1
|
Zhao L, Zou W. A general method for locating stationary points on the mixed-spin surface of spin-forbidden reaction with multiple spin states. J Chem Phys 2023; 158:2895244. [PMID: 37290081 DOI: 10.1063/5.0151630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
Some chemical reactions proceed on multiple potential energy surfaces and are often accompanied by a change in spin multiplicity, being called spin-forbidden reactions, where the spin-orbit coupling (SOC) effects play a crucial role. In order to efficiently investigate spin-forbidden reactions with two spin states, Yang et al. [Phys. Chem. Chem. Phys. 20, 4129-4136 (2018)] proposed a two-state spin-mixing (TSSM) model, where the SOC effects between the two spin states are simulated by a geometry-independent constant. Inspired by the TSSM model, we suggest a multiple-state spin-mixing (MSSM) model in this paper for the general case with any number of spin states, and its analytic first and second derivatives have been developed for locating stationary points on the mixed-spin potential energy surface and estimating thermochemical energies. To demonstrate the performance of the MSSM model, some spin-forbidden reactions involving 5d transition elements are calculated using the density functional theory (DFT), and the results are compared with the two-component relativistic ones. It is found that MSSM DFT and two-component DFT calculations may provide very similar stationary-point information on the lowest mixed-spin/spinor energy surface, including structures, vibrational frequencies, and zero-point energies. For the reactions containing saturated 5d elements, the reaction energies by MSSM DFT and two-component DFT agree very well within 3 kcal/mol. As for the two reactions OsO+ + CH4 → OOs(CH2)+ + H2 and W + CH4 → WCH2 + H2 involving unsaturated 5d elements, MSSM DFT may also yield good reaction energies of similar accuracy but with some counterexamples. Nevertheless, the energies may be remarkably improved by a posteriori single point energy calculations using two-component DFT at the MSSM DFT optimized geometries, and the maximum error of about 1 kcal/mol is almost independent of the SOC constant used. The MSSM method as well as the developed computer program provides an effective utility for studying spin-forbidden reactions.
Collapse
Affiliation(s)
- Long Zhao
- Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an, Shaanxi 710127, People's Republic of China
| | - Wenli Zou
- Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an, Shaanxi 710127, People's Republic of China
| |
Collapse
|
2
|
Xu J, Zhang T, Fang S, Li J, Wu Z, Wang W, Zhu J, Gao E, Yao S. Exploring the roles of oxygen species in H 2 oxidation at β-MnO 2 surfaces using operando DRIFTS-MS. Commun Chem 2022; 5:97. [PMID: 36697951 PMCID: PMC9814464 DOI: 10.1038/s42004-022-00717-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023] Open
Abstract
Understanding of the roles of oxygen species at reducible metal oxide surfaces under real oxidation conditions is important to improve the performance of these catalysts. The present study addresses this issue by applying a combination of operando diffuse reflectance infrared Fourier transform spectroscopy with a temperature-programmed reaction cell and mass spectrometry to explore the behaviors of oxygen species during H2 oxidation in a temperature range of 25-400 °C at β-MnO2 surfaces. It is revealed that O2 is dissociated simultaneously into terminal-type oxygen (M2+-O2-) and bridge-type oxygen (M+-O2--M+) via adsorption at the Mn cation with an oxygen vacancy. O2 adsorption is inhibited if the Mn cation is covered with terminal-adsorbed species (O, OH, or H2O). In a temperature range of 110-150 °C, OH at Mn cation becomes reactive and its reaction product (H2O) can desorb from the Mn cation, resulting in the formation of bare Mn cation for O2 adsorption and dissociation. At a temperature above 150 °C, OH is reactive enough to leave bare Mn cation for O2 adsorption and dissociation. These results suggest that bare metal cations with oxygen vacancies are important to improve the performance of reducible metal oxide catalysts.
Collapse
Affiliation(s)
- Jiacheng Xu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- School of Material Science and Engineering, Changzhou University, Changzhou, China
| | - Tiantian Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
| | - Shiyu Fang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
| | - Jing Li
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou, China
| | - Zuliang Wu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou, China
| | - Wei Wang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou, China
| | - Jiali Zhu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou, China
| | - Erhao Gao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou, China
| | - Shuiliang Yao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China.
- School of Material Science and Engineering, Changzhou University, Changzhou, China.
- Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou, China.
| |
Collapse
|
3
|
Wei R, Chen X, Gong Y. End-On Oxygen-Bound Sulfur Monoxide Complex of Titanium Oxyfluoride. Inorg Chem 2019; 58:11801-11806. [DOI: 10.1021/acs.inorgchem.9b01880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rui Wei
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuting Chen
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yu Gong
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
4
|
González-Navarrete P, Calatayud M. On the reductive hydrogenation process of gas-phase metal dioxides: H2 activation or reduction of the metal center, what is more important? Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2482-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Zou XP, Li ZY, Li XN, Wang LN, Li HF, Ma TM, He SG. Consecutive Oxidation of Three H2 Molecules by a Gold-Vanadium Oxide Cluster Cation AuVO4 +. Top Catal 2017. [DOI: 10.1007/s11244-017-0860-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Du MR, Zhang XB, Si SM, Yang F, Wang L. Theoretical insights into C–C bond formation through isonitrile insertion into a Cp*Ti complex. RSC Adv 2017. [DOI: 10.1039/c7ra05680j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reaction of Cp*(Cl)Ti(2,3-dimethylbutadiene) with isonitriles is studied using DFT, detailed elementary reaction steps and N-substitution effects of isonitrile are examined.
Collapse
Affiliation(s)
- Ming-Ran Du
- School of Chemical Engineering
- Anhui University of Science and Technology
- Huainan 232001
- People's Republic of China
| | - Xiang-Biao Zhang
- School of Chemical Engineering
- Anhui University of Science and Technology
- Huainan 232001
- People's Republic of China
| | - Sheng-Meng Si
- School of Chemical Engineering
- Anhui University of Science and Technology
- Huainan 232001
- People's Republic of China
| | - Feng Yang
- School of Chemical Engineering
- Anhui University of Science and Technology
- Huainan 232001
- People's Republic of China
| | - Lei Wang
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- People's Republic of China
| |
Collapse
|
7
|
Affiliation(s)
- Zhixun Luo
- State
Key Laboratory for Structural Chemistry of Unstable and Stable Species,
Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - A. W. Castleman
- Departments
of Chemistry and Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shiv N. Khanna
- Department
of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
8
|
Xie H, Liu C, Yuan Y, Zhou T, Fan T, Lei Q, Fang W. Oxidation of phenyl and hydride ligands of bis(pentamethylcyclopentadienyl)hafnium derivatives by nitrous oxide via selective oxygen atom transfer reactions: insights from quantum chemistry calculations. Dalton Trans 2016; 45:1152-9. [PMID: 26660046 DOI: 10.1039/c5dt03264d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mechanisms for the oxidation of phenyl and hydride ligands of bis(pentamethylcyclopentadienyl)hafnium derivatives (Cp* = η(5)-C5Me5) by nitrous oxide via selective oxygen atom transfer reactions have been systematically studied by means of density functional theory (DFT) calculations. On the basis of the calculations, we investigated the original mechanism proposed by Hillhouse and co-workers for the activation of N2O. The calculations showed that the complex with an initial O-coordination of N2O to the coordinatively unsaturated Hf center is not a local minimum. Then we proposed a new reaction mechanism to investigate how N2O is activated and why N2O selectively oxidize phenyl and hydride ligands of . Frontier molecular orbital theory analysis indicates that N2O is activated by nucleophilic attack by the phenyl or hydride ligand. Present calculations provide new insights into the activation of N2O involving the direct oxygen atom transfer from nitrous oxide to metal-ligand bonds instead of the generally observed oxygen abstraction reaction to generate metal-oxo species.
Collapse
Affiliation(s)
- Hujun Xie
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| | - Chengcheng Liu
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| | - Ying Yuan
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| | - Tao Zhou
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| | - Ting Fan
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.
| | - Qunfang Lei
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Wenjun Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
9
|
|