1
|
Nobeyama T, Shigyou K, Nakatsuji H, Sugiyama H, Komura N, Ando H, Hamada T, Murakami T. Control of Lipid Bilayer Phases of Cell-Sized Liposomes by Surface-Engineered Plasmonic Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7741-7746. [PMID: 32502354 DOI: 10.1021/acs.langmuir.0c00049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Liquid-ordered (Lo)-phase domains, a cholesterol-rich area on lipid bilayers, have attracted significant attention recently because of their relevance to lipid rafts, the formation/collapse of which is associated with various kinds of information exchange through the plasma membrane. Here, we demonstrate that the formation/collapse of Lo-phase domains in cell-sized liposomes, that is, giant unilamellar vesicles (GUVs), can be controlled with bioactive plasmonic nanoparticles and light. The nanoparticles were prepared by surface modification of gold nanorods (AuNRs) using a cationized mutant of high-density lipoprotein (HDL), which is a natural cholesterol transporter. Upon the addition of surface-engineered AuNRs to GUVs with the mixed domains of Lo and liquid-disorder (Ld) phases, the Lo domains collapsed and solid-ordered (So)-phase domains were formed. The reverse phase transition was achieved photothermally, with the AuNRs loaded with cholesterol. During these transitions, the AuNRs appeared to be selectively localized on the less fluidic domain (Lo or So) in the phase-mixed GUVs. These results indicate that the phase transitions occur through the membrane binding of the AuNRs followed by spontaneous/photothermal transfer of cholesterol between the AuNRs and GUVs. Our strategy to develop bioactive AuNRs potentially enables spatiotemporal control of the formation/collapse of lipid rafts in living cells.
Collapse
Affiliation(s)
- Tomohiro Nobeyama
- Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kazuki Shigyou
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hirotaka Nakatsuji
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Osaka 565-0871, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Institute of Advanced Study (KUIAS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Naoko Komura
- Institute for Glyco-core Research (iGCORE), Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hiromune Ando
- Institute for Glyco-core Research (iGCORE), Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Tsutomu Hamada
- School of Material Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Tatsuya Murakami
- Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Institute of Advanced Study (KUIAS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0393, Japan
| |
Collapse
|
2
|
Zhao J, Su J, Qin L, Zhang X, Mao S. Exploring the influence of inhaled liposome membrane fluidity on its interaction with pulmonary physiological barriers. Biomater Sci 2020; 8:6786-6797. [DOI: 10.1039/d0bm01529f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Liposome membrane fluidity can influence its interaction with pulmonary physiological barriers, including mucus permeation, macrophage uptake and trachea permeation.
Collapse
Affiliation(s)
- Jing Zhao
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Jian Su
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Lu Qin
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Xin Zhang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Shirui Mao
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| |
Collapse
|
3
|
Curcumin-loaded low-energy nanoemulsions as a prototype of multifunctional vehicles for different administration routes: Physicochemical and in vitro peculiarities important for dermal application. Int J Pharm 2018; 550:333-346. [PMID: 30179702 DOI: 10.1016/j.ijpharm.2018.08.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/21/2018] [Accepted: 08/31/2018] [Indexed: 02/04/2023]
Abstract
The objective of this work was to investigate and profoundly characterize low-energy nanoemulsions as multifunctional carriers, with slight reference to dermal administration. An evidence-based approach was offered for deepening the knowledge on their formation via spontaneous emulsification. Curcumin, a compound of natural origin, potentially powerful therapeutic, was chosen as a model API. Due to curcumin's demanding properties (instability, poor solubility, low permeability), its potentials remain unreached. Low-energy nanoemulsions were considered carriers capable of overcoming imposed obstacles. Formulation consisting of Polysorbate 80 and soybean lecithin as stabilizers (9:1, 10%), medium-chain triglycerides as the oil phase (10%) and ultrapure water was selected for curcumin incorporation in 3 different concentrations (1, 2 and 3 mg/mL). Physicochemical stability was demonstrated during 3 months of monitoring (mean droplet size: 111.3-146.8 nm; PDI < 0.2; pH: 4.73-5.73). Curcumin's release from developed vehicles followed Higuchi's kinetics. DPPH (IC50 = 0.1187 mg/mL) and FRAP (1.19 ± 0.02 mmol/g) assays confirmed that curcumin acts as a potent antioxidant through different mechanisms, with no alterations after incorporation in the formulation. High biocompatibility in line with antigenotoxic activity of curcumin-loaded formulations (protective and reparative) was estimated through Comet assay. A multidisciplinary approach is needed to fully characterize developed systems, directing them to more concrete application possibilities.
Collapse
|
4
|
Sreekanth V, Medatwal N, Kumar S, Pal S, Vamshikrishna M, Kar A, Bhargava P, Naaz A, Kumar N, Sengupta S, Bajaj A. Tethering of Chemotherapeutic Drug/Imaging Agent to Bile Acid-Phospholipid Increases the Efficacy and Bioavailability with Reduced Hepatotoxicity. Bioconjug Chem 2017; 28:2942-2953. [DOI: 10.1021/acs.bioconjchem.7b00564] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vedagopuram Sreekanth
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
- Manipal University, Manipal, 576104, India
| | - Nihal Medatwal
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
- Manipal University, Manipal, 576104, India
| | - Sandeep Kumar
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
- Manipal University, Manipal, 576104, India
| | - Sanjay Pal
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
- KIIT University, Bhubaneswar, Odisha 751024, India
| | - Malyla Vamshikrishna
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | - Animesh Kar
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | - Priyanshu Bhargava
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | - Aaliya Naaz
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | - Nitin Kumar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sagar Sengupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Avinash Bajaj
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| |
Collapse
|
5
|
Sreekanth V, Medatwal N, Pal S, Kumar S, Sengupta S, Bajaj A. Molecular Self-Assembly of Bile Acid-Phospholipids Controls the Delivery of Doxorubicin and Mice Survivability. Mol Pharm 2017; 14:2649-2659. [DOI: 10.1021/acs.molpharmaceut.7b00105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vedagopuram Sreekanth
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
- Manipal University, Manipal-576104, Karnataka, India
| | - Nihal Medatwal
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
- Manipal University, Manipal-576104, Karnataka, India
| | - Sanjay Pal
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
- KIIT University, Bhubaneswar-751024, Odisha, India
| | - Sandeep Kumar
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
- Manipal University, Manipal-576104, Karnataka, India
| | - Sagar Sengupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Avinash Bajaj
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| |
Collapse
|
6
|
Enhanced antioxidation via encapsulation of isooctyl p-methoxycinnamate with sodium deoxycholate-mediated liposome endocytosis. Int J Pharm 2015; 496:392-400. [PMID: 26453790 DOI: 10.1016/j.ijpharm.2015.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/14/2015] [Accepted: 10/03/2015] [Indexed: 11/22/2022]
Abstract
Isooctyl p-methoxycinnamate(OMC) is a commonly used chemical ultraviolet B sunscreen that suffers rapid degradation with current delivery systems following sun exposure. In this study, deoxycholate-mediated liposome (DOC-LS) endocytosis was employed to improve the antioxidation effects of OMC following topical administration, and the in vitro cell uptake was investigated to understand the enhanced cutaneous absorption of the drug via this nanocarrier. Following topical application, structural changes in the stratum corneum were identified. With the increase of DOC content, the drug deposition in skin decreased; from this, a DOC-LS formulation was selected that showed significantly more drug delivery in skin than did the other preparations (P<0.05). DOC-LS decreased skin resistance, suggesting its ability to induce skin barrier disruption. In vitro HaCaT keratinocyte cell uptake of coumarin-6 incorporated in the two types of phosphatidylcholine (PC) vesicles (i.e., LS or DOC-LS) yielded similar fluorescence intensities following incubation for different periods (P<0.05). However, CCC-ESF-1 embryonic fibroblast cell uptake of the fluorescence revealed time-dependence, and the emitted light from DOC-LS incubated cells was stronger than that from cells incubated with LS (P<0.05). These findings might be associated with the endocytic pathway of HaCaT, which mainly exhibited adsorption or physical adhesion of the fluorescent vesicles, whereas CCC-ESF-1 markedly internalized the PC vesicles via the lysosomes, as shown by intracellular fluorescence co-location studies. Following loading with the same amount of OMC, the DOC-LS vesicles exhibited superior skin tissue antioxidative capacity among the preparations tested, corroborating the in vivo skin drug deposition results. Thus, our results suggest that DOC-LS is a promising system for OMC dermal delivery without promoting skin irritation, which is quite advantageous for therapeutic purposes.
Collapse
|
7
|
Kumar S, Bhargava P, Sreekanth V, Bajaj A. Design, synthesis, and physico-chemical interactions of bile acid derived dimeric phospholipid amphiphiles with model membranes. J Colloid Interface Sci 2015; 448:398-406. [DOI: 10.1016/j.jcis.2015.01.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 11/16/2022]
|
8
|
Swain J, Kamalraj M, Surya Prakash Rao H, Mishra AK. Effect of a glucose-triazole-hydrogenated cardanol conjugate on lipid bilayer membrane organization and thermotropic phase transition. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2014.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Yadav K, Bhargava P, Bansal S, Singh M, Gupta S, Sandhu G, Kumar S, Sreekanth V, Bajaj A. Nature of the charged head group dictates the anticancer potential of lithocholic acid-tamoxifen conjugates for breast cancer therapy. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00289j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anticancer drug Tamoxifen is modified to charged lithocholic acid derived amphiphile for enhanced cytotoxicity against breast cancer cells.
Collapse
Affiliation(s)
- Kavita Yadav
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- Gurgaon-122016
- India
- Research Scholar
| | - Priyanshu Bhargava
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- Gurgaon-122016
- India
| | - Sandhya Bansal
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- Gurgaon-122016
- India
| | - Manish Singh
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- Gurgaon-122016
- India
| | - Siddhi Gupta
- Department of Chemistry
- Indian Institute of Science Education and Research
- Bhopal
- India
| | - Geeta Sandhu
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- Gurgaon-122016
- India
| | - Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- Gurgaon-122016
- India
| | - Vedagopuram Sreekanth
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- Gurgaon-122016
- India
- Research Scholar
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- Gurgaon-122016
- India
| |
Collapse
|
10
|
Bhargava P, Singh M, Sreekanth V, Bajaj A. Nature of the Charged Headgroup Determines the Fusogenic Potential and Membrane Properties of Lithocholic Acid Phospholipids. J Phys Chem B 2014; 118:9341-8. [DOI: 10.1021/jp504104a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Priyanshu Bhargava
- Laboratory of Nanotechnology
and Chemical Biology, Regional Centre for Biotechnology, 180 Udyog
Vihar, Phase 1, Gurgaon 122016, Haryana, India
| | - Manish Singh
- Laboratory of Nanotechnology
and Chemical Biology, Regional Centre for Biotechnology, 180 Udyog
Vihar, Phase 1, Gurgaon 122016, Haryana, India
| | - Vedagopuram Sreekanth
- Laboratory of Nanotechnology
and Chemical Biology, Regional Centre for Biotechnology, 180 Udyog
Vihar, Phase 1, Gurgaon 122016, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology
and Chemical Biology, Regional Centre for Biotechnology, 180 Udyog
Vihar, Phase 1, Gurgaon 122016, Haryana, India
| |
Collapse
|