1
|
Tobiason M, Yurke B, Hughes WL. Generation of DNA oligomers with similar chemical kinetics via in-silico optimization. Commun Chem 2023; 6:226. [PMID: 37853171 PMCID: PMC10584830 DOI: 10.1038/s42004-023-01026-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
Networks of interacting DNA oligomers are useful for applications such as biomarker detection, targeted drug delivery, information storage, and photonic information processing. However, differences in the chemical kinetics of hybridization reactions, referred to as kinetic dispersion, can be problematic for some applications. Here, it is found that limiting unnecessary stretches of Watson-Crick base pairing, referred to as unnecessary duplexes, can yield exceptionally low kinetic dispersions. Hybridization kinetics can be affected by unnecessary intra-oligomer duplexes containing only 2 base-pairs, and such duplexes explain up to 94% of previously reported kinetic dispersion. As a general design rule, it is recommended that unnecessary intra-oligomer duplexes larger than 2 base-pairs and unnecessary inter-oligomer duplexes larger than 7 base-pairs be avoided. Unnecessary duplexes typically scale exponentially with network size, and nearly all networks contain unnecessary duplexes substantial enough to affect hybridization kinetics. A new method for generating networks which utilizes in-silico optimization to mitigate unnecessary duplexes is proposed and demonstrated to reduce in-vitro kinetic dispersions as much as 96%. The limitations of the new design rule and generation method are evaluated in-silico by creating new oligomers for several designs, including three previously programmed reactions and one previously engineered structure.
Collapse
Affiliation(s)
- Michael Tobiason
- Department of Computer Science, Boise State University, Boise, ID, USA.
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID, USA
- Department of Electrical & Computer Engineering, Boise State University, Boise, ID, USA
| | - William L Hughes
- School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC, Canada.
| |
Collapse
|
2
|
Lysne D, Hachigian T, Thachuk C, Lee J, Graugnard E. Leveraging Steric Moieties for Kinetic Control of DNA Strand Displacement Reactions. J Am Chem Soc 2023. [PMID: 37487322 PMCID: PMC10401717 DOI: 10.1021/jacs.3c04344] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
DNA strand displacement networks are a critical part of dynamic DNA nanotechnology and are proven primitives for implementing chemical reaction networks. Precise kinetic control of these networks is important for their use in a range of applications. Among the better understood and widely leveraged kinetic properties of these networks are toehold sequence, length, composition, and location. While steric hindrance has been recognized as an important factor in such systems, a clear understanding of its impact and role is lacking. Here, a systematic investigation of steric hindrance within a DNA toehold-mediated strand displacement network was performed through tracking kinetic reactions of reporter complexes with incremental concatenation of steric moieties near the toehold. Two subsets of steric moieties were tested with systematic variation of structures and reaction conditions to isolate sterics from electrostatics. Thermodynamic and coarse-grained computational modeling was performed to gain further insight into the impacts of steric hindrance. Steric factors yielded up to 3 orders of magnitude decrease in the reaction rate constant. This pronounced effect demonstrates that steric moieties can be a powerful tool for kinetic control in strand displacement networks while also being more broadly informative of DNA structural assembly in both DNA-based therapeutic and diagnostic applications that possess elements of steric hindrance through DNA functionalization with an assortment of chemistries.
Collapse
Affiliation(s)
- Drew Lysne
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, Idaho 83725, United States
| | - Tim Hachigian
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, Idaho 83725, United States
| | - Chris Thachuk
- Paul G Allen School of Computer Science and Engineering, University of Washington, Paul G. Allen Center, Box 352350, 185 E Stevens Way NE, Seattle, Washington 98195-2350, United States
| | - Jeunghoon Lee
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, Idaho 83725, United States
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Dr., Boise, Idaho 83725, United States
| | - Elton Graugnard
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, Idaho 83725, United States
- Center for Advanced Energy Studies, Idaho Falls, Idaho 83401, United States
| |
Collapse
|
3
|
Jones M, Ashwood B, Tokmakoff A, Ferguson AL. Determining Sequence-Dependent DNA Oligonucleotide Hybridization and Dehybridization Mechanisms Using Coarse-Grained Molecular Simulation, Markov State Models, and Infrared Spectroscopy. J Am Chem Soc 2021; 143:17395-17411. [PMID: 34644072 PMCID: PMC8554761 DOI: 10.1021/jacs.1c05219] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 11/29/2022]
Abstract
A robust understanding of the sequence-dependent thermodynamics of DNA hybridization has enabled rapid advances in DNA nanotechnology. A fundamental understanding of the sequence-dependent kinetics and mechanisms of hybridization and dehybridization remains comparatively underdeveloped. In this work, we establish new understanding of the sequence-dependent hybridization/dehybridization kinetics and mechanism within a family of self-complementary pairs of 10-mer DNA oligomers by integrating coarse-grained molecular simulation, machine learning of the slow dynamical modes, data-driven inference of long-time kinetic models, and experimental temperature-jump infrared spectroscopy. For a repetitive ATATATATAT sequence, we resolve a rugged dynamical landscape comprising multiple metastable states, numerous competing hybridization/dehybridization pathways, and a spectrum of dynamical relaxations. Introduction of a G:C pair at the terminus (GATATATATC) or center (ATATGCATAT) of the sequence reduces the ruggedness of the dynamics landscape by eliminating a number of metastable states and reducing the number of competing dynamical pathways. Only by introducing a G:C pair midway between the terminus and the center to maximally disrupt the repetitive nature of the sequence (ATGATATCAT) do we recover a canonical "all-or-nothing" two-state model of hybridization/dehybridization with no intermediate metastable states. Our results establish new understanding of the dynamical richness of sequence-dependent kinetics and mechanisms of DNA hybridization/dehybridization by furnishing quantitative and predictive kinetic models of the dynamical transition network between metastable states, present a molecular basis with which to understand experimental temperature jump data, and furnish foundational design rules by which to rationally engineer the kinetics and pathways of DNA association and dissociation for DNA nanotechnology applications.
Collapse
Affiliation(s)
- Michael
S. Jones
- Pritzker
School of Molecular Engineering, The University
of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United
States
| | - Brennan Ashwood
- Department
of Chemistry, Institute for Biophysical Dynamics, and James Franck
Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department
of Chemistry, Institute for Biophysical Dynamics, and James Franck
Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Andrew L. Ferguson
- Pritzker
School of Molecular Engineering, The University
of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United
States
| |
Collapse
|
4
|
Rejali NA, Ye FD, Zuiter AM, Keller CC, Wittwer CT. Nearest-neighbour transition-state analysis for nucleic acid kinetics. Nucleic Acids Res 2021; 49:4574-4585. [PMID: 33823552 PMCID: PMC8096236 DOI: 10.1093/nar/gkab205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/24/2021] [Accepted: 03/13/2021] [Indexed: 11/13/2022] Open
Abstract
We used stopped-flow to monitor hypochromicity for 43 oligonucleotide duplexes to study nucleic acid kinetics and extract transition-state parameters for association and dissociation. Reactions were performed in 1.0 M NaCl (for literature comparisons) and 2.2 mM MgCl2 (PCR conditions). Dissociation kinetics depended on sequence, increased exponentially with temperature, and transition-state parameters inversely correlated to thermodynamic parameters (r = -0.99). Association had no consistent enthalpic component, varied little with temperature or sequence, and poorly correlated to thermodynamic parameters (r = 0.28). Average association rates decreased 78% in MgCl2 compared to NaCl while dissociation was relatively insensitive to ionic conditions. A nearest-neighbour kinetic model for dissociation predicted rate constants within 3-fold of literature values (n = 11). However, a nearest-neighbour model for association appeared overparameterized and inadequate for predictions. Kinetic predictions were used to simulate published high-speed (<1 min) melting analysis and extreme (<2 min) PCR experiments. Melting simulations predicted apparent melting temperatures increase on average 2.4°C when temperature ramp rates increased from 0.1 to 32°C/s, compared to 2.8°C reported in the literature. PCR simulations revealed that denaturation kinetics are dependent on the thermocycling profile. Simulations overestimated annealing efficiencies at shorter annealing times and suggested that polymerase interactions contribute to primer-template complex stability at extension temperatures.
Collapse
Affiliation(s)
- Nick A Rejali
- Department of Pathology, University of Utah, Salt Lake City, UT 84132, USA
| | - Felix D Ye
- Department of Pathology, University of Utah, Salt Lake City, UT 84132, USA
| | - Aisha M Zuiter
- Department of Pathology, University of Utah, Salt Lake City, UT 84132, USA
| | - Caroline C Keller
- Department of Pathology, University of Utah, Salt Lake City, UT 84132, USA
| | - Carl T Wittwer
- Department of Pathology, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
5
|
Hata H, Kitajima T, Suyama A. Influence of thermodynamically unfavorable secondary structures on DNA hybridization kinetics. Nucleic Acids Res 2019; 46:782-791. [PMID: 29220504 PMCID: PMC5778496 DOI: 10.1093/nar/gkx1171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022] Open
Abstract
Nucleic acid secondary structure plays an important role in nucleic acid–nucleic acid recognition/hybridization processes, and is also a vital consideration in DNA nanotechnology. Although the influence of stable secondary structures on hybridization kinetics has been characterized, unstable secondary structures, which show positive ΔG° with self-folding, can also form, and their effects have not been systematically investigated. Such thermodynamically unfavorable secondary structures should not be ignored in DNA hybridization kinetics, especially under isothermal conditions. Here, we report that positive ΔG° secondary structures can change the hybridization rate by two-orders of magnitude, despite the fact that their hybridization obeyed second-order reaction kinetics. The temperature dependence of hybridization rates showed non-Arrhenius behavior; thus, their hybridization is considered to be nucleation limited. We derived a model describing how ΔG° positive secondary structures affect hybridization kinetics in stopped-flow experiments with 47 pairs of oligonucleotides. The calculated hybridization rates, which were based on the model, quantitatively agreed with the experimental rate constant.
Collapse
Affiliation(s)
- Hiroaki Hata
- Department of Life Sciences and Institute of Physics, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Tetsuro Kitajima
- Department of Life Sciences and Institute of Physics, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Akira Suyama
- Department of Life Sciences and Institute of Physics, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
6
|
Olson X, Kotani S, Padilla JE, Hallstrom N, Goltry S, Lee J, Yurke B, Hughes WL, Graugnard E. Availability: A Metric for Nucleic Acid Strand Displacement Systems. ACS Synth Biol 2017; 6:84-93. [PMID: 26875531 PMCID: PMC5259754 DOI: 10.1021/acssynbio.5b00231] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Indexed: 12/20/2022]
Abstract
DNA strand displacement systems have transformative potential in synthetic biology. While powerful examples have been reported in DNA nanotechnology, such systems are plagued by leakage, which limits network stability, sensitivity, and scalability. An approach to mitigate leakage in DNA nanotechnology, which is applicable to synthetic biology, is to introduce mismatches to complementary fuel sequences at key locations. However, this method overlooks nuances in the secondary structure of the fuel and substrate that impact the leakage reaction kinetics in strand displacement systems. In an effort to quantify the impact of secondary structure on leakage, we introduce the concepts of availability and mutual availability and demonstrate their utility for network analysis. Our approach exposes vulnerable locations on the substrate and quantifies the secondary structure of fuel strands. Using these concepts, a 4-fold reduction in leakage has been achieved. The result is a rational design process that efficiently suppresses leakage and provides new insight into dynamic nucleic acid networks.
Collapse
Affiliation(s)
- Xiaoping Olson
- Micron
School of Materials Science & Engineering, Department of Chemistry & Biochemistry, and Department of Electrical
& Computer Engineering, Boise State
University, 1910 University
Drive, Boise, Idaho 83725, United States
| | - Shohei Kotani
- Micron
School of Materials Science & Engineering, Department of Chemistry & Biochemistry, and Department of Electrical
& Computer Engineering, Boise State
University, 1910 University
Drive, Boise, Idaho 83725, United States
| | - Jennifer E. Padilla
- Micron
School of Materials Science & Engineering, Department of Chemistry & Biochemistry, and Department of Electrical
& Computer Engineering, Boise State
University, 1910 University
Drive, Boise, Idaho 83725, United States
| | - Natalya Hallstrom
- Micron
School of Materials Science & Engineering, Department of Chemistry & Biochemistry, and Department of Electrical
& Computer Engineering, Boise State
University, 1910 University
Drive, Boise, Idaho 83725, United States
| | - Sara Goltry
- Micron
School of Materials Science & Engineering, Department of Chemistry & Biochemistry, and Department of Electrical
& Computer Engineering, Boise State
University, 1910 University
Drive, Boise, Idaho 83725, United States
| | - Jeunghoon Lee
- Micron
School of Materials Science & Engineering, Department of Chemistry & Biochemistry, and Department of Electrical
& Computer Engineering, Boise State
University, 1910 University
Drive, Boise, Idaho 83725, United States
| | - Bernard Yurke
- Micron
School of Materials Science & Engineering, Department of Chemistry & Biochemistry, and Department of Electrical
& Computer Engineering, Boise State
University, 1910 University
Drive, Boise, Idaho 83725, United States
| | - William L. Hughes
- Micron
School of Materials Science & Engineering, Department of Chemistry & Biochemistry, and Department of Electrical
& Computer Engineering, Boise State
University, 1910 University
Drive, Boise, Idaho 83725, United States
| | - Elton Graugnard
- Micron
School of Materials Science & Engineering, Department of Chemistry & Biochemistry, and Department of Electrical
& Computer Engineering, Boise State
University, 1910 University
Drive, Boise, Idaho 83725, United States
| |
Collapse
|
7
|
Araque JC, Robert MA. Lattice model of oligonucleotide hybridization in solution. II. Specificity and cooperativity. J Chem Phys 2016; 144:125101. [PMID: 27036478 DOI: 10.1063/1.4943577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Because oligonucleotides are short sequences of nucleic acid bases, their association in solution with complementary strands (hybridization) is often seen to conform to a simple two-state model. However, experimental evidence suggests that, despite their short length, oligonucleotides may hybridize through multiple states involving intermediates. We investigate whether these apparently contradictory scenarios are possible by imposing different levels of sequence specificity on a lattice model of oligonucleotides in solution, which we introduced in Part I [J. C. Araque et al., J. Chem. Phys. 134, 165103 (2011)]. We find that both multiple-intermediate (weakly cooperative) and two-state (strongly cooperative) transitions are possible and that these are directly linked to the level of sequence specificity. Sequences with low specificity hybridize (base-by-base) by way of multiple stable intermediates with increasing number of paired bases. Such intermediate states are weakly cooperative because the energetic gain from adding an additional base pair is outweighed by the conformational entropy loss. Instead, sequences with high specificity hybridize through multiple metastable intermediates which easily bridge the configurational and energetic gaps between single- and double-stranded states. These metastable intermediates interconvert with minimal loss of conformational entropy leading to a strongly cooperative hybridization. The possibility of both scenarios, multiple- and two-states, is therefore encoded in the specificity of the sequence which in turn defines the level of cooperativity.
Collapse
Affiliation(s)
- J C Araque
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | - M A Robert
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
8
|
|