1
|
Noji T, Chiba Y, Saito K, Ishikita H. Energetics of the H-Bond Network in Exiguobacterium sibiricum Rhodopsin. Biochemistry 2024; 63:1505-1512. [PMID: 38745402 PMCID: PMC11155677 DOI: 10.1021/acs.biochem.4c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Exiguobacterium sibiricum rhodopsin (ESR) functions as a light-driven proton pump utilizing Lys96 for proton uptake and maintaining its activity over a wide pH range. Using a combination of methodologies including the linear Poisson-Boltzmann equation and a quantum mechanical/molecular mechanical approach with a polarizable continuum model, we explore the microscopic mechanisms underlying its pumping activity. Lys96, the primary proton uptake site, remains deprotonated owing to the loss of solvation in the ESR protein environment. Asp85, serving as a proton acceptor group for Lys96, does not form a low-barrier H-bond with His57. Instead, deprotonated Asp85 forms a salt-bridge with protonated His57, and the proton is predominantly located at the His57 moiety. Glu214, the only acidic residue at the end of the H-bond network exhibits a pKa value of ∼6, slightly elevated due to solvation loss. It seems likely that the H-bond network [Asp85···His57···H2O···Glu214] serves as a proton-conducting pathway toward the protein bulk surface.
Collapse
Affiliation(s)
- Tomoyasu Noji
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Yoshihiro Chiba
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
2
|
Chukhutsina VU, Hutchison CDM, van Thor JJ. The Carbonyl Group in β2 of the Carotenoid Tunes the Photocycle Kinetics in Orange Carotenoid Protein. J Mol Biol 2024; 436:168463. [PMID: 38307159 DOI: 10.1016/j.jmb.2024.168463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Adaptation to rapid environmental changes is crucial for maintaining optimal photosynthetic efficiency and is ultimately key to the survival of all photosynthetic organisms. Like most of them, cyanobacteria protect their photosynthetic apparatus against rapidly increasing light intensities by nonphotochemical quenching (NPQ). In cyanobacteria, NPQ is controlled by Orange Carotenoid Protein (OCP) photocycle. OCP is the only known photoreceptor that uses carotenoid for its light activation. How carotenoid drives and controls this unique photoactivation process is still unknown. However, understanding and potentially controlling the OCP photocycle may open up new possibilities for improving photosynthetic biomass. Here we investigate the effect of the carbonyl group in the β2 ring of the carotenoid on the OCP photocycle. We report microsecond to minute OCP light activation kinetics and Arrhenius plots of the two OCP forms: Canthaxanthin-bound OCP (OCPCAN) and echinenone-bound OCP (OCPECH). The difference between the two carotenoids is the presence of a carbonyl group in the β2-ring located in the N-terminal domain of the protein. A combination of temperature-dependent spectroscopy, flash photolysis, and pump-probe transient absorption allows us to report the previously unresolved OCP intermediate associated primarily with the absorption bleach (OCPB). OCPB dominates the photokinetics in the μs to subms time range for OCPCAN and in the μs to ms range for OCPECH. We show that in OCPCAN the OCP photocycle steps are always faster than in OCPECH: from 2 to almost 20 times depending on the step. These results suggest that the presence of the carbonyl group in the β2-ring of the carotenoid accelerates the OCP photocycle.
Collapse
Affiliation(s)
- Volha U Chukhutsina
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.
| | | | - Jasper J van Thor
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
3
|
Petrovskaya LE, Siletsky SA, Mamedov MD, Lukashev EP, Balashov SP, Dolgikh DA, Kirpichnikov MP. Features of the Mechanism of Proton Transport in ESR, Retinal Protein from Exiguobacterium sibiricum. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1544-1554. [PMID: 38105023 DOI: 10.1134/s0006297923100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 12/19/2023]
Abstract
Retinal-containing light-sensitive proteins - rhodopsins - are found in many microorganisms. Interest in them is largely explained by their role in light energy storage and photoregulation in microorganisms, as well as the prospects for their use in optogenetics to control neuronal activity, including treatment of various diseases. One of the representatives of microbial rhodopsins is ESR, the retinal protein of Exiguobacterium sibiricum. What distinguishes ESR from homologous proteins is the presence of a lysine residue (Lys96) as a proton donor for the Schiff base. This feature, along with the hydrogen bond of the proton acceptor Asp85 with the His57 residue, determines functional characteristics of ESR as a proton pump. This review examines the results of ESR studies conducted using various methods, including direct electrometry. Comparison of the obtained data with the results of structural studies and with other retinal proteins allows us to draw conclusions about the mechanisms of transport of hydrogen ions in ESR and similar retinal proteins.
Collapse
Affiliation(s)
- Lada E Petrovskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Sergei A Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Mahir D Mamedov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Eugene P Lukashev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergei P Balashov
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| | - Dmitry A Dolgikh
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
4
|
Okhrimenko IS, Kovalev K, Petrovskaya LE, Ilyinsky NS, Alekseev AA, Marin E, Rokitskaya TI, Antonenko YN, Siletsky SA, Popov PA, Zagryadskaya YA, Soloviov DV, Chizhov IV, Zabelskii DV, Ryzhykau YL, Vlasov AV, Kuklin AI, Bogorodskiy AO, Mikhailov AE, Sidorov DV, Bukhalovich S, Tsybrov F, Bukhdruker S, Vlasova AD, Borshchevskiy VI, Dolgikh DA, Kirpichnikov MP, Bamberg E, Gordeliy VI. Mirror proteorhodopsins. Commun Chem 2023; 6:88. [PMID: 37130895 PMCID: PMC10154332 DOI: 10.1038/s42004-023-00884-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/12/2023] [Indexed: 05/04/2023] Open
Abstract
Proteorhodopsins (PRs), bacterial light-driven outward proton pumps comprise the first discovered and largest family of rhodopsins, they play a significant role in life on the Earth. A big remaining mystery was that up-to-date there was no described bacterial rhodopsins pumping protons at acidic pH despite the fact that bacteria live in different pH environment. Here we describe conceptually new bacterial rhodopsins which are operating as outward proton pumps at acidic pH. A comprehensive function-structure study of a representative of a new clade of proton pumping rhodopsins which we name "mirror proteorhodopsins", from Sphingomonas paucimobilis (SpaR) shows cavity/gate architecture of the proton translocation pathway rather resembling channelrhodopsins than the known rhodopsin proton pumps. Another unique property of mirror proteorhodopsins is that proton pumping is inhibited by a millimolar concentration of zinc. We also show that mirror proteorhodopsins are extensively represented in opportunistic multidrug resistant human pathogens, plant growth-promoting and zinc solubilizing bacteria. They may be of optogenetic interest.
Collapse
Affiliation(s)
- Ivan S Okhrimenko
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Lada E Petrovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexey A Alekseev
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Egor Marin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey A Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Petr A Popov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- iMolecule, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Yuliya A Zagryadskaya
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Igor V Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Yury L Ryzhykau
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Alexey V Vlasov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Alexander I Kuklin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Andrey O Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anatolii E Mikhailov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Daniil V Sidorov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Siarhei Bukhalovich
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Fedor Tsybrov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey Bukhdruker
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anastasiia D Vlasova
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Valentin I Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Dmitry A Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Valentin I Gordeliy
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, Grenoble, France.
| |
Collapse
|
5
|
Petrovskaya LE, Lukashev EP, Mamedov MD, Kryukova EA, Balashov SP, Dolgikh DA, Rubin AB, Kirpichnikov MP, Siletsky SA. Oriented Insertion of ESR-Containing Hybrid Proteins in Proteoliposomes. Int J Mol Sci 2023; 24:ijms24087369. [PMID: 37108532 PMCID: PMC10138546 DOI: 10.3390/ijms24087369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Microbial rhodopsins comprise a diverse family of retinal-containing membrane proteins that convert absorbed light energy to transmembrane ion transport or sensory signals. Incorporation of these proteins in proteoliposomes allows their properties to be studied in a native-like environment; however, unidirectional protein orientation in the artificial membranes is rarely observed. We aimed to obtain proteoliposomes with unidirectional orientation using a proton-pumping retinal protein from Exiguobacterium sibiricum, ESR, as a model. Three ESR hybrids with soluble protein domains (mCherry or thioredoxin at the C-terminus and Caf1M chaperone at the N-terminus) were obtained and characterized. The photocycle of the hybrid proteins incorporated in proteoliposomes demonstrated a higher pKa of the M state accumulation compared to that of the wild-type ESR. Large negative electrogenic phases and an increase in the relative amplitude of kinetic components in the microsecond time range in the kinetics of membrane potential generation of ESR-Cherry and ESR-Trx indicate a decrease in the efficiency of transmembrane proton transport. On the contrary, Caf-ESR demonstrates a native-like kinetics of membrane potential generation and the corresponding electrogenic stages. Our experiments show that the hybrid with Caf1M promotes the unidirectional orientation of ESR in proteoliposomes.
Collapse
Affiliation(s)
- Lada E Petrovskaya
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Evgeniy P Lukashev
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, 119234 Moscow, Russia
| | - Mahir D Mamedov
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena A Kryukova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Sergei P Balashov
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Dmitry A Dolgikh
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, 119234 Moscow, Russia
| | - Andrei B Rubin
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, 119234 Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, 119234 Moscow, Russia
| | - Sergey A Siletsky
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
6
|
Belikov NE, Petrovskaya LE, Kryukova EA, Dolgikh DA, Lukashev EP, Lukin AY, Demina OV, Varfolomeev SD, Chupin VV, Khodonov AA. Interaction of the Fluorophenyl Analog of Retinal with Proteorhodopsin from Exiguobacterium sibiricum. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022060073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract—
We have developed an alternative method for the synthesis of an analog of natural retinal, which contains the p-fluorophenyl fragment instead of the trimethylcyclohexene ring. The proposed scheme for the synthesis of the target all-E-isomer of the target retinoid consists of using C5-phosphonate that contains the terminal nitrile group under Horner–Emmons reaction conditions. It has been shown that this scheme is more efficient and provides a higher total yield of the target product than the previously described variant. The procedure has been developed for the preparation of an analog of microbial proteorhodopsin ESRh from Exiguobacterium sibiricum, which contains a modified chromophore. It has been found that, as in the case of bacterioopsin from Halobacterium salinarum, the replacement of the trimethylcyclohexene ring in the natural chromophore by the p-fluorophenyl fragment does not prevent the formation of the artificial pigment F-Phe-ESRh from proteorhodopsin ESRh, which preserves the cycle of photochemical reactions. Certain differences have been found between the properties of native recombinant ESRh and its analog F-Phe-ESRh including a shift in the absorption maximum to the short-wavelength region, the formation of M intermediate at lower pH values, the presence of “long-lived M,” and a general slowdown in the photocycle. The reduced stability of the resulting proteorhodopsin analog F-Phe-ESRh to prolonged exposure to visible light has been also demonstrated.
Collapse
|
7
|
Petrovskaya LE, Lukashev EP, Siletsky SA, Imasheva ES, Wang JM, Mamedov MD, Kryukova EA, Dolgikh DA, Rubin AB, Kirpichnikov MP, Balashov SP, Lanyi JK. Proton transfer reactions in donor site mutants of ESR, a retinal protein from Exiguobacterium sibiricum. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112529. [PMID: 35878544 DOI: 10.1016/j.jphotobiol.2022.112529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Light-driven proton transport by microbial retinal proteins such as archaeal bacteriorhodopsin involves carboxylic residues as internal proton donors to the catalytic center which is a retinal Schiff base (SB). The proton donor, Asp96 in bacteriorhodopsin, supplies a proton to the transiently deprotonated Schiff base during the photochemical cycle. Subsequent proton uptake resets the protonated state of the donor. This two step process became a distinctive signature of retinal based proton pumps. Similar steps are observed also in many natural variants of bacterial proteorhodopsins and xanthorhodopsins where glutamic acid residues serve as a proton donor. Recently, however, an exception to this rule was found. A retinal protein from Exiguobacterium sibiricum, ESR, contains a Lys residue in place of Asp or Glu, which facilitates proton transfer from the bulk to the SB. Lys96 can be functionally replaced with the more common donor residues, Asp or Glu. Proton transfer to the SB in the mutants containing these replacements (K96E and K96D/A47T) is much faster than in the proteins lacking the proton donor (K96A and similar mutants), and in the case of K96D/A47T, comparable with that in the wild type, indicating that carboxylic residues can replace Lys96 as proton donors in ESR. We show here that there are important differences in the functioning of these residues in ESR from the way Asp96 functions in bacteriorhodopsin. Reprotonation of the SB and proton uptake from the bulk occur almost simultaneously during the M to N transition (as in the wild type ESR at neutral pH), whereas in bacteriorhodopsin these two steps are well separated in time and occur during the M to N and N to O transitions, respectively.
Collapse
Affiliation(s)
- Lada E Petrovskaya
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia.
| | - Evgeniy P Lukashev
- M. V. Lomonosov Moscow State University, Department of Biology, Leninskie gory, 1, Moscow 119234, Russia
| | - Sergey A Siletsky
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russian Federation.
| | - Eleonora S Imasheva
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Jennifer M Wang
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Mahir D Mamedov
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Elena A Kryukova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia; Emanuel Institute of Biochemical Physics, Kosygina str., 4, Moscow 119334, Russia
| | - Dmitriy A Dolgikh
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia; M. V. Lomonosov Moscow State University, Department of Biology, Leninskie gory, 1, Moscow 119234, Russia; Emanuel Institute of Biochemical Physics, Kosygina str., 4, Moscow 119334, Russia
| | - Andrei B Rubin
- M. V. Lomonosov Moscow State University, Department of Biology, Leninskie gory, 1, Moscow 119234, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia; M. V. Lomonosov Moscow State University, Department of Biology, Leninskie gory, 1, Moscow 119234, Russia
| | - Sergei P Balashov
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA.
| | - Janos K Lanyi
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| |
Collapse
|
8
|
Bondar AN. Mechanisms of long-distance allosteric couplings in proton-binding membrane transporters. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 128:199-239. [PMID: 35034719 DOI: 10.1016/bs.apcsb.2021.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Membrane transporters that use proton binding and proton transfer for function couple local protonation change with changes in protein conformation and water dynamics. Changes of protein conformation might be required to allow transient formation of hydrogen-bond networks that bridge proton donor and acceptor pairs separated by long distances. Inter-helical hydrogen-bond networks adjust rapidly to protonation change, and ensure rapid response of the protein structure and dynamics. Membrane transporters with known three-dimensional structures and proton-binding groups inform on general principles of protonation-coupled protein conformational dynamics. Inter-helical hydrogen bond motifs between proton-binding carboxylate groups and a polar sidechain are observed in unrelated membrane transporters, suggesting common principles of coupling protonation change with protein conformational dynamics.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- University of Bucharest, Faculty of Physics, Măgurele, Romania; Forschungszentrum Jülich, Institute of Computational Biomedicine, Jülich, Germany.
| |
Collapse
|
9
|
Mei G, Cavini CM, Mamaeva N, Wang P, DeGrip WJ, Rothschild KJ. Optical Switching Between Long-lived States of Opsin Transmembrane Voltage Sensors. Photochem Photobiol 2021; 97:1001-1015. [PMID: 33817800 PMCID: PMC8596844 DOI: 10.1111/php.13428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/27/2022]
Abstract
Opsin-based transmembrane voltage sensors (OTVSs) are membrane proteins increasingly used in optogenetic applications to measure voltage changes across cellular membranes. In order to better understand the photophysical properties of OTVSs, we used a combination of UV-Vis absorption, fluorescence and FT-Raman spectroscopy to characterize QuasAr2 and NovArch, two closely related mutants derived from the proton pump archaerhodopsin-3 (AR3). We find both QuasAr2 and NovArch can be optically cycled repeatedly between O-like and M-like states using 5-min exposure to red (660 nm) and near-UV (405 nm) light. Longer red-light exposure resulted in the formation of a long-lived photoproduct similar to pink membrane, previously found to be a photoproduct of the BR O intermediate with a 9-cis retinylidene chromophore configuration. However, unlike QuasAr2 whose O-like state is stable in the dark, NovArch exhibits an O-like state which slowly partially decays in the dark to a stable M-like form with a deprotonated Schiff base and a 13-cis,15-anti retinylidene chromophore configuration. These results reveal a previously unknown complexity in the photochemistry of OTVSs including the ability to optically switch between different long-lived states. The possible molecular basis of these newly discovered properties along with potential optogenetic and biotechnological applications are discussed.
Collapse
Affiliation(s)
- Gaoxiang Mei
- Molecular Biophysics LaboratoryDepartment of PhysicsPhotonics CenterBoston UniversityBostonMA
| | - Cesar M. Cavini
- Molecular Biophysics LaboratoryDepartment of PhysicsPhotonics CenterBoston UniversityBostonMA
| | - Natalia Mamaeva
- Molecular Biophysics LaboratoryDepartment of PhysicsPhotonics CenterBoston UniversityBostonMA
| | | | - Willem J. DeGrip
- Department of Biophysical Organic ChemistryLeiden Institute of ChemistryLeiden UniversityLeidenThe Netherlands
- Department of BiochemistryRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Kenneth J. Rothschild
- Molecular Biophysics LaboratoryDepartment of PhysicsPhotonics CenterBoston UniversityBostonMA
| |
Collapse
|
10
|
Sasaki S, Tamogami J, Nishiya K, Demura M, Kikukawa T. Replaceability of Schiff base proton donors in light-driven proton pump rhodopsins. J Biol Chem 2021; 297:101013. [PMID: 34329681 PMCID: PMC8387761 DOI: 10.1016/j.jbc.2021.101013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Many H+-pump rhodopsins conserve “H+ donor” residues in cytoplasmic (CP) half channels to quickly transport H+ from the CP medium to Schiff bases at the center of these proteins. For conventional H+ pumps, the donors are conserved as Asp or Glu but are replaced by Lys in the minority, such as Exiguobacterium sibiricum rhodopsin (ESR). In dark states, carboxyl donors are protonated, whereas the Lys donor is deprotonated. As a result, carboxyl donors first donate H+ to the Schiff bases and then capture the other H+ from the medium, whereas the Lys donor first captures H+ from the medium and then donates it to the Schiff base. Thus, carboxyl and Lys-type H+ pumps seem to have different mechanisms, which are probably optimized for their respective H+-transfer reactions. Here, we examined these differences via replacement of donor residues. For Asp-type deltarhodopsin (DR), the embedded Lys residue distorted the protein conformation and did not act as the H+ donor. In contrast, for Glu-type proteorhodopsin (PR) and ESR, the embedded residues functioned well as H+ donors. These differences were further examined by focusing on the activation volumes during the H+-transfer reactions. The results revealed essential differences between archaeal H+ pump (DR) and eubacterial H+ pumps PR and ESR. Archaeal DR requires significant hydration of the CP channel for the H+-transfer reactions; however, eubacterial PR and ESR require the swing-like motion of the donor residue rather than hydration. Given this common mechanism, donor residues might be replaceable between eubacterial PR and ESR.
Collapse
Affiliation(s)
- Syogo Sasaki
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Jun Tamogami
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan.
| | - Koki Nishiya
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
11
|
Smitienko OA, Feldman TB, Petrovskaya LE, Nekrasova OV, Yakovleva MA, Shelaev IV, Gostev FE, Cherepanov DA, Kolchugina IB, Dolgikh DA, Nadtochenko VA, Kirpichnikov MP, Ostrovsky MA. Comparative Femtosecond Spectroscopy of Primary Photoreactions of Exiguobacterium sibiricum Rhodopsin and Halobacterium salinarum Bacteriorhodopsin. J Phys Chem B 2021; 125:995-1008. [PMID: 33475375 DOI: 10.1021/acs.jpcb.0c07763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The primary stages of the Exiguobacterium sibiricum rhodopsin (ESR) photocycle were investigated by femtosecond absorption laser spectroscopy in the spectral range of 400-900 nm with a time resolution of 25 fs. The dynamics of the ESR photoreaction were compared with the reactions of bacteriorhodopsin (bR) in purple membranes (bRPM) and in recombinant form (bRrec). The primary intermediates of the ESR photocycle were similar to intermediates I, J, and K in bacteriorhodopsin photoconversion. The CONTIN program was applied to analyze the characteristic times of the observed processes and to clarify the reaction scheme. A similar photoreaction pattern was observed for all studied retinal proteins, including two consecutive dynamic Stokes shift phases lasting ∼0.05 and ∼0.15 ps. The excited state decays through a femtosecond reactive pathway, leading to retinal isomerization and formation of product J, and a picosecond nonreactive pathway that leads only to the initial state. Retinal photoisomerization in ESR takes 0.69 ps, compared with 0.48 ps in bRPM and 0.74 ps in bRrec. The nonreactive excited state decay takes 5 ps in ESR and ∼3 ps in bR. We discuss the similarity of the primary reactions of ESR and other retinal proteins.
Collapse
Affiliation(s)
| | - Tatiana B Feldman
- Emanuel Institute of Biochemical Physics, Moscow 119334, Russia.,Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Lada E Petrovskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Oksana V Nekrasova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | | | - Ivan V Shelaev
- Semenov Federal Research Center of Chemical Physics, Moscow 119991, Russia
| | - Fedor E Gostev
- Semenov Federal Research Center of Chemical Physics, Moscow 119991, Russia
| | | | - Irina B Kolchugina
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Dmitry A Dolgikh
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Victor A Nadtochenko
- Semenov Federal Research Center of Chemical Physics, Moscow 119991, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mikhail P Kirpichnikov
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Mikhail A Ostrovsky
- Emanuel Institute of Biochemical Physics, Moscow 119334, Russia.,Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
12
|
Inoue K. Diversity, Mechanism, and Optogenetic Application of Light-Driven Ion Pump Rhodopsins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:89-126. [PMID: 33398809 DOI: 10.1007/978-981-15-8763-4_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ion-transporting microbial rhodopsins are widely used as major molecular tools in optogenetics. They are categorized into light-gated ion channels and light-driven ion pumps. While the former passively transport various types of cations and anions in a light-dependent manner, light-driven ion pumps actively transport specific ions, such as H+, Na+, Cl-, against electrophysiological potential by using light energy. Since the ion transport by these pumps induces hyperpolarization of membrane potential and inhibit neural firing, light-driven ion-pumping rhodopsins are mostly applied as inhibitory optogenetics tools. Recent progress in genome and metagenome sequencing identified more than several thousands of ion-pumping rhodopsins from a wide variety of microbes, and functional characterization studies has been revealing many new types of light-driven ion pumps one after another. Since light-gated channels were reviewed in other chapters in this book, here the rapid progress in functional characterization, molecular mechanism study, and optogenetic application of ion-pumping rhodopsins were reviewed.
Collapse
Affiliation(s)
- Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
13
|
His57 controls the efficiency of ESR, a light-driven proton pump from Exiguobacterium sibiricum at low and high pH. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148328. [PMID: 33075275 DOI: 10.1016/j.bbabio.2020.148328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
ESR, a light-driven proton pump from Exiguobacterium sibiricum, contains a lysine residue (Lys96) in the proton donor site. Substitution of Lys96 with a nonionizable residue greatly slows reprotonation of the retinal Schiff base. The recent study of electrogenicity of the K96A mutant revealed that overall efficiency of proton transport is decreased in the mutant due to back reactions (Siletsky et al., BBA, 2019). Similar to members of the proteorhodopsin and xanthorhodopsin families, in ESR the primary proton acceptor from the Schiff base, Asp85, closely interacts with His57. To examine the role of His57 in the efficiency of proton translocation by ESR, we studied the effects of H57N and H57N/K96A mutations on the pH dependence of light-induced pH changes in suspensions of Escherichia coli cells, kinetics of absorption changes and electrogenic proton transfer reactions during the photocycle. We found that at low pH (<5) the proton pumping efficiency of the H57N mutant in E. coli cells and its electrogenic efficiency in proteoliposomes is substantially higher than in the WT, suggesting that interaction of His57 with Asp85 sets the low pH limit for H+ pumping in ESR. The electrogenic components that correspond to proton uptake were strongly accelerated at low pH in the mutant indicating that Lys96 functions as a very efficient proton donor at low pH. In the H57N/K96A mutant, a higher H+ pumping efficiency compared with K96A was observed especially at high pH, apparently from eliminating back reactions between Asp85 and the Schiff base by the H57N mutation.
Collapse
|
14
|
Elimination of proton donor strongly affects directionality and efficiency of proton transport in ESR, a light-driven proton pump from Exiguobacterium sibiricum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:1-11. [DOI: 10.1016/j.bbabio.2018.09.365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/31/2018] [Accepted: 09/16/2018] [Indexed: 11/20/2022]
|
15
|
The effect of the chromophoric group modification on the optical properties of retinal proteins. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Dai G, Geng X, Chaoluomeng, Tamogami J, Kikukawa T, Demura M, Kamo N, Iwasa T. Photocycle of Sensory Rhodopsin II from Halobacterium salinarum (HsSRII): Mutation of D103 Accelerates M Decay and Changes the Decay Pathway of a 13-cis O-like Species. Photochem Photobiol 2018. [PMID: 29512821 DOI: 10.1111/php.12917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aspartic acid 103 (D103) of sensory rhodopsin II from Halobacterium salinarum (HsSRII, or also called phoborhodopsin) corresponds to D115 of bacteriorhodopsin (BR). This amino acid residue is functionally important in BR. This work reveals that a substitution of D103 with asparagine (D103N) or glutamic acid (D103E) can cause large changes in HsSRII photocycle. These changes include (1) shortened lifetime of the M intermediate in the following order: the wild-type > D103N > D103E; (2) altered decay pathway of a 13-cis O-like species. The 13-cis O-like species, tentatively named Px, was detected in HsSRII photocycle. Px appeared to undergo branched reactions at 0°C, leading to a recovery of the unphotolyzed state and formation of a metastable intermediate, named P370, that slowly decayed to the unphotolyzed state at room temperature. In wild-type HsSRII at 0°C, Px mainly decayed to the unphotolyzed state, and the decay reaction toward P370 was negligible. In mutant D103E at 0°C, Px decayed to P370, while the recovery of the unphotolyzed state became unobservable. In mutant D103N, the two reactions proceeded at comparable rates. Thus, D103 of HsSRII may play an important role in regulation of the photocycle of HsSRII.
Collapse
Affiliation(s)
- Gang Dai
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot, 010018, China
| | - Xiong Geng
- Division of Engineering, Muroran Institute of Technology, Muroran, 050-8585, Japan
| | - Chaoluomeng
- Division of Engineering, Muroran Institute of Technology, Muroran, 050-8585, Japan
| | - Jun Tamogami
- College of Pharmaceutical Science, Matsuyama University, Matsuyama, 790-8578, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, 001-0021, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, 001-0021, Japan
| | - Naoki Kamo
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Tatsuo Iwasa
- Division of Engineering, Muroran Institute of Technology, Muroran, 050-8585, Japan
| |
Collapse
|
17
|
Chen HF, Inoue K, Ono H, Abe-Yoshizumi R, Wada A, Kandori H. Time-resolved FTIR study of light-driven sodium pump rhodopsins. Phys Chem Chem Phys 2018; 20:17694-17704. [DOI: 10.1039/c8cp02599a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Light-driven sodium ion pump rhodopsin (NaR) is a new functional class of microbial rhodopsin. Present step-scan time-resolved FTIR spectroscopy revealed that the K, L and O intermediates of NaRs contain 13-cis retinal with similar distortion.
Collapse
Affiliation(s)
- Hui-Fen Chen
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
- Department of Life Science and Applied Chemistry
| | - Keiichi Inoue
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
- OptoBioTechnology Research Center
| | - Hikaru Ono
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Rei Abe-Yoshizumi
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science
- Kobe Pharmaceutical University
- Kobe 658-8558
- Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
- OptoBioTechnology Research Center
| |
Collapse
|
18
|
Abstract
Microbial rhodopsins (MRs) are a large family of photoactive membrane proteins, found in microorganisms belonging to all kingdoms of life, with new members being constantly discovered. Among the MRs are light-driven proton, cation and anion pumps, light-gated cation and anion channels, and various photoreceptors. Due to their abundance and amenability to studies, MRs served as model systems for a great variety of biophysical techniques, and recently found a great application as optogenetic tools. While the basic aspects of microbial rhodopsins functioning have been known for some time, there is still a plenty of unanswered questions. This chapter presents and summarizes the available knowledge, focusing on the functional and structural studies.
Collapse
Affiliation(s)
- Ivan Gushchin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
| | - Valentin Gordeliy
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
- University of Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France.
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
19
|
Electrogenic steps of light-driven proton transport in ESR, a retinal protein from Exiguobacterium sibiricum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1741-1750. [DOI: 10.1016/j.bbabio.2016.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/06/2016] [Accepted: 08/11/2016] [Indexed: 02/01/2023]
|
20
|
Albarracín VH, Kraiselburd I, Bamann C, Wood PG, Bamberg E, Farias ME, Gärtner W. Functional Green-Tuned Proteorhodopsin from Modern Stromatolites. PLoS One 2016; 11:e0154962. [PMID: 27187791 PMCID: PMC4871484 DOI: 10.1371/journal.pone.0154962] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/21/2016] [Indexed: 11/18/2022] Open
Abstract
The sequenced genome of the poly-extremophile Exiguobacterium sp. S17, isolated from modern stromatolites at Laguna Socompa (3,570 m), a High-Altitude Andean Lake (HAAL) in Argentinean Puna revealed a putative proteorhodopsin-encoding gene. The HAAL area is exposed to the highest UV irradiation on Earth, making the microbial community living in the stromatolites test cases for survival strategies under extreme conditions. The heterologous expressed protein E17R from Exiguobacterium (248 amino acids, 85% sequence identity to its ortholog ESR from E. sibiricum) was assembled with retinal displaying an absorbance maximum at 524 nm, which makes it a member of the green-absorbing PR-subfamily. Titration down to low pH values (eventually causing partial protein denaturation) indicated a pK value between two and three. Global fitting of data from laser flash-induced absorption changes gave evidence for an early red-shifted intermediate (its formation being below the experimental resolution) that decayed (τ1 = 3.5 μs) into another red-shifted intermediate. This species decayed in a two-step process (τ2 = 84 μs, τ3 = 11 ms), to which the initial state of E17-PR was reformed with a kinetics of 2 ms. Proton transport capability of the HAAL protein was determined by BLM measurements. Additional blue light irradiation reduced the proton current, clearly identifying a blue light absorbing, M-like intermediate. The apparent absence of this intermediate is explained by closely matching formation and decay kinetics.
Collapse
Affiliation(s)
- Virginia Helena Albarracín
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET. Av. Belgrano y Pasaje Caseros. 4000- S. M. de Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, 4000, S. M. de Tucumán, Argentina
- * E-mail: (VHA); (WG)
| | - Ivana Kraiselburd
- Instituto de Biología Molecular y Celular de Rosario (IBR - CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOYF - UNR), Suipacha 590, 2000, Rosario, Santa Fe, Argentina
| | - Christian Bamann
- Max-Planck-Institute for Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt am Main, Germany
| | - Phillip G. Wood
- Max-Planck-Institute for Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt am Main, Germany
| | - Ernst Bamberg
- Max-Planck-Institute for Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt am Main, Germany
| | - María Eugenia Farias
- Max-Planck-Institute for Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt am Main, Germany
| | - Wolfgang Gärtner
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstrasse 34–36, D-45470 Mülheim, Germany
- * E-mail: (VHA); (WG)
| |
Collapse
|
21
|
Koua FHM, Kandori H. Light-induced structural changes during early photo-intermediates of the eubacterial Cl−pump Fulvimarina rhodopsin observed by FTIR difference spectroscopy. RSC Adv 2016. [DOI: 10.1039/c5ra19363j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Fulvimarina pelagirhodopsin (FR) is a member of inward eubacterial light-activated Cl−translocating rhodopsins (ClR) that were found recently in marine bacteria.
Collapse
Affiliation(s)
| | - Hideki Kandori
- OptoBioTechnology Research Center
- Nagoya Institute of Technology
- 466-8555 Nagoya
- Japan
- Department of Frontier Materials
| |
Collapse
|
22
|
Belevich NP, Bertsova YV, Verkhovskaya ML, Baykov AA, Bogachev AV. Identification of the coupling step in Na(+)-translocating NADH:quinone oxidoreductase from real-time kinetics of electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:141-149. [PMID: 26655930 DOI: 10.1016/j.bbabio.2015.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/02/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022]
Abstract
Bacterial Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) uses a unique set of prosthetic redox groups-two covalently bound FMN residues, a [2Fe-2S] cluster, FAD, riboflavin and a Cys4[Fe] center-to catalyze electron transfer from NADH to ubiquinone in a reaction coupled with Na(+) translocation across the membrane. Here we used an ultra-fast microfluidic stopped-flow instrument to determine rate constants and the difference spectra for the six consecutive reaction steps of Vibrio harveyi Na(+)-NQR reduction by NADH. The instrument, with a dead time of 0.25 ms and optical path length of 1 cm allowed collection of visible spectra in 50-μs intervals. By comparing the spectra of reaction steps with the spectra of known redox transitions of individual enzyme cofactors, we were able to identify the chemical nature of most intermediates and the sequence of electron transfer events. A previously unknown spectral transition was detected and assigned to the Cys4[Fe] center reduction. Electron transfer from the [2Fe-2S] cluster to the Cys4[Fe] center and all subsequent steps were markedly accelerated when Na(+) concentration was increased from 20 μM to 25 mM, suggesting coupling of the former step with tight Na(+) binding to or occlusion by the enzyme. An alternating access mechanism was proposed to explain electron transfer between subunits NqrF and NqrC. According to the proposed mechanism, the Cys4[Fe] center is alternatively exposed to either side of the membrane, allowing the [2Fe-2S] cluster of NqrF and the FMN residue of NqrC to alternatively approach the Cys4[Fe] center from different sides of the membrane.
Collapse
Affiliation(s)
- Nikolai P Belevich
- Institute of Biotechnology, University of Helsinki, PO Box 65, Viikinkaari 1, FIN-00014, Finland
| | - Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Marina L Verkhovskaya
- Institute of Biotechnology, University of Helsinki, PO Box 65, Viikinkaari 1, FIN-00014, Finland
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| |
Collapse
|
23
|
Petrovskaya LE, Balashov SP, Lukashev EP, Imasheva ES, Gushchin IY, Dioumaev AK, Rubin AB, Dolgikh DA, Gordeliy VI, Lanyi JK, Kirpichnikov MP. ESR — A retinal protein with unusual properties from Exiguobacterium sibiricum. BIOCHEMISTRY (MOSCOW) 2015; 80:688-700. [DOI: 10.1134/s000629791506005x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Tsukamoto T, Demura M, Sudo Y. Irreversible trimer to monomer transition of thermophilic rhodopsin upon thermal stimulation. J Phys Chem B 2014; 118:12383-94. [PMID: 25279934 DOI: 10.1021/jp507374q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Assembly is one of the keys to understand biological molecules, and it takes place in spatial and temporal domains upon stimulation. Microbial rhodopsin (also called retinal protein) is a membrane-embedded protein that has a retinal chromophore within seven-transmembrane α-helices and shows homo-, di-, tri-, penta-, and hexameric assemblies. Those assemblies are closely related to critical physiological properties such as stabilizing the protein structure and regulating their photoreaction dynamics. Here we investigated the assembly and disassembly of thermophilic rhodopsin (TR), which is a novel proton-pumping rhodopsin derived from a thermophile living at 75 °C. TR was characterized using size-exclusion chromatography and circular dichroism spectroscopy, and formed a trimer at 25 °C, but irreversibly dissociated into monomers upon thermal stimulation. The transition temperature was estimated to be 68 °C. The irreversible nature made it possible to investigate the photochemical properties of both the trimer and the monomer independently. Compared with the trimer, the absorption maximum of the monomer is blue-shifted by 6 nm without any changes in the retinal composition, pKa value for the counterion or the sequence of the proton movement. The photocycling rate of the monomeric TR was similar to that of the trimeric TR. A similar trimer-monomer transition upon thermal stimulation was observed for another eubacterial rhodopsin GR but not for the archaeal rhodopsins AR3 and HwBR, suggesting that the transition is conserved in bacterial rhodopsins. Thus, the thermal stimulation of TR induces the irreversible disassembly of the trimer.
Collapse
Affiliation(s)
- Takashi Tsukamoto
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University , 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | | | | |
Collapse
|
25
|
Sasaki K, Yamashita T, Yoshida K, Inoue K, Shichida Y, Kandori H. Chimeric proton-pumping rhodopsins containing the cytoplasmic loop of bovine rhodopsin. PLoS One 2014; 9:e91323. [PMID: 24621599 PMCID: PMC3951393 DOI: 10.1371/journal.pone.0091323] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/10/2014] [Indexed: 01/08/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) transmit stimuli to intracellular signaling systems. Rhodopsin (Rh), which is a prototypical GPCR, possesses an 11-cis retinal. Photoisomerization of 11-cis to all-trans leads to structural changes in the protein of cytoplasmic loops, activating G-protein. Microbial rhodopsins are similar heptahelical membrane proteins that function as bacterial sensors, light-driven ion-pumps, or light-gated channels. They possess an all-trans retinal, and photoisomerization to 13-cis triggers structural changes in protein. Despite these similarities, there is no sequence homology between visual and microbial rhodopsins, and microbial rhodopsins do not activate G-proteins. In this study, new chimeric proton-pumping rhodopsins, proteorhodopsin (PR) and Gloeobacter rhodopsin (GR) were designed by replacing cytoplasmic loops with bovine Rh loops. Although G-protein was not activated by the PR chimeras, all 12 GR chimeras activated G-protein. The GR chimera containing the second cytoplasmic loop of bovine Rh did not activate G-protein. However, the chimera with a second and third double-loop further enhanced G-protein activation. Introduction of an E132Q mutation slowed the photocycle 30-fold and enhanced activation. The highest catalytic activity of the GR chimera was still 3,200 times lower than bovine Rh but only 64 times lower than amphioxus Go-rhodopsin. This GR chimera showed a strong absorption change of the amide-I band on a light-minus-dark difference FTIR spectrum which could represent a larger helical opening, important for G-protein activation. The light-dependent catalytic activity of this GR chimera makes it a potential optogenetic tool for enzymatic activation by light.
Collapse
Affiliation(s)
- Kengo Sasaki
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazuho Yoshida
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
| | - Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
- PRESTO, Japan Science and Technology Agency, Honcho Kawaguchi, Saitama, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
- * E-mail:
| |
Collapse
|
26
|
Bamann C, Bamberg E, Wachtveitl J, Glaubitz C. Proteorhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:614-25. [PMID: 24060527 DOI: 10.1016/j.bbabio.2013.09.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Abstract
Proteorhodopsins are the most abundant retinal based photoreceptors and their phototrophic function might be relevant in marine ecosystems. Here, we describe their remarkable molecular properties with a special focus on the green absorbing variant. Its distinct features include a high pKa value of the primary proton acceptor stabilized through an interaction with a conserved histidine, a long-range interaction between the cytoplasmic EF loop and the chromophore entailing a particular mode of color tuning and a variable proton pumping vectoriality with complex voltage-dependence. The proteorhodopsin family represents a profound example for structure-function relationships. Especially the development of a biophysical understanding of green proteorhodopsin is an excellent example for the unique opportunities offered by a combined approach of advanced spectroscopic and electrophysiological methods. This article is part of a Special Issue entitled: Retinal Proteins-You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Christian Bamann
- Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany.
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany
| | - Josef Wachtveitl
- Johann Wolfgang Goethe University, Institute for Physical and Theoretical Chemistry, Max-von-Laue Straße 7, 60438 Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Johann Wolfgang Goethe University, Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
27
|
Balashov SP, Petrovskaya LE, Imasheva ES, Lukashev EP, Dioumaev AK, Wang JM, Sychev SV, Dolgikh DA, Rubin AB, Kirpichnikov MP, Lanyi JK. Breaking the carboxyl rule: lysine 96 facilitates reprotonation of the Schiff base in the photocycle of a retinal protein from Exiguobacterium sibiricum. J Biol Chem 2013; 288:21254-21265. [PMID: 23696649 DOI: 10.1074/jbc.m113.465138] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A lysine instead of the usual carboxyl group is in place of the internal proton donor to the retinal Schiff base in the light-driven proton pump of Exiguobacterium sibiricum (ESR). The involvement of this lysine in proton transfer is indicated by the finding that its substitution with alanine or other residues slows reprotonation of the Schiff base (decay of the M intermediate) by more than 2 orders of magnitude. In these mutants, the rate constant of the M decay linearly decreases with a decrease in proton concentration, as expected if reprotonation is limited by the uptake of a proton from the bulk. In wild type ESR, M decay is biphasic, and the rate constants are nearly pH-independent between pH 6 and 9. Proton uptake occurs after M formation but before M decay, which is especially evident in D2O and at high pH. Proton uptake is biphasic; the amplitude of the fast phase decreases with a pKa of 8.5 ± 0.3, which reflects the pKa of the donor during proton uptake. Similarly, the fraction of the faster component of M decay decreases and the slower one increases, with a pKa of 8.1 ± 0.2. The data therefore suggest that the reprotonation of the Schiff base in ESR is preceded by transient protonation of an initially unprotonated donor, which is probably the ε-amino group of Lys-96 or a water molecule in its vicinity, and it facilitates proton delivery from the bulk to the reaction center of the protein.
Collapse
Affiliation(s)
- Sergei P Balashov
- From the Department of Physiology and Biophysics, University of California, Irvine, California 92697,.
| | - Lada E Petrovskaya
- the Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia, and.
| | - Eleonora S Imasheva
- From the Department of Physiology and Biophysics, University of California, Irvine, California 92697
| | - Evgeniy P Lukashev
- the Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrei K Dioumaev
- From the Department of Physiology and Biophysics, University of California, Irvine, California 92697
| | - Jennifer M Wang
- From the Department of Physiology and Biophysics, University of California, Irvine, California 92697
| | - Sergey V Sychev
- the Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia, and
| | - Dmitriy A Dolgikh
- the Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia, and; the Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrei B Rubin
- the Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mikhail P Kirpichnikov
- the Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia, and; the Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Janos K Lanyi
- From the Department of Physiology and Biophysics, University of California, Irvine, California 92697,.
| |
Collapse
|