1
|
Moon S, Limmer DT. Enhanced ClNO 2 Formation at the Interface of Sea-Salt Aerosol. J Phys Chem Lett 2024; 15:9466-9473. [PMID: 39254177 DOI: 10.1021/acs.jpclett.4c02289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The reactive uptake of N2O5 on sea-spray aerosol plays a key role in regulating the NOx concentration in the troposphere. Despite numerous field and laboratory studies, a microscopic understanding of its heterogeneous reactivity remains unclear. Here, we use molecular simulation and theory to elucidate the chlorination of N2O5 to form ClNO2, the primary reactive channel within sea-spray aerosol. We find that the formation of ClNO2 is markedly enhanced at the air-water interface due to the stabilization of the charge-delocalized transition state, as evident from the formulation of bimolecular rate theory in heterogeneous environments. We explore the consequences of the enhanced interfacial reactivity in the uptake of N2O5 using numerical solutions of molecular reaction-diffusion equations as well as their analytical approximations. Our results suggest that the current interpretation of aerosol branching ratios needs to be revisited.
Collapse
Affiliation(s)
- Seokjin Moon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - David T Limmer
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Prophet AM, Polley K, Van Berkel GJ, Limmer DT, Wilson KR. Iodide oxidation by ozone at the surface of aqueous microdroplets. Chem Sci 2024; 15:736-756. [PMID: 38179528 PMCID: PMC10762724 DOI: 10.1039/d3sc04254e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/03/2023] [Indexed: 01/06/2024] Open
Abstract
The oxidation of iodide by ozone occurs at the sea-surface and within sea spray aerosol, influencing the overall ozone budget in the marine boundary layer and leading to the emission of reactive halogen gases. A detailed account of the surface mechanism has proven elusive, however, due to the difficulty in quantifying multiphase kinetics. To obtain a clearer understanding of this reaction mechanism at the air-water interface, we report pH-dependent oxidation kinetics of I- in single levitated microdroplets as a function of [O3] using a quadrupole electrodynamic trap and an open port sampling interface for mass spectrometry. A kinetic model, constrained by molecular simulations of O3 dynamics at the air-water interface, is used to understand the coupled diffusive, reactive, and evaporative pathways at the microdroplet surface, which exhibit a strong dependence on bulk solution pH. Under acidic conditions, the surface reaction is limited by O3 diffusion in the gas phase, whereas under basic conditions the reaction becomes rate limited on the surface. The pH dependence also suggests the existence of a reactive intermediate IOOO- as has previously been observed in the Br- + O3 reaction. Expressions for steady-state surface concentrations of reactants are derived and utilized to directly compute uptake coefficients for this system, allowing for an exploration of uptake dependence on reactant concentration. In the present experiments, reactive uptake coefficients of O3 scale weakly with bulk solution pH, increasing from 4 × 10-4 to 2 × 10-3 with decreasing solution pH from pH 13 to pH 3.
Collapse
Affiliation(s)
- Alexander M Prophet
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Kritanjan Polley
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | | | - David T Limmer
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Chemistry, University of California Berkeley CA 94720 USA
- Materials Science Division, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
- Kavli Energy NanoScience Institute Berkeley California 94720 USA
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
3
|
Herbert JM, Paul SK. Interaction Energy Analysis of Monovalent Inorganic Anions in Bulk Water Versus Air/Water Interface. Molecules 2021; 26:6719. [PMID: 34771133 PMCID: PMC8588468 DOI: 10.3390/molecules26216719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Soft anions exhibit surface activity at the air/water interface that can be probed using surface-sensitive vibrational spectroscopy, but the structural implications of this surface activity remain a matter of debate. Here, we examine the nature of anion-water interactions at the air/water interface using a combination of molecular dynamics simulations and quantum-mechanical energy decomposition analysis based on symmetry-adapted perturbation theory. Results are presented for a set of monovalent anions, including Cl-, Br-, I-, CN-, OCN-, SCN-, NO2-, NO3-, and ClOn- (n=1,2,3,4), several of which are archetypal examples of surface-active species. In all cases, we find that average anion-water interaction energies are systematically larger in bulk water although the difference (with respect to the same quantity computed in the interfacial environment) is well within the magnitude of the instantaneous fluctuations. Specifically for the surface-active species Br-(aq), I-(aq), ClO4-(aq), and SCN-(aq), and also for ClO-(aq), the charge-transfer (CT) energy is found to be larger at the interface than it is in bulk water, by an amount that is greater than the standard deviation of the fluctuations. The Cl-(aq) ion has a slightly larger CT energy at the interface, but NO3-(aq) does not; these two species are borderline cases where consensus is lacking regarding their surface activity. However, CT stabilization amounts to <20% of the total induction energy for each of the ions considered here, and CT-free polarization energies are systematically larger in bulk water in all cases. As such, the role of these effects in the surface activity of soft anions remains unclear. This analysis complements our recent work suggesting that the short-range solvation structure around these ions is scarcely different at the air/water interface from what it is in bulk water. Together, these observations suggest that changes in first-shell hydration structure around soft anions cannot explain observed surface activities.
Collapse
Affiliation(s)
- John M. Herbert
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA;
| | | |
Collapse
|
4
|
Paul SK, Herbert JM. Probing Interfacial Effects on Ionization Energies: The Surprising Banality of Anion-Water Hydrogen Bonding at the Air/Water Interface. J Am Chem Soc 2021; 143:10189-10202. [PMID: 34184532 DOI: 10.1021/jacs.1c03131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Liquid microjet photoelectron spectroscopy is an increasingly common technique to measure vertical ionization energies (VIEs) of aqueous solutes, but the interpretation of these experiments is subject to questions regarding sensitivity to bulk versus interfacial solvation environments. We have computed aqueous-phase VIEs for a set of inorganic anions, using a combination of molecular dynamics simulations and electronic structure calculations, with results that are in excellent agreement with experiment regardless of whether the simulation data are restricted to ions at the air/water interface or to those in bulk aqueous solution. Although the computed VIEs are sensitive to ion-water hydrogen bonding, we find that the short-range solvation structure is sufficiently similar in both environments that it proves impossible to discriminate between the two on the basis of the VIE, a conclusion that has important implications for the interpretation of liquid-phase photoelectron spectroscopy. More generally, analysis of the simulation data suggests that the surface activity of soft anions is largely a second or third solvation shell effect, arising from disruption of water-water hydrogen bonds and not from significant changes in first-shell anion-water hydrogen bonding.
Collapse
Affiliation(s)
- Suranjan K Paul
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Zhu J, Huang J. Methylguanidinium at the Air/Water Interface: A Simulation Study with the Drude Polarizable Force Field. J Phys Chem B 2021; 125:393-405. [PMID: 33373260 DOI: 10.1021/acs.jpcb.0c08556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methylguanidinium is an important molecular ion, which also serves as the model compound for the arginine side chain. We studied the structure and dynamics of the methylguanidium ion at the air/water interface by molecular dynamics simulations employing the Drude polarizable force field. We found out that methylguanidinium accumulated at the interface, with a majority adopting tilted conformations. We also demonstrated that methylguanidinium and guanidinium ions had different preference toward the air/water interface. Detailed analysis of induced dipole moments showed how ions adjusted their charge distribution at the interface and revealed how the anisotropy in molecular polarizability impacted the orientation of molecular ions. Our results illustrate the importance of explicitly including the electronic polarization effects in modeling interfacial properties.
Collapse
Affiliation(s)
- Jian Zhu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China.,Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Jing Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China.,Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
6
|
Cox SJ, Thorpe DG, Shaffer PR, Geissler PL. Assessing long-range contributions to the charge asymmetry of ion adsorption at the air-water interface. Chem Sci 2020; 11:11791-11800. [PMID: 34094413 PMCID: PMC8162909 DOI: 10.1039/d0sc01947j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Anions generally associate more favorably with the air–water interface than cations. In addition to solute size and polarizability, the intrinsic structure of the unperturbed interface has been discussed as an important contributor to this bias. Here we assess quantitatively the role that intrinsic charge asymmetry of water's surface plays in ion adsorption, using computer simulations to compare model solutes of various size and charge. In doing so, we also evaluate the degree to which linear response theory for solvent polarization is a reasonable approach for comparing the thermodynamics of bulk and interfacial ion solvation. Consistent with previous works on bulk ion solvation, we find that the average electrostatic potential at the center of a neutral, sub-nanometer solute at the air–water interface depends sensitively on its radius, and that this potential changes quite nonlinearly as the solute's charge is introduced. The nonlinear response closely resembles that of the bulk. As a result, the net nonlinearity of ion adsorption is weaker than in bulk, but still substantial, comparable to the apparent magnitude of macroscopically nonlocal contributions from the undisturbed interface. For the simple-point-charge model of water we study, these results argue distinctly against rationalizing ion adsorption in terms of surface potentials inherent to molecular structure of the liquid's boundary. Cations and anions have different affinities for the air-water interface. The intrinsic orientation of surface molecules suggests such an asymmetry, but the bias is dominated by solvent response that is spatially local and significantly nonlinear.![]()
Collapse
Affiliation(s)
- Stephen J Cox
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Dayton G Thorpe
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA.,Department of Physics, University of California Berkeley CA 94720 USA
| | - Patrick R Shaffer
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Phillip L Geissler
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA.,Department of Chemistry, University of California Berkeley CA 94720 USA
| |
Collapse
|
7
|
Oh MI, Gupta M, Weaver DF. Understanding Water Structure in an Ion-Pair Solvation Shell in the Vicinity of a Water/Membrane Interface. J Phys Chem B 2019; 123:3945-3954. [DOI: 10.1021/acs.jpcb.9b01331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Myong In Oh
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Mayuri Gupta
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Donald F. Weaver
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5G 2C4, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
8
|
Cox SJ, Geissler PL. Interfacial ion solvation: Obtaining the thermodynamic limit from molecular simulations. J Chem Phys 2018; 148:222823. [DOI: 10.1063/1.5020563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Stephen J. Cox
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Phillip L. Geissler
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
9
|
Strazdaite S, Versluis J, Ottosson N, Bakker HJ. Orientation of Methylguanidinium Ions at the Water-Air Interface. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:23398-23405. [PMID: 29129985 PMCID: PMC5677249 DOI: 10.1021/acs.jpcc.7b03752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/13/2017] [Indexed: 06/07/2023]
Abstract
We use heterodyne-detected vibrational sum-frequency generation (HD-VSFG) to determine the orientation of the molecular plane of methylguanidinium ions at the surface of aqueous solutions. We measure the VSFG response of the symmetric and antisymmetric methyl stretch vibrations of the methylguanidinium ion with different polarization combinations. We find that for at least 50% of the methylguanidinium ions the molecular plane is at an angle >20° with respect to the surface plane. Hence, for only a minor fraction of the ions does the molecular plane have an orientation (near-)parallel to the surface plane, in contrast to the predictions of recent molecular dynamics simulation studies.
Collapse
Affiliation(s)
- S. Strazdaite
- Institute for
Atomic and Molecular Physics AMOLF, Science Park 102, Amsterdam 1098 XG, The Netherlands
| | - J. Versluis
- Institute for
Atomic and Molecular Physics AMOLF, Science Park 102, Amsterdam 1098 XG, The Netherlands
| | - N. Ottosson
- Institute for
Atomic and Molecular Physics AMOLF, Science Park 102, Amsterdam 1098 XG, The Netherlands
- Advanced Research
Center for Nanolithography ARCNL, Science
Park 110, Amsterdam 1098
XG, The Netherlands
| | - Huib J. Bakker
- Institute for
Atomic and Molecular Physics AMOLF, Science Park 102, Amsterdam 1098 XG, The Netherlands
| |
Collapse
|
10
|
Ben-Amotz D. Interfacial solvation thermodynamics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:414013. [PMID: 27545849 DOI: 10.1088/0953-8984/28/41/414013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Previous studies have reached conflicting conclusions regarding the interplay of cavity formation, polarizability, desolvation, and surface capillary waves in driving the interfacial adsorptions of ions and molecules at air-water interfaces. Here we revisit these questions by combining exact potential distribution results with linear response theory and other physically motivated approximations. The results highlight both exact and approximate compensation relations pertaining to direct (solute-solvent) and indirect (solvent-solvent) contributions to adsorption thermodynamics, of relevance to solvation at air-water interfaces, as well as a broader class of processes linked to the mean force potential between ions, molecules, nanoparticles, proteins, and biological assemblies.
Collapse
Affiliation(s)
- Dor Ben-Amotz
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Ou SC, Cui D, Patel S. Molecular modeling of ions at interfaces: exploring similarities to hydrophobic solvation through the lens of induced aqueous interfacial fluctuations. Phys Chem Chem Phys 2016; 18:30357-30365. [DOI: 10.1039/c6cp04112d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ion specific effects are ubiquitous in chemistry and biology.
Collapse
Affiliation(s)
- Shu-Ching Ou
- Sealy Center for Structural Biology and Molecular Biophysics
- University of Texas Medical Branch
- 301 University Boulevard
- Galveston
- USA
| | - Di Cui
- Department of Chemistry
- Temple University
- Philadelphia
- USA
| | - Sandeep Patel
- Department of Chemistry and Biochemistry
- University of Delaware
- Newark
- USA
| |
Collapse
|
12
|
Ou SC, Cui D, Wezowicz M, Taufer M, Patel S. Free energetics of carbon nanotube association in aqueous inorganic NaI salt solutions: Temperature effects using all-atom molecular dynamics simulations. J Comput Chem 2015; 36:1196-212. [PMID: 25868455 PMCID: PMC4445429 DOI: 10.1002/jcc.23906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/22/2015] [Accepted: 02/21/2015] [Indexed: 11/06/2022]
Abstract
In this study, we examine the temperature dependence of free energetics of nanotube association using graphical processing unit-enabled all-atom molecular dynamics simulations (FEN ZI) with two (10,10) single-walled carbon nanotubes in 3 m NaI aqueous salt solution. Results suggest that the free energy, enthalpy and entropy changes for the association process are all reduced at the high temperature, in agreement with previous investigations using other hydrophobes. Via the decomposition of free energy into individual components, we found that solvent contribution (including water, anion, and cation contributions) is correlated with the spatial distribution of the corresponding species and is influenced distinctly by the temperature. We studied the spatial distribution and the structure of the solvent in different regions: intertube, intratube and the bulk solvent. By calculating the fluctuation of coarse-grained tube-solvent surfaces, we found that tube-water interfacial fluctuation exhibits the strongest temperature dependence. By taking ions to be a solvent-like medium in the absence of water, tube-anion interfacial fluctuation shows similar but weaker dependence on temperature, while tube-cation interfacial fluctuation shows no dependence in general. These characteristics are discussed via the malleability of their corresponding solvation shells relative to the nanotube surface. Hydrogen bonding profiles and tetrahedrality of water arrangement are also computed to compare the structure of solvent in the solvent bulk and intertube region. The hydrophobic confinement induces a relatively lower concentration environment in the intertube region, therefore causing different intertube solvent structures which depend on the tube separation. This study is relevant in the continuing discourse on hydrophobic interactions (as they impact generally a broad class of phenomena in biology, biochemistry, and materials science and soft condensed matter research), and interpretations of hydrophobicity in terms of alternative but parallel signatures such as interfacial fluctuations, dewetting transitions, and enhanced fluctuation probabilities at interfaces.
Collapse
Affiliation(s)
- Shu-Ching Ou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Di Cui
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Matthew Wezowicz
- Department of Computer and Information Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Michela Taufer
- Department of Computer and Information Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Sandeep Patel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
13
|
Cui D, Ou SC, Patel S. Protein denaturants at aqueous-hydrophobic interfaces: self-consistent correlation between induced interfacial fluctuations and denaturant stability at the interface. J Phys Chem B 2015; 119:164-78. [PMID: 25536388 PMCID: PMC4291035 DOI: 10.1021/jp507203g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/21/2014] [Indexed: 01/16/2023]
Abstract
The notion of direct interaction between denaturing cosolvent and protein residues has been proposed in dialogue relevant to molecular mechanisms of protein denaturation. Here we consider the correlation between free energetic stability and induced fluctuations of an aqueous-hydrophobic interface between a model hydrophobically associating protein, HFBII, and two common protein denaturants, guanidinium cation (Gdm(+)) and urea. We compute potentials of mean force along an order parameter that brings the solute molecule close to the known hydrophobic region of the protein. We assess potentials of mean force for different relative orientations between the protein and denaturant molecule. We find that in both cases of guanidinium cation and urea relative orientations of the denaturant molecule that are parallel to the local protein-water interface exhibit greater stability compared to edge-on or perpendicular orientations. This behavior has been observed for guanidinium/methylguanidinium cations at the liquid-vapor interface of water, and thus the present results further corroborate earlier findings. Further analysis of the induced fluctuations of the aqueous-hydrophobic interface upon approach of the denaturant molecule indicates that the parallel orientation, displaying a greater stability at the interface, also induces larger fluctuations of the interface compared to the perpendicular orientations. The correlation of interfacial stability and induced interface fluctuation is a recurring theme for interface-stable solutes at hydrophobic interfaces. Moreover, observed correlations between interface stability and induced fluctuations recapitulate connections to local hydration structure and patterns around solutes as evidenced by experiment (Cooper et al., J. Phys. Chem. A 2014, 118, 5657.) and high-level ab initio/DFT calculations (Baer et al., Faraday Discuss 2013, 160, 89).
Collapse
Affiliation(s)
- Di Cui
- Department of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Shu-Ching Ou
- Department of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Sandeep Patel
- Department of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
14
|
Ou SC, Cui D, Patel S. Association of alkanes with the aqueous liquid-vapor interface: a reference system for interpreting hydrophobicity generally through interfacial fluctuations. Phys Chem Chem Phys 2014; 16:26779-85. [PMID: 25372502 DOI: 10.1039/c4cp03170a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report free energy calculations and fluctuation profiles of single alkanes (from methane to pentane) along the direction normal to the air-water interface. The induced fluctuations and the interfacial stabilities of alkanes are found to be correlated and similar to the results of inorganic monovalent ions (Ou et al., J. Phys. Chem. B, 2013, 117, 11732). This suggests that hydrophobic solvation of solutes and ions is important in determining the adsorption behavior.
Collapse
Affiliation(s)
- Shu-Ching Ou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
| | | | | |
Collapse
|
15
|
Hu Y, Sinha SK, Patel S. Reconciling structural and thermodynamic predictions using all-atom and coarse-grain force fields: the case of charged oligo-arginine translocation into DMPC bilayers. J Phys Chem B 2014; 118:11973-92. [PMID: 25290376 PMCID: PMC4199542 DOI: 10.1021/jp504853t] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Using the translocation of short, charged cationic oligo-arginine peptides (mono-, di-, and triarginine) from bulk aqueous solution into model DMPC bilayers, we explore the question of the similarity of thermodynamic and structural predictions obtained from molecular dynamics simulations using all-atom and Martini coarse-grain force fields. Specifically, we estimate potentials of mean force associated with translocation using standard all-atom (CHARMM36 lipid) and polarizable and nonpolarizable Martini force fields, as well as a series of modified Martini-based parameter sets. We find that we are able to reproduce qualitative features of potentials of mean force of single amino acid side chain analogues into model bilayers. In particular, modifications of peptide-water and peptide-membrane interactions allow prediction of free energy minima at the bilayer-water interface as obtained with all-atom force fields. In the case of oligo-arginine peptides, the modified parameter sets predict interfacial free energy minima as well as free energy barriers in almost quantitative agreement with all-atom force field based simulations. Interfacial free energy minima predicted by a modified coarse-grained parameter set are -2.51, -4.28, and -5.42 for mono-, di-, and triarginine; corresponding values from all-atom simulations are -0.83, -3.33, and -3.29, respectively, all in units of kcal/mol. We found that a stronger interaction between oligo-arginine and the membrane components and a weaker interaction between oligo-arginine and water are crucial for producing such minima in PMFs using the polarizable CG model. The difference between bulk aqueous and bilayer center states predicted by the modified coarse-grain force field are 11.71, 14.14, and 16.53 kcal/mol, and those by the all-atom model are 6.94, 8.64, and 12.80 kcal/mol; those are of almost the same order of magnitude. Our simulations also demonstrate a remarkable similarity in the structural aspects of the ensemble of configurations generated using the all-atom and coarse-grain force fields. Both resolutions show that oligo-arginine peptides adopt preferential orientations as they translocate into the bilayer. The guiding theme centers on charged groups maintaining coordination with polar and charged bilayer components as well as local water. We also observe similar behaviors related with membrane deformations.
Collapse
Affiliation(s)
- Yuan Hu
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | | | | |
Collapse
|
16
|
Soniat M, Rick SW. Charge transfer effects of ions at the liquid water/vapor interface. J Chem Phys 2014; 140:184703. [DOI: 10.1063/1.4874256] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
17
|
Cui D, Ou S, Peters E, Patel S. Ion-specific induced fluctuations and free energetics of aqueous protein hydrophobic interfaces: toward connecting to specific-ion behaviors at aqueous liquid-vapor interfaces. J Phys Chem B 2014; 118:4490-504. [PMID: 24701961 PMCID: PMC4010293 DOI: 10.1021/jp4105294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 04/03/2014] [Indexed: 11/29/2022]
Abstract
We explore anion-induced interface fluctuations near protein-water interfaces using coarse-grained representations of interfaces as proposed by Willard and Chandler ( J. Phys. Chem. B 2010 , 114 , 1954 - 1958 ). We use umbrella sampling molecular dynamics to compute potentials of mean force along a reaction coordinate bridging the state where the anion is fully solvated and one where it is biased via harmonic restraints to remain at the protein-water interface. Specifically, we focus on fluctuations of an interface between water and a hydrophobic region of hydrophobin-II (HFBII), a 71 amino acid residue protein expressed by filamentous fungi and known for its ability to form hydrophobically mediated self-assemblies at interfaces such as a water/air interface. We consider the anions chloride and iodide that have been shown previously by simulations as displaying specific-ion behaviors at aqueous liquid-vapor interfaces. We find that as in the case of a pure liquid-vapor interface, at the hydrophobic protein-water interface, the larger, less charge-dense iodide anion displays a marginal interfacial stability compared with that of the smaller, more charge-dense chloride anion. Furthermore, consistent with the results at aqueous liquid-vapor interfaces, we find that iodide induces larger fluctuations of the protein-water interface than chloride.
Collapse
Affiliation(s)
- Di Cui
- Department of Chemistry and Biochemistry and Department of Chemical and Biomolecular
Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Shuching Ou
- Department of Chemistry and Biochemistry and Department of Chemical and Biomolecular
Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Eric Peters
- Department of Chemistry and Biochemistry and Department of Chemical and Biomolecular
Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Sandeep Patel
- Department of Chemistry and Biochemistry and Department of Chemical and Biomolecular
Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|