1
|
Rohani L, Lamichhane HP, Hastings G. Calculated vibrational properties of pigments in protein binding sites 2: Semiquinones in photosynthetic proteins. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122518. [PMID: 36996613 DOI: 10.1016/j.saa.2023.122518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
[QA- - QA] Fourier transform infrared difference spectra have previously been obtained using purple bacterial reaction centers from Rhodobacter sphaeroides with unlabeled, 18O and 13C isotope labeled phylloquinone (PhQ, also known as vitamin K1) incorporated into the QA protein binding site (Breton, (1997), Proc. Natl. Acad. Sci. USA94 11318-11323). The nature of the bands in these spectra and the isotope induced band shifts are poorly understood, especially for the phyllosemiquinone anion (PhQ-) state. To aid in the interpretation of the bands in these experimental spectra, ONIOM type QM/MM vibrational frequency calculations were undertaken. Calculations were also undertaken for PhQ- in solution. Surprisingly, both sets of calculated spectra are similar and agree well with the experimental spectra. This similarity suggests pigment-protein interactions do not perturb the electronic structure of the semiquinone in the QA binding site. This is not found to be the case for the neutral PhQ species in the same protein binding site. PhQ also occupies the A1 protein binding site in photosystem I, and the vibrational properties of PhQ- in the QA and A1 binding sites are compared and shown to exhibit considerable differences. These differences probably arise because of changes in the degree of asymmetry of hydrogen bonding of PhQ- in the A1 and QA binding sites.
Collapse
Affiliation(s)
- Leyla Rohani
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| | - Hari P Lamichhane
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| | - Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
2
|
Assessment of the orientation and conformation of pigments in protein binding sites from infrared difference spectra. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148366. [PMID: 33385342 DOI: 10.1016/j.bbabio.2020.148366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 01/01/2023]
Abstract
Time resolved FTIR difference spectroscopy (DS) has been used to study photosystem I (PSI) with the disubstituted 1,4-naphthoquinones acequinocyl (AcQ) and lapachol (Lpc) incorporated into the A1 binding site. AcQ is a 2-acetoxy-3-dodecyl-1,4-naphthoquinone, Lpc is a 2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone. To assess whether the experimental spectra are specific to different orientations of the quinone and their substitutions ONIOM-type QM/MM vibrational frequency calculations were undertaken for various orientations of the pigments and side-chain conformations in the A1 binding site. Comparison of calculated and experimental spectra for the reduced species (semiquinone anion) suggests that the orientation for the naphthoquinone ring in the binding site and specific side-chain conformations can be identified based on the spectra. In native PSI phylloquinone (PhQ) in the A1 binding site binds with its phytyl chain ortho to the hydrogen bonded carbonyl group. This is not found to be the case for the hydrocarbon tail of AcQ, which is meta to the H-bonded carbonyl group. In contrast, Lpc in PSI binds with its hydrocarbon tail also ortho to the H-bonded carbonyl group. Furthermore, comparison of calculated and experimental spectra indicates which conformations the acetoxy group of AcQ and the hydroxy group of Lpc adopt in the A1 binding site.
Collapse
|
3
|
Makita H, Hastings G. Time-resolved step-scan FTIR difference spectroscopy for the study of photosystem I with different benzoquinones incorporated into the A1 binding site. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1199-1206. [DOI: 10.1016/j.bbabio.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 11/28/2022]
|
4
|
Quinones in the A1 binding site in photosystem I studied using time-resolved FTIR difference spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:804-813. [DOI: 10.1016/j.bbabio.2017.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 11/21/2022]
|
5
|
Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, Ding L, Morokuma K. The ONIOM Method and Its Applications. Chem Rev 2015; 115:5678-796. [PMID: 25853797 DOI: 10.1021/cr5004419] [Citation(s) in RCA: 788] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lung Wa Chung
- †Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055, China
| | - W M C Sameera
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Romain Ramozzi
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Alister J Page
- §Newcastle Institute for Energy and Resources, The University of Newcastle, Callaghan 2308, Australia
| | - Miho Hatanaka
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Galina P Petrova
- ∥Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria Boulevard James Bourchier 1, 1164 Sofia, Bulgaria
| | - Travis V Harris
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan.,⊥Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, United States
| | - Xin Li
- #State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhuofeng Ke
- ∇School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fengyi Liu
- ○Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Hai-Bei Li
- ■School of Ocean, Shandong University, Weihai 264209, China
| | - Lina Ding
- ▲School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Keiji Morokuma
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| |
Collapse
|
6
|
Vermaas JV, Taguchi AT, Dikanov SA, Wraight CA, Tajkhorshid E. Redox potential tuning through differential quinone binding in the photosynthetic reaction center of Rhodobacter sphaeroides. Biochemistry 2015; 54:2104-16. [PMID: 25734689 DOI: 10.1021/acs.biochem.5b00033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ubiquinone forms an integral part of the electron transport chain in cellular respiration and photosynthesis across a vast number of organisms. Prior experimental results have shown that the photosynthetic reaction center (RC) from Rhodobacter sphaeroides is only fully functional with a limited set of methoxy-bearing quinones, suggesting that specific interactions with this substituent are required to drive electron transport and the formation of quinol. The nature of these interactions has yet to be determined. Through parameterization of a CHARMM-compatible quinone force field and subsequent molecular dynamics simulations of the quinone-bound RC, we have investigated and characterized the interactions of the protein with the quinones in the Q(A) and Q(B) sites using both equilibrium simulation and thermodynamic integration. In particular, we identify a specific interaction between the 2-methoxy group of ubiquinone in the Q(B) site and the amide nitrogen of GlyL225 that we implicate in locking the orientation of the 2-methoxy group, thereby tuning the redox potential difference between the quinones occupying the Q(A) and Q(B) sites. Disruption of this interaction leads to weaker binding in a ubiquinone analogue that lacks a 2-methoxy group, a finding supported by reverse electron transfer electron paramagnetic resonance experiments of the Q(A)⁻Q(B)⁻ biradical and competitive binding assays.
Collapse
Affiliation(s)
- Josh V Vermaas
- †Center for Biophysics and Computational Biology, ‡Department of Biochemistry, §Beckman Institute, and ∥Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Alexander T Taguchi
- †Center for Biophysics and Computational Biology, ‡Department of Biochemistry, §Beckman Institute, and ∥Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sergei A Dikanov
- †Center for Biophysics and Computational Biology, ‡Department of Biochemistry, §Beckman Institute, and ∥Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Colin A Wraight
- †Center for Biophysics and Computational Biology, ‡Department of Biochemistry, §Beckman Institute, and ∥Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- †Center for Biophysics and Computational Biology, ‡Department of Biochemistry, §Beckman Institute, and ∥Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Affiliation(s)
- Sebastiaan B. Hakkert
- Department of Chemistry and Molecular Biology; University of Gothenburg; Gothenburg Sweden
| | - Máté Erdélyi
- Department of Chemistry and Molecular Biology; University of Gothenburg; Gothenburg Sweden
| |
Collapse
|
8
|
Perrin CL, Burke KD. Variable-temperature study of hydrogen-bond symmetry in cyclohexene-1,2-dicarboxylate monoanion in chloroform-d. J Am Chem Soc 2014; 136:4355-62. [PMID: 24527684 DOI: 10.1021/ja500174y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The symmetry of the hydrogen bond in hydrogen cyclohexene-1,2-dicarboxylate monoanion was determined in chloroform using the NMR method of isotopic perturbation. As the temperature decreases, the (18)O-induced (13)C chemical-shift separations increase not only at carboxyl carbons but also at ipso (alkene) carbons. The magnitude of the ipso increase is consistent with an (18)O isotope effect on carboxylic acid acidity. Therefore it is concluded that this monoanion is a mixture of tautomers in rapid equilibrium, rather than a single symmetric structure in which a chemical-shift separation arises from coupling between a desymmetrizing vibration and anharmonic isotope-dependent vibrations, which is expected to show the opposite temperature dependence.
Collapse
Affiliation(s)
- Charles L Perrin
- Department of Chemistry, University of California-San Diego , La Jolla, California 92093-0358, United States
| | | |
Collapse
|