1
|
Ingenbosch KN, Vieyto-Nuñez JC, Ruiz-Blanco YB, Mayer C, Hoffmann-Jacobsen K, Sanchez-Garcia E. Effect of Organic Solvents on the Structure and Activity of a Minimal Lipase. J Org Chem 2021; 87:1669-1678. [PMID: 34706196 DOI: 10.1021/acs.joc.1c01136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lipases are ubiquitously used in chemo-enzymatic synthesis and industrial applications. Nevertheless, the modulation of the activity of lipases by organic solvents still is not fully understood at the molecular level. We systematically investigated the activity and structure of lipase A from Bacillus subtilis in binary water-organic solvent mixtures of dimethyl sulfoxide (DMSO), acetonitrile (ACN), and isopropyl alcohol (IPA) using activity assays, fluorescence spectroscopy, molecular dynamics (MD) simulations, and FRET/MD analysis. The enzymatic activity strongly depended on the type and amount of organic solvent in the reaction media. Whereas IPA and ACN reduced the activity of the enzyme, small concentrations of DMSO led to lipase activation via an uncompetitive mechanism. DMSO molecules did not directly interfere with the binding of the substrate in the active site, contrary to what is known for other solvents and enzymes. We propose that the His156-Asp133 interaction, the binding of organic molecules to the active site, and the water accessibility of the substrate are key factors modulating the catalytic activity. Furthermore, we rationalized the role of solvent descriptors on the regulation of enzymatic activity in mixtures with low concentrations of the organic molecule, with prospective implications for the optimization of biocatalytic processes via solvent tuning.
Collapse
Affiliation(s)
- Kim N Ingenbosch
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstrasse 32, 47798 Krefeld, Germany.,Institute for Physical Chemistry, University Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Julio Cesar Vieyto-Nuñez
- Computational Biochemistry, University of Duisburg-Essen, Universitätsstrasse 2, 45141 Essen, Germany
| | - Yasser B Ruiz-Blanco
- Computational Biochemistry, University of Duisburg-Essen, Universitätsstrasse 2, 45141 Essen, Germany
| | - Christian Mayer
- Institute for Physical Chemistry, University Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Kerstin Hoffmann-Jacobsen
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstrasse 32, 47798 Krefeld, Germany
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, University of Duisburg-Essen, Universitätsstrasse 2, 45141 Essen, Germany
| |
Collapse
|
2
|
Rational design of a Yarrowia lipolytica derived lipase for improved thermostability. Int J Biol Macromol 2019; 137:1190-1198. [DOI: 10.1016/j.ijbiomac.2019.07.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 01/29/2023]
|
3
|
Gu Z, Lai J, Hang J, Zhang C, Wang S, Jiao Y, Liu S, Fang Y. Theoretical and experimental studies on the conformational changes of organic solvent-stable protease from Bacillus sphaericus DS11 in methanol/water mixtures. Int J Biol Macromol 2019; 128:603-609. [PMID: 30710583 DOI: 10.1016/j.ijbiomac.2019.01.196] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
Abstract
If natural proteases are used in organic synthesis, they are often inactivated or give a low rate of reaction in non-aqueous or aqueous-organic media. Therefore, to reveal the molecular mechanism governing the stability of proteases in organic solvents and increase protease stability in those systems is of intriguing interest. In the present study, the activity and conformational changes of an organic solvent-stable protease (OSP) from Bacillus sphaericus DS11 in different concentrations of methanol were investigated by measuring fluorescence, UV-Vis spectra, circular dichroism (CD), and conducting molecular dynamics (MD) simulations. The OSP expanded with increasing methanol concentration. The methanol molecules were able to enter into the OSP, leading to microenvironmental changes around the aromatic amino acids. More hydrophobic groups were exposed to the solvents at high methanol concentrations, and the original hydrophobic interaction in the protein decreased, thus resulting in the secondary and tertiary structure change in the OSP. Our results provide helpful insight into the molecular mechanism of the OSP tolerance to organic solvent and indicate directions for future work to design and engineer proteases that are stable at high organic solvent concentrations.
Collapse
Affiliation(s)
- Zhanghui Gu
- Jiangsu Marine Resources Development Research Institute, Lianyungang 222000, China; College of Fisheries and Life Science, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Jiangli Lai
- Jiangsu Marine Resources Development Research Institute, Lianyungang 222000, China; College of Fisheries and Life Science, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Jiahao Hang
- Jiangsu Marine Resources Development Research Institute, Lianyungang 222000, China; College of Fisheries and Life Science, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Chunguang Zhang
- Jiangsu Marine Resources Development Research Institute, Lianyungang 222000, China; College of Fisheries and Life Science, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Shujun Wang
- Jiangsu Marine Resources Development Research Institute, Lianyungang 222000, China; College of Fisheries and Life Science, Huaihai Institute of Technology, Lianyungang 222005, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Yuliang Jiao
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Shu Liu
- Jiangsu Marine Resources Development Research Institute, Lianyungang 222000, China; College of Fisheries and Life Science, Huaihai Institute of Technology, Lianyungang 222005, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| | - Yaowei Fang
- Jiangsu Marine Resources Development Research Institute, Lianyungang 222000, China; College of Fisheries and Life Science, Huaihai Institute of Technology, Lianyungang 222005, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang 222005, China.
| |
Collapse
|
4
|
Tang A, Zhang Y, Wei T, Wu J, Li Q, Liu Y. Immobilization of Candida cylindracea Lipase by Covalent Attachment on Glu-Modified Bentonite. Appl Biochem Biotechnol 2018; 187:870-883. [PMID: 30088241 DOI: 10.1007/s12010-018-2838-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023]
Abstract
Alkaline Ca-bentonite, obtained upon acid activation and base load of natural bentonite, has a good anion exchange capability. Glu-modified alkaline Ca-bentonites were further prepared by covalent binding with glutamic acid for the immobilization of lipase OF from Candida cylindracea. The obtained immobilized lipase demonstrated a significantly higher catalytic activity than that of unmodified alkaline Ca-bentonite, giving a specific activity of 62.1 U mg-1 protein, twice that of the unmodified carrier, and a total activity of 391.2 U g-1 support, retaining ~ 82.3% of the activity after being reused five times for olive oil emulsion hydrolysis. X-ray diffraction and Fourier transform infrared spectroscopy assays demonstrated the successful immobilization of the lipase on the surface of the bentonite. Upon immobilization, the thermostability of the lipase improved remarkably. At 50 °C, free lipase retained only 6.0% of its initial activity at 6 h, in comparison with 15% for Ca-Bent-lipase and 50% for Glu-Ca-Bent-lipase after 8 h. The Glu-Ca-Bent-lipase is proved as an effective biocatalyst for the biodiesel preparation, improving the transesterification reaction conversion from 52.8% in the condition of free lipase to 99.9% and keeping at 56.2% after being reused five times, while the free lipase was inactive upon two reuses. The above results provide a new route in the use of inexpensive bentonite for the enzyme immobilization.
Collapse
Affiliation(s)
- Aixing Tang
- College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
- Key Laboratory of Guangxi Biorefinery, Guangxi University, Nanning, 530003, China
| | - Yiqin Zhang
- College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Tengyou Wei
- College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Jian Wu
- College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Qingyun Li
- College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
- Key Laboratory of Guangxi Biorefinery, Guangxi University, Nanning, 530003, China
| | - Youyan Liu
- College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
- Key Laboratory of Guangxi Biorefinery, Guangxi University, Nanning, 530003, China.
| |
Collapse
|
5
|
Halder R, Jana B. Unravelling the Composition-Dependent Anomalies of Pair Hydrophobicity in Water–Ethanol Binary Mixtures. J Phys Chem B 2018; 122:6801-6809. [DOI: 10.1021/acs.jpcb.8b02528] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ritaban Halder
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Biman Jana
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
6
|
Das S, Balasubramanian S. pH-Induced Rotation of Lidless Lipase LipA from Bacillus subtilis at Lipase-Detergent Interface. J Phys Chem B 2018; 122:4802-4812. [PMID: 29623706 DOI: 10.1021/acs.jpcb.8b02296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lipases exhibit a unique process during the catalysis of the hydrolysis of triglyceride substrates called interfacial activation. Surfactants are used as cosolvents with water not only to offer a less polar environment to the lipases needed for their interfacial activation but also to solvate the substrate which are poorly soluble in water. However, the presence of detergent in the medium can affect both the lipase and the substrate, making the construction of a microkinetic model for lipase activity in the presence of the detergent difficult. Herein, we study the interfacial activation of a lidless lipase LipA from Bacillus subtilis using extensive atomistic molecular dynamics simulations at different concentrations of the surfactant, Thesit (C12E8), at two pH values. Residues which bind to the monomeric detergent are found to be the same as the ones which have been reported earlier to bind to the substrate. Very importantly, a pH-induced rotation of the enzyme with respect to surfactant aggregate has been observed which not only explains the experimentally observed pH-dependent enzymatic activity of this lidless lipase, but also suggests its reorientation at an aqueous-lipodophilic interface.
Collapse
Affiliation(s)
- Sudip Das
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore 560 064 , India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore 560 064 , India
| |
Collapse
|
7
|
Cao H, Jiang Y, Zhang H, Nie K, Lei M, Deng L, Wang F, Tan T. Enhancement of methanol resistance of Yarrowia lipolytica lipase 2 using β-cyclodextrin as an additive: Insights from experiments and molecular dynamics simulation. Enzyme Microb Technol 2017; 96:157-162. [DOI: 10.1016/j.enzmictec.2016.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 10/05/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
|
8
|
Nanssou Kouteu PA, Baréa B, Barouh N, Blin J, Villeneuve P. Lipase Activity of Tropical Oilseed Plants for Ethyl Biodiesel Synthesis and Their Typo- and Regioselectivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8838-8847. [PMID: 27797524 DOI: 10.1021/acs.jafc.6b03674] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The aim of this work was to investigate lipase activities in crude extracts from Adansonia suarezensis, Adansonia grandidieri, Moringa drouhardii, Moringa oleifera, Jatropha mahafalensis, and Jatropha curcas seeds in ethanolysis and hydrolysis reactions. All crude extracts from germinated seeds showed both ethanolysis and hydrolysis activities. The influence of germination, the delipidation procedure, and the triacylglycerol/ethanol molar ratio on their ethanolysis activity was studied. Crude extracts of Jatropha and Adansonia seeds showed optimal activity at pH 8 with an optimum temperature of 30 and 40 °C, respectively. The study of the regioselectivity of crude extracts from J. mahafalensis and A. grandidieri seeds, which had the most active hydrolysis reaction, showed 1,3 regioselectivity in the hydrolysis reaction of vegetable oils. The crude extract from A. grandidieri seeds showed no typoselectivity, whereas the typoselectivity of the crude extract of J. mahafalensis seeds depended on the type of reaction.
Collapse
Affiliation(s)
- Paul A Nanssou Kouteu
- Institut International d'Ingénierie de l'Eau et de l'Environnement (2iE) , Laboratoire Biomasse Energie et Biocarburants (LBEB), Rue de la Science, 01 BP 594, Ouagadougou 01, Burkina Faso
- Montpellier SupAgro , UMR 1208 Ingénierie des Agro-polymères et Technologies Emergentes, 2 Place Viala, F-34060 Montpellier, France
| | - Bruno Baréa
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) , 73 rue Jean-François Breton, 34393 Cedex 5 Montpellier, France
| | - Nathalie Barouh
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) , 73 rue Jean-François Breton, 34393 Cedex 5 Montpellier, France
| | - Joël Blin
- Institut International d'Ingénierie de l'Eau et de l'Environnement (2iE) , Laboratoire Biomasse Energie et Biocarburants (LBEB), Rue de la Science, 01 BP 594, Ouagadougou 01, Burkina Faso
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) , 73 rue Jean-François Breton, 34393 Cedex 5 Montpellier, France
| | - Pierre Villeneuve
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) , 73 rue Jean-François Breton, 34393 Cedex 5 Montpellier, France
| |
Collapse
|
9
|
Das S, Karmakar T, Balasubramanian S. Molecular Mechanism behind Solvent Concentration-Dependent Optimal Activity of Thermomyces lanuginosus Lipase in a Biocompatible Ionic Liquid: Interfacial Activation through Arginine Switch. J Phys Chem B 2016; 120:11720-11732. [DOI: 10.1021/acs.jpcb.6b08534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sudip Das
- Chemistry and Physics of
Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Tarak Karmakar
- Chemistry and Physics of
Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of
Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
10
|
The combine use of ultrasound and lipase immobilized on co-polymer matrix for efficient biocatalytic application studies. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.09.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Li W, Shen H, Ma M, Liu L, Cui C, Chen B, Fan D, Tan T. Synthesis of ethyl oleate by esterification in a solvent-free system using lipase immobilized on PDMS-modified nonwoven viscose fabrics. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Tong X, Busk PK, Lange L, Pang J. New insights into the molecular mechanism of methanol-induced inactivation ofThermomyces lanuginosuslipase: a molecular dynamics simulation study. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2015.1059938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Badgujar KC, Bhanage BM. The Solvent Stability Study with Thermodynamic Analysis and Superior Biocatalytic Activity of Burkholderia cepacia Lipase Immobilized on Biocompatible Hybrid Matrix of Polyvinyl Alcohol and Hypromellose. J Phys Chem B 2014; 118:14808-19. [DOI: 10.1021/jp5093493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|