1
|
Limmer DT, Götz AW, Bertram TH, Nathanson GM. Molecular Insights into Chemical Reactions at Aqueous Aerosol Interfaces. Annu Rev Phys Chem 2024; 75:111-135. [PMID: 38360527 DOI: 10.1146/annurev-physchem-083122-121620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Atmospheric aerosols facilitate reactions between ambient gases and dissolved species. Here, we review our efforts to interrogate the uptake of these gases and the mechanisms of their reactions both theoretically and experimentally. We highlight the fascinating behavior of N2O5 in solutions ranging from pure water to complex mixtures, chosen because its aerosol-mediated reactions significantly impact global ozone, hydroxyl, and methane concentrations. As a hydrophobic, weakly soluble, and highly reactive species, N2O5 is a sensitive probe of the chemical and physical properties of aerosol interfaces. We employ contemporary theory to disentangle the fate of N2O5 as it approaches pure and salty water, starting with adsorption and ending with hydrolysis to HNO3, chlorination to ClNO2, or evaporation. Flow reactor and gas-liquid scattering experiments probe even greater complexity as added ions, organic molecules, and surfactants alter the interfacial composition and reaction rates. Together, we reveal a new perspective on multiphase chemistry in the atmosphere.
Collapse
Affiliation(s)
- David T Limmer
- Department of Chemistry, University of California, Berkeley, California, USA;
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Kavli Energy NanoScience Institute, Berkeley, California, USA
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California, USA;
| | - Timothy H Bertram
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; ,
| | - Gilbert M Nathanson
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; ,
| |
Collapse
|
2
|
Gao XF, Nathanson GM. Exploring Gas-Liquid Reactions with Microjets: Lessons We Are Learning. Acc Chem Res 2022; 55:3294-3302. [PMID: 36378763 DOI: 10.1021/acs.accounts.2c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Liquid water is all around us: at the beach, in a cloud, from a faucet, inside a spray tower, covering our lungs. It is fascinating to imagine what happens to a reactive gas molecule as it approaches the surface of water in these examples. Some incoming molecules may first be deflected away after colliding with an evaporating water molecule. Those that do strike surface H2O or other surface species may bounce directly off or become momentarily trapped through hydrogen bonding or other attractive forces. The adsorbed gas molecule can then desorb immediately or instead dissolve, passing through the interfacial region and into the bulk, perhaps diffusing back to the surface and evaporating before reacting. Alternatively, it may react with solute or water molecules in the interfacial or bulk regions, and a reaction intermediate or the final product may then desorb into the gas phase. Building a "blow by blow" picture of these pathways is challenging for vacuum-based techniques because of the high vapor pressure of water. In particular, collisions within the thick vapor cloud created by evaporating molecules just above the surface scramble the trajectories and internal states of the gaseous target molecules, hindering construction of gas-liquid reaction mechanisms at the atomic scale that we strive to map out.The introduction of the microjet in 1988 by Faubel, Schlemmer, and Toennies opened up entirely new possibilities. Their inspired solution seems so simple: narrow the end of a glass tube to a diameter smaller than the mean free path of the vapor molecules and then push the liquid through the tube at speeds of a car on a highway. The narrow liquid stream creates a sparse vapor cloud, with water molecules spaced far enough apart that they and the reactant gases interact, at most, weakly. Experimentalists, however, confront a host of challenges: nozzle clogging, unstable jetting, searching for vacuum-compatible solutions, measuring low signal levels, and teasing out artifacts because the slender jet is the smallest surface in the vacuum chamber. In this Account, we describe lessons that we are learning as we explore gases (DCl, (HCOOH)2, N2O5) reacting with water molecules and solute ions in the near-interfacial region of these fast-flowing aqueous microjets.
Collapse
Affiliation(s)
- Xiao-Fei Gao
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Gilbert M Nathanson
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Zhao X, Nathanson GM, Andersson GG. Competing Segregation of Br - and Cl - to a Surface Coated with a Cationic Surfactant: Direct Measurements of Ion and Solvent Depth Profiles. J Phys Chem A 2020; 124:11102-11110. [PMID: 33325710 DOI: 10.1021/acs.jpca.0c08859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ion-surface scattering experiments can be used to measure elemental depth profiles on the angstrom scale in complex liquid mixtures. We employ NICISS (neutral impact collision ion scattering spectroscopy) to measure depth profiles of dissolved ions and solvent in liquid glycerol containing the cationic surfactant tetrahexylammonium bromide (THA+/Br-) at 0.013 M and mixtures of NaBr + NaCl at 0.4 M total concentration. The experiments reveal that Br- outcompetes Cl- in its attraction to surface THA+, and that THA+ segregates more extensively when more Br- ions are present. Intriguingly, the depths spanned by THA+, Br-, and Cl- ions generally increase with Br- bulk concentration, expanding from ∼10 to ∼25 Å for both Br- and Cl- depth profiles. This broadening likely occurs because of an increasing pileup of THA+ ions in a multilayer region that spreads the halide ions over a wider depth. The experiments indicate that cationic surfactants enhance Br- and Cl- concentrations in the surface region far beyond their bulk-phase values, making solutions coated with these surfactants potentially more reactive toward gases that can oxidize the halide ions.
Collapse
Affiliation(s)
- Xianyuan Zhao
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Gilbert M Nathanson
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Gunther G Andersson
- Centre for Nanoscale Science and Technology, Flinders University, Adelaide, South Australia 5001, Australia
| |
Collapse
|
4
|
Zhao X, Nathanson GM, Andersson GG. Experimental Depth Profiles of Surfactants, Ions, and Solvent at the Angstrom Scale: Studies of Cationic and Anionic Surfactants and Their Salting Out. J Phys Chem B 2020; 124:2218-2229. [PMID: 32075369 DOI: 10.1021/acs.jpcb.9b11686] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neutral impact ion scattering spectroscopy (NICISS) is used to measure the depth profiles of ionic surfactants, counterions, and solvent molecules on the angstrom scale. The chosen surfactants are 0.010 m tetrahexylammonium bromide (THA+/Br-) and 0.0050 m sodium dodecyl sulfate (Na+/DS-) in the absence and presence of 0.30 m NaBr in liquid glycerol. NICISS determines the depth profiles of the elements C, O, Na, S, and Br through the loss in energy of 5 keV He atoms that travel into and out of the liquid, which is then converted into depth. In the absence of NaBr, we find that THA+ and its Br- counterion segregate together because of charge attraction, forming a narrow double layer that is 10 Å wide and 150 times more concentrated than in the bulk. With the addition of NaBr, THA+ is "salted out" to the surface, increasing the interfacial Br- concentration by 3-fold and spreading the anions over a ∼30 Å depth. Added NaBr similarly increases the interfacial concentration of DS- ions and broadens their positions. Conversely, the dissolved Br- ions are significantly depleted over a depth of 0-40 Å from the surface because of charge repulsion from DS- ions within the interfacial region. These different interfacial Br- propensities correlate with previously measured gas-liquid reactivities: gaseous Cl2 readily reacts with Br- ions in the presence of THA+ but drops 70-fold in the presence of DS-, demonstrating that surfactant headgroup charge controls the reactivity of Br- through changes in its depth profile.
Collapse
Affiliation(s)
- Xianyuan Zhao
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Gilbert M Nathanson
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Gunther G Andersson
- Institute for Nanoscale Science and Technology, Flinders University, Adelaide, SA 5001, Australia
| |
Collapse
|
5
|
Hull KL, Schipper DE, Oliver AG. Synthesis and structural characterization of CO 2-soluble oxidizers [Bu 4N]BrO 3 and [Bu 4N]ClO 3 and their dissolution in cosolvent-modified CO 2 for reservoir applications. RSC Adv 2020; 10:44973-44980. [PMID: 35516229 PMCID: PMC9058644 DOI: 10.1039/d0ra09563j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/25/2021] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
CO2 utilization in upsteam oil and gas applications requires CO2-soluble additives such as polymers, surfactants, and other components. Here we report the facile synthesis of CO2-soluble oxidizers composed of judiciously selected organic cations paired with oxidizing anions. [Bu4N]BrO3 and [Bu4N]ClO3 are prepared using a double displacement synthetic strategy, whereby the crystalline product is readily obtained in high yield and structurally characterized using single-crystal X-ray diffraction. The facility of the approach is demonstrated through the preparation of several additional alkylammonium bromate compounds. Static solubility studies using a high-pressure cell with viewing windows showed that tetrabutylammonium compounds could be solubilized using cosolvent-modified CO2. Using 4 mol% ethanol as cosolvent, >3 mM [Bu4N]BrO3 could be dissolved in CO2, while ∼0.75 mM [Bu4N]ClO3 could be dissolved in the same solvent system. The solubility properties of [Bu4N]BrO3 along with its thermal stability up to ∼200 °C suggest that it is a promising oilfield oxidizer that can be utilized in subterranean CO2 applications. Bromate and chlorate salts were hydrophobically modified with tetrabutylammonium to yield oxidizers that are soluble in CO2-cosolvent mixtures.![]()
Collapse
Affiliation(s)
| | | | - Allen G. Oliver
- The Department of Chemistry and Biochemistry
- University of Notre Dame
- USA
| |
Collapse
|
6
|
Sobyra TB, Pliszka H, Bertram TH, Nathanson GM. Production of Br2 from N2O5 and Br– in Salty and Surfactant-Coated Water Microjets. J Phys Chem A 2019; 123:8942-8953. [DOI: 10.1021/acs.jpca.9b04225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas B. Sobyra
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Helena Pliszka
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Timothy H. Bertram
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Gilbert M. Nathanson
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Gord JR, Zhao X, Liu E, Bertram TH, Nathanson GM. Control of Interfacial Cl2 and N2O5 Reactivity by a Zwitterionic Phospholipid in Comparison with Ionic and Uncharged Surfactants. J Phys Chem A 2018; 122:6593-6604. [DOI: 10.1021/acs.jpca.8b04590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Joseph R. Gord
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Xianyuan Zhao
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Erica Liu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Timothy H. Bertram
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Gilbert M. Nathanson
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
8
|
Shaloski MA, Gord JR, Staudt S, Quinn SL, Bertram TH, Nathanson GM. Reactions of N2O5 with Salty and Surfactant-Coated Glycerol: Interfacial Conversion of Br– to Br2 Mediated by Alkylammonium Cations. J Phys Chem A 2017; 121:3708-3719. [DOI: 10.1021/acs.jpca.7b02040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael A. Shaloski
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Joseph R. Gord
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Sean Staudt
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Sarah L. Quinn
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Timothy H. Bertram
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Gilbert M. Nathanson
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
9
|
Boyer HC, Bzdek BR, Reid JP, Dutcher CS. Statistical Thermodynamic Model for Surface Tension of Organic and Inorganic Aqueous Mixtures. J Phys Chem A 2016; 121:198-205. [DOI: 10.1021/acs.jpca.6b10057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hallie C. Boyer
- Department
of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Bryan R. Bzdek
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Jonathan P. Reid
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Cari S. Dutcher
- Department
of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Tesa-Serrate MA, Smoll EJ, Minton TK, McKendrick KG. Atomic and Molecular Collisions at Liquid Surfaces. Annu Rev Phys Chem 2016; 67:515-40. [PMID: 27090845 DOI: 10.1146/annurev-physchem-040215-112355] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gas-liquid interface remains one of the least explored, but nevertheless most practically important, environments in which molecular collisions take place. These molecular-level processes underlie many bulk phenomena of fundamental and applied interest, spanning evaporation, respiration, multiphase catalysis, and atmospheric chemistry. We review here the research that has, during the past decade or so, been unraveling the molecular-level mechanisms of inelastic and reactive collisions at the gas-liquid interface. Armed with the knowledge that such collisions with the outer layers of the interfacial region can be unambiguously distinguished, we show that the scattering of gas-phase projectiles is a promising new tool for the interrogation of liquid surfaces with extreme surface sensitivity. Especially for reactive scattering, this method also offers absolute chemical selectivity for the groups that react to produce a specific observed product.
Collapse
Affiliation(s)
- Maria A Tesa-Serrate
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom;
| | - Eric J Smoll
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717;
| | - Timothy K Minton
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717;
| | - Kenneth G McKendrick
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom;
| |
Collapse
|
11
|
Competition between Organics and Bromide at the Aqueous Solution–Air Interface as Seen from Ozone Uptake Kinetics and X-ray Photoelectron Spectroscopy. J Phys Chem A 2015; 119:4600-8. [DOI: 10.1021/jp510707s] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|