1
|
Lei Z, Zhao P, Guan ZJ, Nan ZA, Ehara M, Wang QM. 'Passivated Precursor' Approach to All-Alkynyl-Protected Gold Nanoclusters and Total Structure Determination of Au 130. Chemistry 2024; 30:e202401094. [PMID: 38797717 DOI: 10.1002/chem.202401094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
A 'passivated precursor' approach is developed for the efficient synthesis and isolation of all-alkynyl-protected gold nanoclusters. Direct reduction of dpa-passivated precursor Au-dpa (Hdpa=2,2'-dipyridylamine) in one-pot under ambient conditions gives a series of clusters including Au22(C≡CR)18 (R=-C6H4-2-F), Au36(C≡CR)24, Au44(C≡CR)28, Au130(C≡CR)50, and Au144(C≡CR)60. These clusters can be well separated via column chromatography. The overall isolation yield of this series of clusters is 40 % (based on gold), which is much improved in comparison with previous approaches. It is notable that the molecular structure of the giant cluster Au130(C≡CR)50 is revealed, which presents important information for understanding the structure of the mysterious Au130 nanoclusters. Theoretical calculations indicated Au130(C≡CR)50 has a smaller HOMO-LUMO gap than Au130(S-C6H4-4-CH3)50. This facile and reliable synthetic approach will greatly accelerate further studies on all-alkynyl-protected gold nanoclusters.
Collapse
Affiliation(s)
- Zhen Lei
- Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, 350108, Fuzhou, P. R. China
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science, 444-8585, Myodaiji, Okazaki, Aichi, Japan
| | - Zong-Jie Guan
- Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Zi-Ang Nan
- Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, 444-8585, Myodaiji, Okazaki, Aichi, Japan
| | - Quan-Ming Wang
- Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| |
Collapse
|
2
|
Wei W, Mengshan L, Yan W, Lixin G. Cluster energy prediction based on multiple strategy fusion whale optimization algorithm and light gradient boosting machine. BMC Chem 2024; 18:24. [PMID: 38291518 PMCID: PMC11367823 DOI: 10.1186/s13065-024-01127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Clusters, a novel hierarchical material structure that emerges from atoms or molecules, possess unique reactivity and catalytic properties, crucial in catalysis, biomedicine, and optoelectronics. Predicting cluster energy provides insights into electronic structure, magnetism, and stability. However, the structure of clusters and their potential energy surface is exceptionally intricate. Searching for the global optimal structure (the lowest energy) among these isomers poses a significant challenge. Currently, modelling cluster energy predictions with traditional machine learning methods has several issues, including reliance on manual expertise, slow computation, heavy computational resource demands, and less efficient parameter tuning. RESULTS This paper introduces a predictive model for the energy of a gold cluster comprising twenty atoms (referred to as Au20 cluster). The model integrates the Multiple Strategy Fusion Whale Optimization Algorithm (MSFWOA) with the Light Gradient Boosting Machine (LightGBM), resulting in the MSFWOA-LightGBM model. This model employs the Coulomb matrix representation and eigenvalue solution methods for feature extraction. Additionally, it incorporates the Tent chaotic mapping, cosine convergence factor, and inertia weight updating strategy to optimize the Whale Optimization Algorithm (WOA), leading to the development of MSFWOA. Subsequently, MSFWOA is employed to optimize the parameters of LightGBM for supporting the energy prediction of Au20 cluster. CONCLUSIONS The experimental results show that the most stable Au20 cluster structure is a regular tetrahedron with the lowest energy, displaying tight and uniform atom distribution, high geometric symmetry. Compared to other models, the MSFWOA-LightGBM model excels in accuracy and correlation, with MSE, RMSE, and R2 values of 0.897, 0.947, and 0.879, respectively. Additionally, the MSFWOA-LightGBM model possesses outstanding scalability, offering valuable insights for material design, energy storage, sensing technology, and biomedical imaging, with the potential to drive research and development in these areas.
Collapse
Affiliation(s)
- Wu Wei
- School of Physics and Electronic Information, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Li Mengshan
- School of Physics and Electronic Information, Gannan Normal University, Ganzhou, 341000, Jiangxi, China.
| | - Wu Yan
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Guan Lixin
- School of Physics and Electronic Information, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|
3
|
Summers PK, Angeloski A, Wuhrer R, Cortie MB, McDonagh AM. The fate of organic species upon sintering of thiol-stabilised gold nanoparticles under different atmospheric conditions. Phys Chem Chem Phys 2023; 25:7170-7175. [PMID: 36810448 DOI: 10.1039/d2cp05822g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Understanding and controlling the sintering behavior of gold nanoparticles is important for applications such as printed electronics, catalysis and sensing that utilise these materials. Here we examine the processes by which thiol-protected gold nanoparticles thermally sinter under a variety of atmospheres. We find that upon sintering, the surface-bound thiyl ligands exclusively form the corresponding disulfide species when released from the gold surface. Experiments conducted using air, hydrogen, nitrogen, or argon atmospheres revealed no significant differences between the temperatures of the sintering event nor on the composition of released organic species. When conducted under high vacuum, the sintering event occurred at lower temperatures compared to ambient pressures in cases where the resulting disulfide had relatively high volatility (dibutyl disulfide). Hexadecylthiol-stabilized particles exhibited no significant differences in the temperatures of the sintering event under ambient pressures compared to high vacuum conditions. We attribute this to the relatively low volatility of the resultant dihexadecyl disulfide product.
Collapse
Affiliation(s)
- Paige K Summers
- School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway, Ultimo, NSW, 2007, Australia.
| | - Alexander Angeloski
- School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway, Ultimo, NSW, 2007, Australia. .,Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW, 2232, Australia
| | - Richard Wuhrer
- Advanced Materials Characterisation Facility (AMCF), Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Michael B Cortie
- School of Mechanical, Materials, Mechatronics and Biomedical Engineering, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia
| | - Andrew M McDonagh
- School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
4
|
A DFT study of the adsorption and surface enhanced Raman spectroscopy of pyridine on Au20, Ag20, and bimetallic Ag8Au12 clusters. J Mol Graph Model 2022; 115:108234. [DOI: 10.1016/j.jmgm.2022.108234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022]
|
5
|
Dong J, Gan Z, Gu W, You Q, Zhao Y, Zha J, Li J, Deng H, Yan N, Wu Z. Synthesizing Photoluminescent Au 28 (SCH 2 Ph- t Bu) 22 Nanoclusters with Structural Features by Using a Combined Method. Angew Chem Int Ed Engl 2021; 60:17932-17936. [PMID: 34060691 DOI: 10.1002/anie.202105530] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 12/24/2022]
Abstract
We present a method for atomically precise nanocluster synthesis. As an illustration, we introduced the reducing-ligand induction combined method and synthesized a novel nanocluster, which was determined to be Au28 (SCH2 Ph-t Bu)22 with the same number of gold atoms as existing Au28 (SR)20 nanoclusters but different ligands (hetero-composition-homo-size). Compared with the latter, the former has distinct properties and structures. In particular, a novel kernel evolution pattern is reported, i.e., the quasi-linear growth of Au4 -tetrahedron by sharing one vertex and structural features, including a tritetrahedron kernel with two bridging thiolates and two Au6 (SCH2 Ph-t Bu)6 hexamer chair-like rings on the kernel surface were also first reported, which endow Au28 (SCH2 Ph-t Bu)22 with the best photoluminescence quantum yield among hydrophobic thiolated gold nanoclusters so far, probably due to the enhanced charge transfer from the bi-ring to the kernel via Au-Au bonds.
Collapse
Affiliation(s)
- Jingwu Dong
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Zibao Gan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Yan Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Jun Zha
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Nan Yan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|
6
|
Dong J, Gan Z, Gu W, You Q, Zhao Y, Zha J, Li J, Deng H, Yan N, Wu Z. Synthesizing Photoluminescent Au
28
(SCH
2
Ph‐
t
Bu)
22
Nanoclusters with Structural Features by Using a Combined Method. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jingwu Dong
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Zibao Gan
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Qing You
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Yan Zhao
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Jun Zha
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences School of Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Nan Yan
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| |
Collapse
|
7
|
Li J, Wang P, Pei Y. From Monolayer-Protected Gold Cluster to Monolayer-Protected Gold-Sulfide Cluster: Geometrical and Electronic Structure Evolutions of Au 60S n (SR) 36 ( n = 0-12). ACS OMEGA 2020; 5:16901-16911. [PMID: 32685859 PMCID: PMC7366352 DOI: 10.1021/acsomega.0c02091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Thiolate-monolayer-protected gold clusters are usually formulated as AuNSR[Au(I)-SR] x , where AuN and SR[Au(I)-SR] x (x = 0, 1, 2, ...) are the inner gold core and outer protection motifs, respectively. In this work, we theoretically envision a new family of S-atom-doped thiolate-monolayer-protected gold clusters, namely, Au60S n (SR)36 (n = 0-12). A distinct feature of Au60S n (SR)36 nanoclusters (NCs) is that they show a gradual transition from the monolayer-protected metal NC to the SR[Au(I)-(SR)] x oligomer-protected gold-sulfide cluster with the increase of the number of doping S atoms. The possible formation mechanism of the S-atom-doped thiolate-protected gold cluster is investigated, and the size-dependent stability and electronic and optical absorption properties of Au60S n (SR)36 are explored using density functional theory (DFT) calculations. It is found that doping of S atom significantly tails the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap and optical absorption properties of thiolate-protected gold cluster, representing a promising way to fabricate new monolayer-protected gold nanoparticles.
Collapse
Affiliation(s)
- Jing Li
- Department of Chemistry,
Key Laboratory of Environmentally Friendly Chemistry and Applications
of Ministry of Education, Key Laboratory for Green Organic Synthesis
and Application of Hunan Province, Xiangtan
University, Xiangtan, Hunan Province 411105, China
| | - Pu Wang
- Department of Chemistry,
Key Laboratory of Environmentally Friendly Chemistry and Applications
of Ministry of Education, Key Laboratory for Green Organic Synthesis
and Application of Hunan Province, Xiangtan
University, Xiangtan, Hunan Province 411105, China
| | - Yong Pei
- Department of Chemistry,
Key Laboratory of Environmentally Friendly Chemistry and Applications
of Ministry of Education, Key Laboratory for Green Organic Synthesis
and Application of Hunan Province, Xiangtan
University, Xiangtan, Hunan Province 411105, China
| |
Collapse
|
8
|
Howard-Fabretto L, Andersson GG. Metal Clusters on Semiconductor Surfaces and Application in Catalysis with a Focus on Au and Ru. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904122. [PMID: 31854037 DOI: 10.1002/adma.201904122] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Metal clusters typically consist of two to a few hundred atoms and have unique properties that change with the type and number of atoms that form the cluster. Metal clusters can be generated with a precise number of atoms, and therefore have specific size, shape, and electronic structures. When metal clusters are deposited onto a substrate, their shape and electronic structure depend on the interaction with the substrate surface and thus depend on the properties of both the clusters and those of the substrate. Deposited metal clusters have discrete, individual electron energy levels that differ from the electron energy levels in the constituting individual atoms, isolated clusters, and the respective bulk material. The properties of clusters with a focus on Au and Ru, the methods to generate metal clusters, and the methods of deposition of clusters onto substrate surfaces are covered. The properties of cluster-modified surfaces are important for their application. The main application covered here is catalysis, and the methods for characterization of the cluster-modified surfaces are described.
Collapse
Affiliation(s)
- Liam Howard-Fabretto
- Flinders Institute for Nanoscale Science and Technology, Flinders University, Adelaide, SA, 5042, Australia
- Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Gunther G Andersson
- Flinders Institute for Nanoscale Science and Technology, Flinders University, Adelaide, SA, 5042, Australia
- Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| |
Collapse
|
9
|
Negishi Y, Hashimoto S, Ebina A, Hamada K, Hossain S, Kawawaki T. Atomic-level separation of thiolate-protected metal clusters. NANOSCALE 2020; 12:8017-8039. [PMID: 32207494 DOI: 10.1039/d0nr00824a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fine metal clusters have attracted much attention from the viewpoints of both basic and applied science for many years because of their unique physical/chemical properties and functions, which differ from those of bulk metals. Among these materials, thiolate (SR)-protected gold clusters (Aun(SR)m clusters) have been the most studied metal clusters since 2000 because of their ease of synthesis and handling. However, in the early 2000s, it was not easy to isolate these metal clusters. Therefore, high-resolution separation methods were explored, and several atomic-level separation methods, including polyacrylamide gel electrophoresis (PAGE), high-performance liquid chromatography (HPLC), and thin-layer chromatography (TLC), were successively established. These techniques have made it possible to isolate a series of Aun(SR)m clusters, and much knowledge has been obtained on the correlation between the chemical composition and fundamental properties such as the stability, electronic structure, and physical properties of Aun(SR)m clusters. In addition, these high-resolution separation techniques are now also frequently used to evaluate the distribution of the product and to track the reaction process. In this way, high-resolution separation techniques have played an essential role in the study of Aun(SR)m clusters. However, only a few reviews have focused on this work. This review focuses on PAGE, HPLC, and TLC separation techniques, which offer high resolution and repeatability, and summarizes previous studies on the high-resolution separation of Aun(SR)m and related clusters with the purpose of promoting a better understanding of the features and the utility of these techniques.
Collapse
Affiliation(s)
- Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Francisco Santiago P, Soto Mercado JR, Molina Brito B. DFT/TD-DFT studies on electronic and photophysical properties of Auranofin: A reference Au(I) complex. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Lin D, Zheng M, Xu WW. Structural predictions of thiolate-protected gold nanoclusters via the redistribution of Au–S “staple” motifs on known cores. Phys Chem Chem Phys 2020; 22:16624-16629. [DOI: 10.1039/d0cp01661f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Four structures of gold nanoclusters were predicted via the redistribution of Au–S motifs on known cores.
Collapse
Affiliation(s)
- Dongdong Lin
- Department of Physics
- School of Physical Science and Technology
- Ningbo University
- Ningbo 315211
- China
| | - Mengke Zheng
- Department of Physics
- School of Physical Science and Technology
- Ningbo University
- Ningbo 315211
- China
| | - Wen Wu Xu
- Department of Physics
- School of Physical Science and Technology
- Ningbo University
- Ningbo 315211
- China
| |
Collapse
|
12
|
Cowan MJ, Mpourmpakis G. Towards elucidating structure of ligand-protected nanoclusters. Dalton Trans 2020; 49:9191-9202. [DOI: 10.1039/d0dt01418d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Developing a centralized database for ligand-protected nanoclusters can fuel machine learning and data-science-based approaches towards theoretical structure prediction.
Collapse
Affiliation(s)
- Michael J. Cowan
- Department of Chemical and Petroleum Engineering
- University of Pittsburgh
- Pittsburgh
- USA
| | - Giannis Mpourmpakis
- Department of Chemical and Petroleum Engineering
- University of Pittsburgh
- Pittsburgh
- USA
| |
Collapse
|
13
|
Zhou T, Zhu J, Gong L, Nong L, Liu J. Amphiphilic Block Copolymer-Guided in Situ Fabrication of Stable and Highly Controlled Luminescent Copper Nanoassemblies. J Am Chem Soc 2019; 141:2852-2856. [DOI: 10.1021/jacs.8b12026] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tingyao Zhou
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiayi Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lingshan Gong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Liting Nong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
14
|
Tomihara R, Hirata K, Yamamoto H, Takano S, Koyasu K, Tsukuda T. Collision-Induced Dissociation of Undecagold Clusters Protected by Mixed Ligands [Au 11(PPh 3) 8X 2] + (X = Cl, C≡CPh). ACS OMEGA 2018; 3:6237-6242. [PMID: 31458806 PMCID: PMC6644577 DOI: 10.1021/acsomega.8b01096] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 05/07/2023]
Abstract
We herein investigated collision-induced dissociation (CID) processes of undecagold clusters protected by mixed ligands [Au11(PPh3)8X2]+ (X = Cl, C≡CPh) using mass spectrometry and density functional theory calculations. The results showed that the CID produced fragment ions [Au x (PPh3) y X z ]+ with a formal electron count of eight via sequential loss of PPh3 ligands and AuX(PPh3) units in a competitive manner, indicating that the CID channels are governed by the electronic stability of the fragments. Interestingly, the branching fraction of the loss of the AuX(PPh3) units was significantly smaller for X = C≡CPh than that for X = Cl. We ascribed the effect of X on the branching fractions of dissociations of PPh3 and AuX(PPh3) to the steric difference.
Collapse
Affiliation(s)
- Ryohei Tomihara
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keisuke Hirata
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Yamamoto
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinjiro Takano
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kiichirou Koyasu
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements
Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
| | - Tatsuya Tsukuda
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements
Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
- E-mail:
| |
Collapse
|
15
|
Wang P, Xiong L, Sun X, Ma Z, Pei Y. Exploring the structure evolution and core/ligand structure patterns of a series of large sized thiolate-protected gold clusters Au 145-3N(SR) 60-2N (N = 1-8): a first principles study. NANOSCALE 2018; 10:3918-3929. [PMID: 29423475 DOI: 10.1039/c7nr07980j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The atomic structures of many atomically precise nanosized ligand protected gold clusters have been resolved recently. However, the determination of the atomic structures of large sized ligand protected gold clusters containing metal atoms over ∼100 is still a grand challenge. The lack of structural information of these larger sized clusters has greatly hindered the understanding of the structure evolution and structure-property relations of ligand protected gold nanoclusters. In this work, we theoretically studied the structure evolution of a series of large sized Au145-3N(SR)60-2N (N = 1-8) clusters based on an "[Au2@Au(SR)2] fragmentation" pathway starting from a model Au145(SR)60 cluster. Through comprehensively searching the atomic structure of various clusters and evaluating their stabilities by means of first principles calculations, the stabilization mechanism of experimentally reported Au130(SR)50 and Au133(SR)52 clusters is first rationalized. Our studies indicated that Au130(SR)50 and Au133(SR)52 are two critical sized clusters on which the gold cores underwent configuration transitions between decahedral and icosahedral cores. The energy comparisons of various cluster isomer structures indicated that the Au130(SR)50, Au127(SR)48, Au124(SR)46 and Au121(SR)44 clusters favored a decahedral core, while the Au133(SR)52, Au136(SR)54, Au139(SR)56, and Au142(SR)58 clusters preferred icosahedral gold cores. Furthermore, we also find that the cuboctahedral gold core is less stable in the cluster size region between ∼120 and ∼140 gold atoms. The optical absorption properties and relative thermodynamic stabilities of the Au145-3N(SR)60-2N (N = 1-8) clusters are also surveyed by density functional theory (DFT) and time-dependent DFT calculations.
Collapse
Affiliation(s)
- Pu Wang
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China.
| | | | | | | | | |
Collapse
|
16
|
Shen XT, Ma XL, Ni QL, Ma MX, Gui LC, Hou C, Hou RB, Wang XJ. [Ag 15(N-triphos) 4(Cl 4)](NO 3) 3: a stable Ag-P superatom with eight electrons (N-triphos = tris((diphenylphosphino)methyl)amine). NANOSCALE 2018; 10:515-519. [PMID: 29239443 DOI: 10.1039/c7nr07308a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A first and stable Ag-P superatom nanocluster [Ag15(N-triphos)4(Cl4)](NO3)3 (1) has been successfully synthesized and characterized. X-ray analysis shows that this Ag15 cluster has a hexacapped body-centered cubic (bcc) framework which is consolidated by four tripodal N-triphos ligands. The identity of 1 is confirmed by high resolution ESI-MS. Cluster 1 has an electronic and geometric shell closure structure with 8 free electrons, matching the stability idea of superatom theory for a nanocluster. DFT calculation of this Ag15 cluster reveals the superatom feature with a 1S21P6 configuration. The chelation of multidentate phosphines enhances the stability of this Ag15 cluster. The AgAg distances between the centered and the vertical Ag atoms of this bcc (Ag@Ag8) are in the range of 2.57-2.71 Å, and the distances between the face-capped and the vertical silver atoms are in the range of 2.84-2.92 Å, showing strong AgAg interactions within this cluster core. This superatom complex exhibits a relatively high thermal and photolytic stability.
Collapse
Affiliation(s)
- Xue-Tao Shen
- School of Chemistry and Pharmaceutical Sciences, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Normal University, Yu Cai Road 15, Qi Xin District, Guilin 541004, Guangxi, China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Bootharaju MS, Kozlov SM, Cao Z, Harb M, Parida MR, Hedhili MN, Mohammed OF, Bakr OM, Cavallo L, Basset JM. Direct versus ligand-exchange synthesis of [PtAg 28(BDT) 12(TPP) 4] 4- nanoclusters: effect of a single-atom dopant on the optoelectronic and chemical properties. NANOSCALE 2017; 9:9529-9536. [PMID: 28660944 DOI: 10.1039/c7nr02844j] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Heteroatom doping of atomically precise nanoclusters (NCs) often yields a mixture of doped and undoped products of single-atom difference, whose separation is extremely difficult. To overcome this challenge, novel synthesis methods are required to offer monodisperse doped NCs. For instance, the direct synthesis of PtAg28 NCs produces a mixture of [Ag29(BDT)12(TPP)4]3- and [PtAg28(BDT)12(TPP)4]4- NCs (TPP: triphenylphosphine; BDT: 1,3-benzenedithiolate). Here, we designed a ligand-exchange (LE) strategy to synthesize single-sized, Pt-doped, superatomic Ag NCs [PtAg28(BDT)12(TPP)4]4- by LE of [Pt2Ag23Cl7(TPP)10] NCs with BDTH2 (1,3-benzenedithiol). The doped NCs were thoroughly characterized by optical and photoelectron spectroscopy, mass spectrometry, total electron count, and time-dependent density functional theory (TDDFT). We show that the Pt dopant occupies the center of the PtAg28 cluster, modulates its electronic structure and enhances its photoluminescence intensity and excited-state lifetime, and also enables solvent interactions with the NC surface. Furthermore, doped NCs showed unique reactivity with metal ions - the central Pt atom of PtAg28 could not be replaced by Au, unlike the central Ag of Ag29 NCs. The achieved synthesis of single-sized PtAg28 clusters will facilitate further applications of the LE strategy for the exploration of novel multimetallic NCs.
Collapse
Affiliation(s)
- Megalamane S Bootharaju
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tiekink ER, Henderson W. Coordination chemistry of 3- and 4-mercaptobenzoate ligands: Versatile hydrogen-bonding isomers of the thiosalicylate (2-mercaptobenzoate) ligand. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Ma Z, Wang P, Xiong L, Pei Y. Thiolate-protected gold nanoclusters: structural prediction and the understandings of electronic stability from first principles simulations. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhongyun Ma
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Xiangtan University; Xiangtan People's Republic of China
| | - Pu Wang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Xiangtan University; Xiangtan People's Republic of China
| | - Lin Xiong
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Xiangtan University; Xiangtan People's Republic of China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education; Xiangtan University; Xiangtan People's Republic of China
| |
Collapse
|
20
|
|
21
|
Exploring the atomic structure of 1.8nm monolayer-protected gold clusters with aberration-corrected STEM. Ultramicroscopy 2016; 176:146-150. [PMID: 28342572 DOI: 10.1016/j.ultramic.2016.11.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/07/2016] [Accepted: 11/05/2016] [Indexed: 12/25/2022]
Abstract
Monolayer-protected (MP) Au clusters present attractive quantum systems with a range of potential applications e.g. in catalysis. Knowledge of the atomic structure is needed to obtain a full understanding of their intriguing physical and chemical properties. Here we employed aberration-corrected scanning transmission electron microscopy (ac-STEM), combined with multislice simulations, to make a round-robin investigation of the atomic structure of chemically synthesised clusters with nominal composition Au144(SCH2CH2Ph)60 provided by two different research groups. The MP Au clusters were "weighed" by the atom counting method, based on their integrated intensities in the high angle annular dark field (HAADF) regime and calibrated exponent of the Z dependence. For atomic structure analysis, we compared experimental images of hundreds of clusters, with atomic resolution, against a variety of structural models. Across the size range 123-151 atoms, only 3% of clusters matched the theoretically predicted Au144(SR)60 structure, while a large proportion of the clusters were amorphous (i.e. did not match any model structure). However, a distinct ring-dot feature, characteristic of local icosahedral symmetry, was observed in about 20% of the clusters.
Collapse
|
22
|
Conn BE, Atnagulov A, Yoon B, Barnett RN, Landman U, Bigioni TP. Confirmation of a de novo structure prediction for an atomically precise monolayer-coated silver nanoparticle. SCIENCE ADVANCES 2016; 2:e1601609. [PMID: 28138537 PMCID: PMC5262450 DOI: 10.1126/sciadv.1601609] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/25/2016] [Indexed: 05/05/2023]
Abstract
Fathoming the principles underpinning the structures of monolayer-coated molecular metal nanoparticles remains an enduring challenge. Notwithstanding recent x-ray determinations, coveted veritable de novo structural predictions are scarce. Building on recent syntheses and de novo structure predictions of M3Au x Ag17-x (TBBT)12, where M is a countercation, x = 0 or 1, and TBBT is 4-tert-butylbenzenethiol, we report an x-ray-determined structure that authenticates an a priori prediction and, in conjunction with first-principles theoretical analysis, lends force to the underlying forecasting methodology. The predicted and verified Ag(SR)3 monomer, together with the recently discovered Ag2(SR)5 dimer and Ag3(SR)6 trimer, establishes a family of unique mount motifs for silver thiolate nanoparticles, expanding knowledge beyond the earlier-known Au-S staples in thiol-capped gold nanoclusters. These findings demonstrate key principles underlying ligand-shell anchoring to the metal core, as well as unique T-like benzene dimer and cyclic benzene trimer ligand bundling configurations, opening vistas for rational design of metal and alloy nanoparticles.
Collapse
Affiliation(s)
- Brian E. Conn
- Department of Chemistry, University of Toledo, Toledo, OH 43606, USA
| | - Aydar Atnagulov
- Department of Chemistry, University of Toledo, Toledo, OH 43606, USA
| | - Bokwon Yoon
- School of Solar and Advanced Renewable Energy, University of Toledo, Toledo, OH 43606, USA
| | - Robert N. Barnett
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332–0430, USA
| | - Uzi Landman
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332–0430, USA
- Corresponding author. (U.L.); (T.P.B.)
| | - Terry P. Bigioni
- Department of Chemistry, University of Toledo, Toledo, OH 43606, USA
- School of Solar and Advanced Renewable Energy, University of Toledo, Toledo, OH 43606, USA
- Corresponding author. (U.L.); (T.P.B.)
| |
Collapse
|
23
|
Ortega E, Ponce A, Santiago U, Alducin D, Benitez-Lara A, Plascencia-Villa G, José-Yacamán M. Structural damage reduction in protected gold clusters by electron diffraction methods. ADVANCED STRUCTURAL AND CHEMICAL IMAGING 2016; 2:12. [PMID: 27738593 PMCID: PMC5037159 DOI: 10.1186/s40679-016-0026-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/15/2016] [Indexed: 11/12/2022]
Abstract
The present work explores electron diffraction methods for studying the structure of metallic clusters stabilized with thiol groups, which are susceptible to structural damage caused by electron beam irradiation. There is a compromise between the electron dose used and the size of the clusters since they have small interaction volume with electrons and as a consequence weak reflections in the diffraction patterns. The common approach of recording individual clusters using nanobeam diffraction has the problem of an increased current density. Dosage can be reduced with the use of a smaller condenser aperture and a higher condenser lens excitation, but even with those set ups collection times tend to be high. For that reason, the methods reported herein collects in a faster way diffraction patterns through the scanning across the clusters under nanobeam diffraction mode. In this way, we are able to collect a map of diffraction patterns, in areas with dispersed clusters, with short exposure times (milliseconds) using a high sensitive CMOS camera. When these maps are compared with their theoretical counterparts, oscillations of the clusters can be observed. The stability of the patterns acquired demonstrates that our methods provide a systematic and precise way to unveil the structure of atomic clusters without extensive detrimental damage of their crystallinity.
Collapse
Affiliation(s)
- Eduardo Ortega
- Department of Physics and Astronomy, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 USA
| | - Arturo Ponce
- Department of Physics and Astronomy, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 USA
| | - Ulises Santiago
- Department of Physics and Astronomy, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 USA
| | - Diego Alducin
- Department of Physics and Astronomy, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 USA
| | - Alfredo Benitez-Lara
- Department of Physics and Astronomy, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 USA
| | - Germán Plascencia-Villa
- Department of Physics and Astronomy, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 USA
| | - Miguel José-Yacamán
- Department of Physics and Astronomy, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 USA
| |
Collapse
|
24
|
Ma Z, Wang P, Pei Y. Geometric structure, electronic structure and optical absorption properties of one-dimensional thiolate-protected gold clusters containing a quasi-face-centered-cubic (quasi-fcc) Au-core: a density-functional theoretical study. NANOSCALE 2016; 8:17044-17054. [PMID: 27714129 DOI: 10.1039/c6nr04998b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Based on the recently reported atomic structures of thiolate-protected Au28(SR)20, Au36(SR)24, Au44(SR)28, and Au52(SR)32 clusters, a family of homogeneous, linear, thiolate-protected gold superstructures containing novel quasi-face-centered-cubic (quasi-fcc) Au-cores is theoretically envisioned, denoted as the Au20+8N(SR)16+4N cluster. By means of density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations, a unified view of the geometric structure, electronic structure, magic stable size and size-dependent NIR absorption properties of Au20+8N(SR)16+4N clusters is provided. We find that the Au20+8N(SR)16+4N clusters demonstrate oscillating transformation energies dependent on N. The odd-N clusters show more favorable (negative) reaction energies than the even-N clusters. The magic stability of recently reported Au28(SR)20, Au36(SR)24, Au44(SR)28, Au52(SR)32 and Au76(SR)44 clusters can be addressed from the relative reaction energies and geometric distortion of Au-cores. A novel 4N + 4 magic electron-number is suggested for the Au20+8N(SR)16+4N cluster. Using the polyhedral skeletal electron pair theory (PSEPT) and the extended Hückel molecular orbital (EHMO) calculations, we suggest that the magic 4N + 4 electron number is correlated with the quasi-fcc Au-cores, which can be viewed as double helical tetrahedron-Au4 chains. The size-dependent optical absorption properties of Au20+8N(SR)16+4N clusters are revealed based on TD-DFT calculations. We propose that these clusters are potential candidates for the experimental synthesis of atomically precise one-dimensional ligand protected gold superstructures with tunable NIR absorption properties.
Collapse
Affiliation(s)
- Zhongyun Ma
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province, Xiangtan 411105, P. R. China.
| | - Pu Wang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province, Xiangtan 411105, P. R. China.
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province, Xiangtan 411105, P. R. China.
| |
Collapse
|
25
|
Jin R, Zeng C, Zhou M, Chen Y. Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chem Rev 2016; 116:10346-413. [DOI: 10.1021/acs.chemrev.5b00703] [Citation(s) in RCA: 1953] [Impact Index Per Article: 244.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Chenjie Zeng
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Meng Zhou
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yuxiang Chen
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
26
|
Alvarez MM, Chen J, Plascencia-Villa G, Black DM, Griffith WP, Garzon IL, José Yacamán M, Demeler B, Whetten RL. Hidden Components in Aqueous "Gold-144" Fractionated by PAGE: High-Resolution Orbitrap ESI-MS Identifies the Gold-102 and Higher All-Aromatic Au-pMBA Cluster Compounds. J Phys Chem B 2016; 120:6430-8. [PMID: 27275518 PMCID: PMC6666316 DOI: 10.1021/acs.jpcb.6b04525] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Experimental and theoretical evidence reveals the resilience and stability of the larger aqueous gold clusters protected with p-mercaptobenzoic acid ligands (pMBA) of composition Aun(pMBA)p or (n, p). The Au144(pMBA)60, (144, 60), or gold-144 aqueous gold cluster is considered special because of its high symmetry, abundance, and icosahedral structure as well as its many potential uses in material and biological sciences. Yet, to this date, direct confirmation of its precise composition and total structure remains elusive. Results presented here from characterization via high-resolution electrospray ionization mass spectrometry on an Orbitrap instrument confirm Au102(pMBA)44 at isotopic resolution. Further, what usually appears as a single band for (144, 60) in electrophoresis (PAGE) is shown to also contain the (130, 50), recently determined to have a truncated-decahedral structure, and a (137, 56) component in addition to the dominant (144, 60) compound of chiral-icosahedral structure. This finding is significant in that it reveals the existence of structures never before observed in all-aromatic water-soluble species while pointing out the path toward elucidation of the thermodynamic control of protected gold nanocrystal formation.
Collapse
Affiliation(s)
- Marcos M. Alvarez
- Department of Physics & Astronomy, University of Texas, San Antonio, TX, 78249, USA
| | - Jenny Chen
- ThermoFisher Scientific 355 River Oaks Pkwy, San Jose, CA 95134, USA
| | | | - David M. Black
- Department of Physics & Astronomy, University of Texas, San Antonio, TX, 78249, USA
| | - Wendell P. Griffith
- RCMI Protein Biomarkers Core. University of Texas, San Antonio, Texas, 78249, USA
| | - Ignacio L. Garzon
- Department of Physics & Astronomy, University of Texas, San Antonio, TX, 78249, USA
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México, D. F, México
| | - Miguel José Yacamán
- Department of Physics & Astronomy, University of Texas, San Antonio, TX, 78249, USA
| | - Borries Demeler
- Department of Biochemistry. University of Texas Health Science Center, San Antonio, Texas, 78229
| | - Robert L. Whetten
- Department of Physics & Astronomy, University of Texas, San Antonio, TX, 78249, USA
| |
Collapse
|
27
|
Tian Z, Cheng L. Electronic and geometric structures of Au30 clusters: a network of 2e-superatom Au cores protected by tridentate protecting motifs with u3-S. NANOSCALE 2016; 8:826-34. [PMID: 26530472 DOI: 10.1039/c5nr05020k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Density functional theory calculations have been performed to study the experimentally synthesized Au30S(SR)18 and two related Au30(SR)18 and Au30S2(SR)18 clusters. The patterns of thiolate ligands on the gold cores for the three thiolate-protected Au30 nanoclusters are on the basis of the "divide and protect" concept. A novel extended protecting motif with u3-S, S(Au2(SR)2)2AuSR, is discovered, which is termed the tridentate protecting motif. The Au cores of Au30S(SR)18, Au30(SR)18 and Au30S2(SR)18 clusters are Au17, Au20 and Au14, respectively. The superatom-network (SAN) model and the superatom complex (SAC) model are used to explain the chemical bonding patterns, which are verified by chemical bonding analysis based on the adaptive natural density partitioning (AdNDP) method and aromatic analysis on the basis of the nucleus-independent chemical shift (NICS) method. The Au17 core of the Au30S(SR)18 cluster can be viewed as a SAN of one Au6 superatom and four Au4 superatoms. The shape of the Au6 core is identical to that revealed in the recently synthesized Au18(SR)14 cluster. The Au20 core of the Au30(SR)18 cluster can be viewed as a SAN of two Au6 superatoms and four Au4 superatoms. The Au14 core of Au30S2(SR)18 can be regarded as a SAN of two pairs of two vertex-sharing Au4 superatoms. Meanwhile, the Au14 core is an 8e-superatom with 1S(2)1P(6) configuration. Our work may aid understanding and give new insights into the chemical synthesis of thiolate-protected Au clusters.
Collapse
Affiliation(s)
- Zhimei Tian
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, China. and School of Chemistry and Materials Engineering, Fuyang Teachers College, Fuyang, Anhui 236037, China
| | - Longjiu Cheng
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
28
|
Molina B, Tlahuice-Flores A. Thiolated Au18 cluster: preferred Ag sites for doping, structures, and optical and chiroptical properties. Phys Chem Chem Phys 2016; 18:1397-403. [DOI: 10.1039/c5cp05171a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silver doping of thiolated Au18 cluster occurs in the inner core.
Collapse
Affiliation(s)
- Bertha Molina
- Facultad de Ciencias
- Universidad Nacional Autónoma de México
- 04510 México D.F
- Mexico
| | - Alfredo Tlahuice-Flores
- CICFIM-Facultad de Ciencias Físico-Matemáticas
- Universidad Autónoma de Nuevo León
- San Nicolás de los Garza
- NL 66450
- Mexico
| |
Collapse
|
29
|
Pichugina DA, Kuz'menko NE, Shestakov AF. Ligand-protected gold clusters: the structure, synthesis and applications. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4493] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Wang D, Padelford JW, Ahuja T, Wang G. Transitions in Discrete Absorption Bands of Au130 Clusters upon Stepwise Charging by Spectroelectrochemistry. ACS NANO 2015; 9:8344-8351. [PMID: 26168937 DOI: 10.1021/acsnano.5b03007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Rich and tunable physicochemical properties make noble metal clusters promising candidates as novel nanomolecules for a variety of applications. Spectroelectrochemistry analysis is employed to resolve previously inaccessible electronic transitions in Au130 clusters stabilized by a monolayer of di- and monothiolate ligands. Well-defined quantized double-layer charging of the Au core and oxidizable ligands make this Au130 nanocluster unique among others and enable selective electrolysis to different core and ligand charge states. Subsequent analysis of the corresponding absorption changes reveals that different absorption bands originate from different electronic transitions involving both metal core energy states and ligand molecular orbitals. Besides the four discrete absorption bands in the steady-state UV-visible-near-IR absorption spectrum, additional transitions otherwise not detectable are resolved upon selective addition/removal of electrons at cores and ligand energy states, respectively, upon electrolysis. An energy diagram is proposed that successfully explains the major features observed in electrochemistry and absorption spectroscopy. Those assignments are believed applicable and effective to explain similar transitions observed in some other Au thiolate clusters.
Collapse
Affiliation(s)
- Dengchao Wang
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30302, United States
| | - Jonathan W Padelford
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30302, United States
| | - Tarushee Ahuja
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30302, United States
| | - Gangli Wang
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30302, United States
| |
Collapse
|
31
|
Chen Y, Zeng C, Liu C, Kirschbaum K, Gayathri C, Gil RR, Rosi NL, Jin R. Crystal Structure of Barrel-Shaped Chiral Au130(p-MBT)50 Nanocluster. J Am Chem Soc 2015; 137:10076-9. [DOI: 10.1021/jacs.5b05378] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuxiang Chen
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Chenjie Zeng
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Chong Liu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Kristin Kirschbaum
- College of Natural Sciences & Mathematics, University of Toledo, Toledo, Ohio 43606, United States
| | - Chakicherla Gayathri
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Roberto R. Gil
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Nathaniel L. Rosi
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Rongchao Jin
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
32
|
Fernando A, Weerawardene KLDM, Karimova NV, Aikens CM. Quantum Mechanical Studies of Large Metal, Metal Oxide, and Metal Chalcogenide Nanoparticles and Clusters. Chem Rev 2015; 115:6112-216. [PMID: 25898274 DOI: 10.1021/cr500506r] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Amendra Fernando
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | | | - Natalia V Karimova
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
33
|
Negishi Y, Nakazaki T, Malola S, Takano S, Niihori Y, Kurashige W, Yamazoe S, Tsukuda T, Häkkinen H. A Critical Size for Emergence of Nonbulk Electronic and Geometric Structures in Dodecanethiolate-Protected Au Clusters. J Am Chem Soc 2015; 137:1206-12. [DOI: 10.1021/ja5109968] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yuichi Negishi
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis
International Research Center, Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
| | - Tafu Nakazaki
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | | | - Shinjiro Takano
- Department
of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshiki Niihori
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Wataru Kurashige
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Seiji Yamazoe
- Department
of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
- Elements
Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Tatsuya Tsukuda
- Department
of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
- Elements
Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| | | |
Collapse
|
34
|
Optical Properties and Chirality. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/b978-0-08-100086-1.00009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
35
|
|
36
|
Tlahuice-Flores A. New insight into the structure of thiolated gold clusters: a structural prediction of the Au187(SR)68 cluster. Phys Chem Chem Phys 2015; 17:5551-5. [DOI: 10.1039/c4cp05695g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Marks decahedron constitutes the core of the thiolated Au187 cluster.
Collapse
Affiliation(s)
- A. Tlahuice-Flores
- CICFIM-Facultad de Ciencias Físico-Matemáticas
- Universidad Autónoma de Nuevo León
- San Nicolás de los Garza
- Mexico
| |
Collapse
|
37
|
Ahuja T, Wang D, Tang Z, Robinson DA, Padelford JW, Wang G. Electronic coupling between ligand and core energy states in dithiolate-monothiolate stabilized Au clusters. Phys Chem Chem Phys 2015; 17:19342-9. [DOI: 10.1039/c5cp02685g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiple electron relaxation steps between the core and the ligands in Au130 dithiolate clusters were quantified.
Collapse
Affiliation(s)
- Tarushee Ahuja
- Department of Chemistry
- Georgia State University
- Atlanta, Georgia 30302
- USA
| | - Dengchao Wang
- Department of Chemistry
- Georgia State University
- Atlanta, Georgia 30302
- USA
| | - Zhenghua Tang
- Department of Chemistry
- Georgia State University
- Atlanta, Georgia 30302
- USA
| | - Donald A. Robinson
- Department of Chemistry
- Georgia State University
- Atlanta, Georgia 30302
- USA
| | | | - Gangli Wang
- Department of Chemistry
- Georgia State University
- Atlanta, Georgia 30302
- USA
| |
Collapse
|
38
|
Black DM, Bhattarai N, Whetten RL, Bach SBH. Collision-induced dissociation of monolayer protected clusters Au144 and Au130 in an electrospray time-of-flight mass spectrometer. J Phys Chem A 2014; 118:10679-87. [PMID: 25317476 DOI: 10.1021/jp508059j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gas-phase reactions of larger gold clusters are poorly known because generation of the intact parent species for mass spectrometric analysis remains quite challenging. Herein we report in-source collision-induced dissociation (CID) results for the monolayer protected clusters (MPCs) Au144(SR)60 and Au130(SR)50, where R- = PhCH2CH2-, in a Bruker micrOTOF time-of-flight mass spectrometer. A sample mixture of the two clusters was introduced into the mass spectrometer by positive mode electrospray ionization. Standard source conditions were used to acquire a reference mass spectrum, exhibiting negligible fragmentation, and then the capillary-skimmer potential difference was increased to induce in-source CID within this low-pressure region (∼4 mbar). Remarkably, distinctive fragmentation patterns are observed for each MPC[3+] parent ion. An assignment of all the major dissociation products (ions and neutrals) is deduced and interpreted by using the distinguishing characteristics in the standard structure-models for the respective MPCs. Also, we propose a ring-forming elimination mechanism to explain R-H neutral loss, as separate from the channels leading to RS-SR or (AuSR)4 neutrals.
Collapse
Affiliation(s)
- David M Black
- Department of Chemistry, University of Texas at San Antonio , One UTSA Circle, San Antonio, Texas 78249, United States
| | | | | | | |
Collapse
|
39
|
Zheng K, Yuan X, Goswami N, Zhang Q, Xie J. Recent advances in the synthesis, characterization, and biomedical applications of ultrasmall thiolated silver nanoclusters. RSC Adv 2014. [DOI: 10.1039/c4ra12054j] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
40
|
Nishigaki JI, Koyasu K, Tsukuda T. Chemically Modified Gold Superatoms and Superatomic Molecules. CHEM REC 2014; 14:897-909. [DOI: 10.1002/tcr.201402011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Indexed: 01/25/2023]
Affiliation(s)
- Jun-ichi Nishigaki
- Department of Chemistry; School of Science; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Kiichirou Koyasu
- Department of Chemistry; School of Science; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Tatsuya Tsukuda
- Department of Chemistry; School of Science; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB); Kyoto University; Katsura Kyoto 615-8520 Japan
| |
Collapse
|
41
|
Dainese T, Antonello S, Gascón JA, Pan F, Perera NV, Ruzzi M, Venzo A, Zoleo A, Rissanen K, Maran F. Au₂₅(SEt)₁₈, a nearly naked thiolate-protected Au₂₅ cluster: structural analysis by single crystal X-ray crystallography and electron nuclear double resonance. ACS NANO 2014; 8:3904-3912. [PMID: 24628268 DOI: 10.1021/nn500805n] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
X-ray crystallography has been fundamental in discovering fine structural features of ultrasmall gold clusters capped by thiolated ligands. For still unknown structures, however, new tools capable of providing relevant structural information are sought. We prepared a 25-gold atom nanocluster protected by the smallest ligand ever used, ethanethiol. This cluster displays the electrochemistry, mass spectrometry, and UV-vis absorption spectroscopy features of similar Au25 clusters protected by 18 thiolated ligands. The anionic and the neutral form of Au25(SEt)18 were fully characterized by (1)H and (13)C NMR spectroscopy, which confirmed the monolayer's properties and the paramagnetism of neutral Au25(SEt)18(0). X-ray crystallography analysis of the latter provided the first known structure of a gold cluster protected by a simple, linear alkanethiolate. Here, we also report the direct observation by electron nuclear double resonance (ENDOR) of hyperfine interactions between a surface-delocalized unpaired electron and the gold atoms of a nanocluster. The advantages of knowing the exact molecular structure and having used such a small ligand allowed us to compare the experimental values of hyperfine couplings with DFT calculations unaffected by structure's approximations or omissions.
Collapse
Affiliation(s)
- Tiziano Dainese
- Department of Chemistry, University of Padova , via Marzolo 1, 35131 Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Negishi Y. Toward the Creation of Functionalized Metal Nanoclusters and Highly Active Photocatalytic Materials Using Thiolate-Protected Magic Gold Clusters. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2014. [DOI: 10.1246/bcsj.20130288] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science and Photocatalysis International Research Center, Tokyo University of Science
| |
Collapse
|
43
|
Jupally VR, Dass A. Synthesis of Au130(SR)50and Au130−xAgx(SR)50nanomolecules through core size conversion of larger metal clusters. Phys Chem Chem Phys 2014; 16:10473-9. [DOI: 10.1039/c3cp54343a] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Molina B, Sánchez-Castillo A, Knoppe S, Garzón IL, Bürgi T, Tlahuice-Flores A. Structures and chiroptical properties of the BINAS-monosubstituted Au38(SCH3)24 cluster. NANOSCALE 2013; 5:10956-62. [PMID: 24061047 DOI: 10.1039/c3nr03403h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The structure and optical properties of a set of R-1,1'-binaphthyl-2,2'-dithiol (R-BINAS) monosubstituted A-Au38(SCH3)24 clusters are studied by means of time dependent density functional theory (TD-DFT). While it was proposed earlier that BINAS selectively binds to monomer motifs (SR-Au-SR) covering the Au23 core, our calculations suggest a binding mode that bridges two dimer (SR-Au-SR-Au-RS) motifs. The more stable isomers show a negligible distortion induced by BINAS adsorption on the Au38(SCH3)24 cluster which is reflected by similar optical and Circular Dichroism (CD) spectra to those found for the parent cluster. The results furthermore show that BINAS adsorption does not enhance the CD signals of the Au38(SCH3)24 cluster.
Collapse
Affiliation(s)
- Bertha Molina
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-646, 04510 México D.F., Mexico
| | | | | | | | | | | |
Collapse
|