research Institute
- Shandong University
- Jinan 250100
- P. R. China
| |
Collapse
|
30
|
Xu J, Finlayson-Pitts BJ, Gerber RB. Nanoparticles grown from methanesulfonic acid and methylamine: microscopic structures and formation mechanism. Phys Chem Chem Phys 2017; 19:31949-31957. [PMID: 29177355 DOI: 10.1039/c7cp06489f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanisms of particle formation and growth in the atmosphere are of great interest due to their impacts on climate, health and visibility. However, the microscopic structures and related properties of the smallest nanoparticles are not known. In this paper we pursue computationally a microscopic description for the formation and growth of methanesulfonic acid (MSA) and methylamine (MA) particles under dry conditions. Energetic and dynamics simulations were used to assess the stabilities of proposed model structures for these particles. Density functional theory (DFT) and semi-empirical (PM3) calculations suggest that (MSA-MA)4 is a major intermediate in the growth process, with the dissociation energies, enthalpies and free energies indicating considerable stability for this cluster. Dynamics simulations show that this species is stable for at least 100 ps at temperatures up to 500 K, well above atmospheric temperatures. In order to reach experimentally detectable sizes (>1.4 nm), continuing growth is suggested to occur via clustering of (MSA-MA)4. The dimer (MSA-MA)4(MSA-MA)4 may be one of the smaller experimentally measured particles. Step by step addition of MSA to (MSA-MA)4, is also a likely potential growth mechanism when MSA is excess. In addition, an MSA-MA crystal is predicted to exist. These studies demonstrate that computations of particle structure and dynamics in the nano-size range can be useful for molecular level understanding of processes that grow clusters into detectable particles.
Collapse
Affiliation(s)
- Jing Xu
- Department of Chemistry, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
31
|
Revised M06-L functional for improved accuracy on chemical reaction barrier heights, noncovalent interactions, and solid-state physics. Proc Natl Acad Sci U S A 2017; 114:8487-8492. [PMID: 28739954 DOI: 10.1073/pnas.1705670114] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present the revM06-L functional, which we designed by optimizing against a larger database than had been used for Minnesota 2006 local functional (M06-L) and by using smoothness restraints. The optimization strategy reduced the number of parameters from 34 to 31 because we removed some large terms that increased the required size of the quadrature grid and the number of self-consistent-field iterations. The mean unsigned error (MUE) of revM06-L on 422 chemical energies is 3.07 kcal/mol, which is improved from 3.57 kcal/mol calculated by M06-L. The MUE of revM06-L for the chemical reaction barrier height database (BH76) is 1.98 kcal/mol, which is improved by more than a factor of 2 with respect to the M06-L functional. The revM06-L functional gives the best result among local functionals tested for the noncovalent interaction database (NC51), with an MUE of only 0.36 kcal/mol, and the MUE of revM06-L for the solid-state lattice constant database (LC17) is half that for M06-L. The revM06-L functional also yields smoother potential curves, and it predicts more-accurate results than M06-L for seven out of eight diversified test sets not used for parameterization. We conclude that the revM06-L functional is well suited for a broad range of applications in chemistry and condensed-matter physics.
Collapse
|
32
|
Myllys N, Olenius T, Kurtén T, Vehkamäki H, Riipinen I, Elm J. Effect of Bisulfate, Ammonia, and Ammonium on the Clustering of Organic Acids and Sulfuric Acid. J Phys Chem A 2017; 121:4812-4824. [DOI: 10.1021/acs.jpca.7b03981] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nanna Myllys
- Department
of Physics, University of Helsinki, Helsinki FI-00014, Finland
| | - Tinja Olenius
- Department of Environmental Science and Analytical Chemistry & Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
| | - Theo Kurtén
- Department
of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Hanna Vehkamäki
- Department
of Physics, University of Helsinki, Helsinki FI-00014, Finland
| | - Ilona Riipinen
- Department of Environmental Science and Analytical Chemistry & Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
| | - Jonas Elm
- Department
of Physics, University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
33
|
Elm J, Myllys N, Kurtén T. What Is Required for Highly Oxidized Molecules To Form Clusters with Sulfuric Acid? J Phys Chem A 2017; 121:4578-4587. [DOI: 10.1021/acs.jpca.7b03759] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jonas Elm
- Department
of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Nanna Myllys
- Department
of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Theo Kurtén
- Department
of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
34
|
Zhang H, Kupiainen-Määttä O, Zhang X, Molinero V, Zhang Y, Li Z. The enhancement mechanism of glycolic acid on the formation of atmospheric sulfuric acid–ammonia molecular clusters. J Chem Phys 2017. [DOI: 10.1063/1.4982929] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Hanson DR, Bier I, Panta B, Jen CN, McMurry PH. Computational Fluid Dynamics Studies of a Flow Reactor: Free Energies of Clusters of Sulfuric Acid with NH3 or Dimethyl Amine. J Phys Chem A 2017; 121:3976-3990. [DOI: 10.1021/acs.jpca.7b00252] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- D. R. Hanson
- Augsburg College, Minneapolis Minnesota 55454, United States
| | - I. Bier
- Augsburg College, Minneapolis Minnesota 55454, United States
| | - B. Panta
- Augsburg College, Minneapolis Minnesota 55454, United States
| | - C. N. Jen
- University of California, Berkeley, Berkeley, California 94720, United States
| | - P. H. McMurry
- University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
36
|
Xu J, Finlayson-Pitts BJ, Gerber RB. Proton Transfer in Mixed Clusters of Methanesulfonic Acid, Methylamine, and Oxalic Acid: Implications for Atmospheric Particle Formation. J Phys Chem A 2017; 121:2377-2385. [DOI: 10.1021/acs.jpca.7b01223] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Xu
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| | | | - R. Benny Gerber
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
- Institute
of Chemistry, Fritz Haber Research Center, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
37
|
Ling J, Ding X, Li Z, Yang J. First-Principles Study of Molecular Clusters Formed by Nitric Acid and Ammonia. J Phys Chem A 2017; 121:661-668. [DOI: 10.1021/acs.jpca.6b09185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinfei Ling
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xunlei Ding
- Department
of Mathematics and Physics, North China Electric Power University, Beijing 102206, P. R. China
| | - Zhenyu Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
38
|
Elm J, Myllys N, Olenius T, Halonen R, Kurtén T, Vehkamäki H. Formation of atmospheric molecular clusters consisting of sulfuric acid and C8H12O6 tricarboxylic acid. Phys Chem Chem Phys 2017; 19:4877-4886. [DOI: 10.1039/c6cp08127d] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the structures and thermochemical properties of (MBTCA)1−3(H2SO4)1−4 atmospheric molecular clusters.
Collapse
Affiliation(s)
- Jonas Elm
- Division of Atmospheric Sciences
- Department of Physics
- University of Helsinki
- FI-00014 Helsinki
- Finland
| | - Nanna Myllys
- Division of Atmospheric Sciences
- Department of Physics
- University of Helsinki
- FI-00014 Helsinki
- Finland
| | - Tinja Olenius
- Department of Environmental Science and Analytical Chemistry (ACES) and Bolin Centre for Climate Research
- Stockholm University
- 10691 Stockholm
- Sweden
| | - Roope Halonen
- Division of Atmospheric Sciences
- Department of Physics
- University of Helsinki
- FI-00014 Helsinki
- Finland
| | - Theo Kurtén
- Department of Chemistry
- University of Helsinki
- FI-00014 Helsinki
- Finland
| | - Hanna Vehkamäki
- Division of Atmospheric Sciences
- Department of Physics
- University of Helsinki
- FI-00014 Helsinki
- Finland
| |
Collapse
|
39
|
Elm J, Kristensen K. Basis set convergence of the binding energies of strongly hydrogen-bonded atmospheric clusters. Phys Chem Chem Phys 2017; 19:1122-1133. [DOI: 10.1039/c6cp06851k] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the first binding energy benchmark set at the CBS limit of strongly hydrogen bonded atmospheric molecular clusters.
Collapse
Affiliation(s)
- Jonas Elm
- Division of Atmospheric Sciences
- Department of Physics
- University of Helsinki
- Finland
| | - Kasper Kristensen
- qLEAP Center for Theoretical Chemistry
- Department of Chemistry
- Aarhus University
- Denmark
| |
Collapse
|
40
|
Chen J, Jiang S, Liu YR, Huang T, Wang CY, Miao SK, Wang ZQ, Zhang Y, Huang W. Interaction of oxalic acid with dimethylamine and its atmospheric implications. RSC Adv 2017. [DOI: 10.1039/c6ra27945g] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxalic acid and dimethylamine are the most common organic acid and base in the atmosphere, and are recognized as significant precursor species in atmospheric new particle formation.
Collapse
Affiliation(s)
- Jiao Chen
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| | - Shuai Jiang
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| | - Yi-Rong Liu
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| | - Teng Huang
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| | - Chun-Yu Wang
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| | - Shou-Kui Miao
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| | - Zhong-Quan Wang
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| | - Yang Zhang
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| | - Wei Huang
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| |
Collapse
|
41
|
Elm J, Myllys N, Kurtén T. Phosphoric acid – a potentially elusive participant in atmospheric new particle formation. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1262558] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jonas Elm
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Nanna Myllys
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Theo Kurtén
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
42
|
Myllys N, Elm J, Kurtén T. Density functional theory basis set convergence of sulfuric acid-containing molecular clusters. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.10.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Partanen L, Vehkamäki H, Hansen K, Elm J, Henschel H, Kurtén T, Halonen R, Zapadinsky E. Effect of Conformers on Free Energies of Atmospheric Complexes. J Phys Chem A 2016; 120:8613-8624. [DOI: 10.1021/acs.jpca.6b04452] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lauri Partanen
- Laboratory
of Physical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio 1), FIN-00014 University of Helsinki, Finland
| | - Hanna Vehkamäki
- Department
of Physics, University of Helsinki, P.O. Box 64 (Gustaff Hällströmin
katu 2a), FIN-00014 University of Helsinki, Finland
| | - Klavs Hansen
- Tianjin
International Center of Nanoparticles and Nanosystems, Tianjin University, 92 Weijin Road, Nankai district, Tianjin 300072, P. R. China
- Department
of Physics, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Jonas Elm
- Department
of Physics, University of Helsinki, P.O. Box 64 (Gustaff Hällströmin
katu 2a), FIN-00014 University of Helsinki, Finland
| | - Henning Henschel
- Department
of Physics, University of Helsinki, P.O. Box 64 (Gustaff Hällströmin
katu 2a), FIN-00014 University of Helsinki, Finland
| | - Theo Kurtén
- Laboratory
of Physical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio 1), FIN-00014 University of Helsinki, Finland
| | - Roope Halonen
- Department
of Physics, University of Helsinki, P.O. Box 64 (Gustaff Hällströmin
katu 2a), FIN-00014 University of Helsinki, Finland
| | - Evgeni Zapadinsky
- Department
of Physics, University of Helsinki, P.O. Box 64 (Gustaff Hällströmin
katu 2a), FIN-00014 University of Helsinki, Finland
| |
Collapse
|
44
|
Elm J, Jen CN, Kurtén T, Vehkamäki H. Strong Hydrogen Bonded Molecular Interactions between Atmospheric Diamines and Sulfuric Acid. J Phys Chem A 2016; 120:3693-700. [PMID: 27128188 DOI: 10.1021/acs.jpca.6b03192] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate the molecular interaction between methyl-substituted N,N,N',N'-ethylenediamines, propane-1,3-diamine, butane-1,4-diamine, and sulfuric acid using computational methods. Molecular structure of the diamines and their dimer clusters with sulfuric acid is studied using three density functional theory methods (PW91, M06-2X, and ωB97X-D) with the 6-31++G(d,p) basis set. A high level explicitly correlated CCSD(T)-F12a/VDZ-F12 method is used to obtain accurate binding energies. The reaction Gibbs free energies are evaluated and compared with values for reactions involving ammonia and atmospherically relevant monoamines (methylamine, dimethylamine, and trimethylamine). We find that the complex formation between sulfuric acid and the studied diamines provides similar or more favorable reaction free energies than dimethylamine. Diamines that contain one or more secondary amino groups are found to stabilize sulfuric acid complexes more efficiently. Elongating the carbon backbone from ethylenediamine to propane-1,3-diamine or butane-1,4-diamine further stabilizes the complex formation with sulfuric acid by up to 4.3 kcal/mol. Dimethyl-substituted butane-1,4-diamine yields a staggering formation free energy of -19.1 kcal/mol for the clustering with sulfuric acid, indicating that such diamines could potentially be a key species in the initial step in the formation of new particles. For studying larger clusters consisting of a diamine molecule with up to four sulfuric acid molecules, we benchmark and utilize a domain local pair natural orbital coupled cluster (DLPNO-CCSD(T)) method. We find that a single diamine is capable of efficiently stabilizing sulfuric acid clusters with up to four acid molecules, whereas monoamines such as dimethylamine are capable of stabilizing at most 2-3 sulfuric acid molecules.
Collapse
Affiliation(s)
| | - Coty N Jen
- Department of Environmental Science, Policy and Management, UC Berkeley , Berkeley, California 94720, United States
| | | | | |
Collapse
|
45
|
Wang CY, Ma Y, Chen J, Jiang S, Liu YR, Wen H, Feng YJ, Hong Y, Huang T, Huang W. Bidirectional Interaction of Alanine with Sulfuric Acid in the Presence of Water and the Atmospheric Implication. J Phys Chem A 2016; 120:2357-71. [DOI: 10.1021/acs.jpca.5b11678] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chun-Yu Wang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yan Ma
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Jiao Chen
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuai Jiang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Yi-Rong Liu
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Hui Wen
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Ya-Juan Feng
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Yu Hong
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Teng Huang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Wei Huang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- School of Environmental Science & Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Center
for Excellence in Urban Atmospheric Environment, Institute of Urban
Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| |
Collapse
|
46
|
Elm J, Myllys N, Luy JN, Kurtén T, Vehkamäki H. The Effect of Water and Bases on the Clustering of a Cyclohexene Autoxidation Product C6H8O7 with Sulfuric Acid. J Phys Chem A 2016; 120:2240-9. [PMID: 26954007 DOI: 10.1021/acs.jpca.6b00677] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate the molecular interaction between sulfuric acid and a C6H8O7 ketodiperoxy acid compound (a proxy for highly oxidized products of, e.g., monoterpene autoxidation) in the presence of water, ammonia, or dimethylamine. The molecular geometries are obtained using density functional theory (M06-2X, PW91, and ωB97X-D) with the 6-31++G(d,p) basis set, and the binding energy is corrected utilizing a high-level DLPNO-CCSD(T)/def2-QZVPP calculation. The formation free energies were calculated (ΔG at 298 K and 1 atm), and the stability of the molecular clusters was evaluated. The presence of bases is found to enhance the interaction between ketodiperoxy acid compounds and sulfuric acid. The addition of C6H8O7 compounds to (H2SO4)(NH3) or (H2SO4)((CH3)2NH) clusters is, however, not able to compete with the corresponding uptake of another sulfuric acid molecule, even at a high loading of organic compounds. We furthermore investigate the origin of the weak binding of peroxyacid compounds using atoms in molecules and natural bonding orbital analysis. The weak binding is caused by an internal hydrogen bond and the lack of a strong hydrogen bond acceptor in the peroxyacid group. These findings indicate that autoxidation products containing solely or mainly hydroperoxide and carbonyl functional groups do not participate in the initial step of new particle formation and thereby only contribute to the growth of atmospheric particles.
Collapse
Affiliation(s)
| | | | - Jan-Niclas Luy
- Department of Chemistry, Philipps University , Marburg, Germany
| | | | | |
Collapse
|
47
|
Henschel H, Kurtén T, Vehkamäki H. Computational Study on the Effect of Hydration on New Particle Formation in the Sulfuric Acid/Ammonia and Sulfuric Acid/Dimethylamine Systems. J Phys Chem A 2016; 120:1886-96. [DOI: 10.1021/acs.jpca.5b11366] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Henning Henschel
- Division
of Atmospheric Sciences, Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
| | - Theo Kurtén
- Laboratory
of Physical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Hanna Vehkamäki
- Division
of Atmospheric Sciences, Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
| |
Collapse
|
48
|
Tsona NT, Bork N, Loukonen V, Vehkamäki H. A Closure Study of the Reaction between Sulfur Dioxide and the Sulfate Radical Ion from First-Principles Molecular Dynamics Simulations. J Phys Chem A 2016; 120:1046-50. [DOI: 10.1021/acs.jpca.5b12395] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Narcisse T. Tsona
- Division
of Atmospheric Sciences, Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 University of Helsinki, Finland
| | - Nicolai Bork
- Division
of Atmospheric Sciences, Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 University of Helsinki, Finland
| | - Ville Loukonen
- Division
of Atmospheric Sciences, Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 University of Helsinki, Finland
| | - Hanna Vehkamäki
- Division
of Atmospheric Sciences, Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 University of Helsinki, Finland
| |
Collapse
|
49
|
Peng XQ, Huang T, Miao SK, Chen J, Wen H, Feng YJ, Hong Y, Wang CY, Huang W. Hydration of oxalic acid–ammonia complex: atmospheric implication and Rayleigh-scattering properties. RSC Adv 2016. [DOI: 10.1039/c6ra03164a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A previous study of the binary system (H2C2O4)(NH3)n (n = 1–6) suggested that an oxalic acid–ammonia complex may participate in atmospheric aerosol formations.
Collapse
Affiliation(s)
- Xiu-Qiu Peng
- School of Environmental Science & Optoelectronic Technology
- University of Science and Technology of China
- Hefei
- China
- Laboratory of Atmospheric Physico-Chemistry
| | - Teng Huang
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| | - Shou-Kui Miao
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| | - Jiao Chen
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| | - Hui Wen
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| | - Ya-Juan Feng
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| | - Yu Hong
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| | - Chun-Yu Wang
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| | - Wei Huang
- School of Environmental Science & Optoelectronic Technology
- University of Science and Technology of China
- Hefei
- China
- Laboratory of Atmospheric Physico-Chemistry
| |
Collapse
|
50
|
Ortega IK, Donahue NM, Kurtén T, Kulmala M, Focsa C, Vehkamäki H. Can Highly Oxidized Organics Contribute to Atmospheric New Particle Formation? J Phys Chem A 2015; 120:1452-8. [DOI: 10.1021/acs.jpca.5b07427] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ismael K. Ortega
- Laboratoire
de Physique des Lasers, Atomes et Molécules, Université Lille 1, 59655 Villeneuve d’Ascq, France
| | - Neil M. Donahue
- Center
for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Theo Kurtén
- Department
of Chemistry, University of Helsinki, 00014 Helsinki, Finland
| | - Markku Kulmala
- Department
of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
| | - Cristian Focsa
- Laboratoire
de Physique des Lasers, Atomes et Molécules, Université Lille 1, 59655 Villeneuve d’Ascq, France
| | - Hanna Vehkamäki
- Department
of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
| |
Collapse
|