1
|
Perrett S, Chatrchyan V, Buckup T, van Thor JJ. Application of density matrix Wigner transforms for ultrafast macromolecular and chemical x-ray crystallography. J Chem Phys 2024; 160:100901. [PMID: 38456527 DOI: 10.1063/5.0188888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Time-Resolved Serial Femtosecond Crystallography (TR-SFX) conducted at X-ray Free Electron Lasers (XFELs) has become a powerful tool for capturing macromolecular structural movies of light-initiated processes. As the capabilities of XFELs advance, we anticipate that a new range of coherent control and structural Raman measurements will become achievable. Shorter optical and x-ray pulse durations and increasingly more exotic pulse regimes are becoming available at free electron lasers. Moreover, with high repetition enabled by the superconducting technology of European XFEL (EuXFEL) and Linac Coherent Light Source (LCLS-II) , it will be possible to improve the signal-to-noise ratio of the light-induced differences, allowing for the observation of vibronic motion on the sub-Angstrom level. To predict and assign this coherent motion, which is measurable with a structural technique, new theoretical approaches must be developed. In this paper, we present a theoretical density matrix approach to model the various population and coherent dynamics of a system, which considers molecular system parameters and excitation conditions. We emphasize the use of the Wigner transform of the time-dependent density matrix, which provides a phase space representation that can be directly compared to the experimental positional displacements measured in a TR-SFX experiment. Here, we extend the results from simple models to include more realistic schemes that include large relaxation terms. We explore a variety of pulse schemes using multiple model systems using realistic parameters. An open-source software package is provided to perform the density matrix simulation and Wigner transformations. The open-source software allows us to define any arbitrary level schemes as well as any arbitrary electric field in the interaction Hamiltonian.
Collapse
Affiliation(s)
- Samuel Perrett
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Viktoria Chatrchyan
- Physikalisch Chemisches Institut, Ruprecht-Karls Universität, D-69120 Heidelberg, Germany
| | - Tiago Buckup
- Physikalisch Chemisches Institut, Ruprecht-Karls Universität, D-69120 Heidelberg, Germany
| | - Jasper J van Thor
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Hutchison CDM, Baxter JM, Fitzpatrick A, Dorlhiac G, Fadini A, Perrett S, Maghlaoui K, Lefèvre SB, Cordon-Preciado V, Ferreira JL, Chukhutsina VU, Garratt D, Barnard J, Galinis G, Glencross F, Morgan RM, Stockton S, Taylor B, Yuan L, Romei MG, Lin CY, Marangos JP, Schmidt M, Chatrchyan V, Buckup T, Morozov D, Park J, Park S, Eom I, Kim M, Jang D, Choi H, Hyun H, Park G, Nango E, Tanaka R, Owada S, Tono K, DePonte DP, Carbajo S, Seaberg M, Aquila A, Boutet S, Barty A, Iwata S, Boxer SG, Groenhof G, van Thor JJ. Optical control of ultrafast structural dynamics in a fluorescent protein. Nat Chem 2023; 15:1607-1615. [PMID: 37563326 PMCID: PMC10624617 DOI: 10.1038/s41557-023-01275-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/12/2023] [Indexed: 08/12/2023]
Abstract
The photoisomerization reaction of a fluorescent protein chromophore occurs on the ultrafast timescale. The structural dynamics that result from femtosecond optical excitation have contributions from vibrational and electronic processes and from reaction dynamics that involve the crossing through a conical intersection. The creation and progression of the ultrafast structural dynamics strongly depends on optical and molecular parameters. When using X-ray crystallography as a probe of ultrafast dynamics, the origin of the observed nuclear motions is not known. Now, high-resolution pump-probe X-ray crystallography reveals complex sub-ångström, ultrafast motions and hydrogen-bonding rearrangements in the active site of a fluorescent protein. However, we demonstrate that the measured motions are not part of the photoisomerization reaction but instead arise from impulsively driven coherent vibrational processes in the electronic ground state. A coherent-control experiment using a two-colour and two-pulse optical excitation strongly amplifies the X-ray crystallographic difference density, while it fully depletes the photoisomerization process. A coherent control mechanism was tested and confirmed the wave packets assignment.
Collapse
Affiliation(s)
| | - James M Baxter
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Ann Fitzpatrick
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Gabriel Dorlhiac
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Alisia Fadini
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Samuel Perrett
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Karim Maghlaoui
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Salomé Bodet Lefèvre
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Violeta Cordon-Preciado
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Josie L Ferreira
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Volha U Chukhutsina
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Douglas Garratt
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College London, London, UK
| | - Jonathan Barnard
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College London, London, UK
| | - Gediminas Galinis
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College London, London, UK
| | - Flo Glencross
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Rhodri M Morgan
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Sian Stockton
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Ben Taylor
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Letong Yuan
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Matthew G Romei
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Chi-Yun Lin
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Jon P Marangos
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College London, London, UK
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Viktoria Chatrchyan
- Physikalisch Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Heidelberg, Germany
| | - Tiago Buckup
- Physikalisch Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Heidelberg, Germany
| | - Dmitry Morozov
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Jaehyun Park
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
- Department of Chemical Engineering, POSTECH, Pohang, Republic of Korea
| | - Sehan Park
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Intae Eom
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Minseok Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Dogeun Jang
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Hyeongi Choi
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - HyoJung Hyun
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Gisu Park
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Eriko Nango
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, Japan
| | - Daniel P DePonte
- Linac Coherent Light Source, Stanford Linear Accelerator Centre (SLAC), National Accelerator Laboratory, Menlo Park, CA, USA
| | - Sergio Carbajo
- Linac Coherent Light Source, Stanford Linear Accelerator Centre (SLAC), National Accelerator Laboratory, Menlo Park, CA, USA
| | - Matt Seaberg
- Linac Coherent Light Source, Stanford Linear Accelerator Centre (SLAC), National Accelerator Laboratory, Menlo Park, CA, USA
| | - Andrew Aquila
- Linac Coherent Light Source, Stanford Linear Accelerator Centre (SLAC), National Accelerator Laboratory, Menlo Park, CA, USA
| | - Sebastien Boutet
- Linac Coherent Light Source, Stanford Linear Accelerator Centre (SLAC), National Accelerator Laboratory, Menlo Park, CA, USA
| | - Anton Barty
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - So Iwata
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Gerrit Groenhof
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Jasper J van Thor
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK.
| |
Collapse
|
3
|
Zhao X, Li J, Luo J, Liu J. Significant Acceleration of E-Z Photoisomerization induced by Molecular Planarity Breaking. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
4
|
Pu R, Wang Z, Zhu R, Jiang J, Weng TC, Huang Y, Liu W. Investigation of Ultrafast Configurational Photoisomerization of Bilirubin Using Femtosecond Stimulated Raman Spectroscopy. J Phys Chem Lett 2023; 14:809-816. [PMID: 36655842 DOI: 10.1021/acs.jpclett.2c03535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Phototherapy is an efficient and safe way to reduce high levels of free 4Z,15Z-bilirubin (ZZ-BR) in the serum of newborns. The success of BR phototherapy lies in photoinduced configurational and structural isomerization processes that form excretable isomers. However, the physical picture of photoinduced photoisomerization of ZZ-BR is still unclear. Here, we strategically implement tunable femtosecond stimulated Raman spectroscopy and several time-resolved electronic spectroscopies, assisted by quantum chemical calculations, to dissect the detailed primary configurational isomerization dynamics of free ZZ-BR in organic solvents. The results of this study demonstrate that upon photoexcitation, ultrafast configurational isomerization proceeds by a volume-conserving "hula twist", followed by intramolecular hydrogen-bond distortion and large-scale rotation of the two dipyrrinone halves of the ZZ-BR isomer in a few picoseconds. After that, most of the population recovers back to ZZ-BR, and a very small amount is converted into stable BR isomers via structural isomerization.
Collapse
Affiliation(s)
- Ruihua Pu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- STU and SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, China
| | - Ziyu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- STU and SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, China
| | - Ruixue Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiaming Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yifan Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- STU and SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, China
| |
Collapse
|
5
|
van Wilderen LJGW, Blankenburg L, Bredenbeck J. Femtosecond-to-millisecond mid-IR spectroscopy of Photoactive Yellow Protein uncovers structural micro-transitions of the chromophore's protonation mechanism. J Chem Phys 2022; 156:205103. [DOI: 10.1063/5.0091918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Protein structural dynamics can span many orders of magnitude in time. Photoactive Yellow Protein's (PYP) reversible photocycle encompasses picosecond isomerization of the light-absorbing chromophore as well as large scale protein backbone motions occurring on a millisecond timescale. Femtosecond-to-millisecond time-resolved mid-Infrared (IR) spectroscopy is employed here to uncover structural details of photocycle intermediates up to chromophore protonation and the first structural changes leading to formation of the partially-unfolded signalling state pB. The data show that a commonly thought stable transient photocycle intermediate is actually formed after a sequence of several smaller structural changes. We provide residue-specific spectroscopic evidence that protonation of the chromophore on a hundreds of microseconds timescale is delayed with respect to deprotonation of the nearby E46 residue. That implies that the direct proton donor is not E46 but most likely a water molecule. Such details may assist ongoing photocycle and protein folding simulation efforts on the complex and wide time-spanning photocycle of the model system PYP.
Collapse
|
6
|
Mix LT, Hara M, Fuzell J, Kumauchi M, Kaledhonkar S, Xie A, Hoff WD, Larsen DS. Not All Photoactive Yellow Proteins Are Built Alike: Surprises and Insights into Chromophore Photoisomerization, Protonation, and Thermal Reisomerization of the Photoactive Yellow Protein Isolated from Salinibacter ruber. J Am Chem Soc 2021; 143:19614-19628. [PMID: 34780163 DOI: 10.1021/jacs.1c08910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We demonstrate that the Halorhodospira halophila (Hhal) photoactive yellow protein (PYP) is not representative of the greater PYP family. The photodynamics of the PYP isolated from Salinibacter ruber (Srub) is characterized with a comprehensive range of spectroscopic techniques including ultrafast transient absorption, photostationary light titrations, Fourier transform infrared, and cryokinetics spectroscopies. We demonstrate that the dark-adapted pG state consists of two subpopulations differing in the protonation state of the chromophore and that both are photoactive, with the protonated species undergoing excited-state proton transfer. However, the primary I0 photoproduct observed in the Hhal PYP photocycle is absent in the Srub PYP photodynamics, which indicates that this intermediate, while important in Hhal photodynamics, is not a critical intermediate in initiating all PYP photocycles. The excited-state lifetime of Srub PYP is the longest of any PYP resolved to date (∼30 ps), which we ascribe to the more constrained chromophore binding pocket of Srub PYP and the absence of the critical Arg52 residue found in Hhal PYP. The final stage of the Srub PYP photocycle involves the slowest known thermal dark reversion of a PYP (∼40 min vs 350 ms in Hhal PYP). This property allowed the characterization of a pH-dependent equilibrium between the light-adapted pB state with a protonated cis chromophore and a newly resolved pG' intermediate with a deprotonated cis chromophore and pG-like protein conformation. This result demonstates that protein conformational changes and chromophore deprotonation precede chromophore reisomerization during the thermal recovery of the PYP photocycle.
Collapse
Affiliation(s)
- L Tyler Mix
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Miwa Hara
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Jack Fuzell
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Masato Kumauchi
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Sandip Kaledhonkar
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Aihua Xie
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, United States.,Center for Advanced Infrared Biology College of Arts and Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Wouter D Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States.,Center for Advanced Infrared Biology College of Arts and Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Delmar S Larsen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
7
|
Kuramochi H, Takeuchi S, Kamikubo H, Kataoka M, Tahara T. Skeletal Structure of the Chromophore of Photoactive Yellow Protein in the Excited State Investigated by Ultraviolet Femtosecond Stimulated Raman Spectroscopy. J Phys Chem B 2021; 125:6154-6161. [PMID: 34102843 DOI: 10.1021/acs.jpcb.1c02828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We studied ultrafast structural dynamics of photoactive yellow protein (PYP) using ultraviolet femtosecond stimulated Raman spectroscopy. By employing the Raman pump and probe pulses in the ultraviolet region, resonantly enhanced, rich vibrational features of the excited-state chromophore were observed in the fingerprint region. In contrast to the marked spectral change reported for the excited-state chromophore in solution, in the protein, all of the observed Raman bands in the fingerprint region did not show any noticeable spectral shifts nor band shape changes during the excited-state lifetime of PYP. This indicates that the significant skeletal change does not occur on the chromophore in the excited state of PYP and that the trans conformation is retained in its lifetime. Based on the femtosecond Raman data of PYP obtained so far, we discuss a comprehensive picture of the excited-state structural dynamics of PYP.
Collapse
Affiliation(s)
- Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan.,PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Hironari Kamikubo
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Mikio Kataoka
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
8
|
Zhang TS, Fang YG, Song XF, Fang WH, Cui G. Hydrogen-Bonding Interaction Regulates Photoisomerization of a Single-Bond-Rotation Locked Photoactive Yellow Protein Chromophore in Protein. J Phys Chem Lett 2020; 11:2470-2476. [PMID: 32150415 DOI: 10.1021/acs.jpclett.0c00294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have employed the QM(CASPT2//CASSCF)/MM method to explore the excited-state isomerization and decay mechanism of a single-bond-rotation locked photoactive yellow protein (PYP) chromophore in wild-type and mutant proteins. The S1 state is a spectroscopically bright state in the Franck-Condon region. In this state, there exist two excited-state isomerization pathways separately related to the clockwise and anticlockwise rotations of the C=C bond. The clockwise path is favorable because of a small barrier of 2 kcal/mol and uses a novel bicycle-pedal unidirectional photoisomerization mechanism in which the involved two dihedral angles rotate asynchronously because of the reinforced hydrogen-bonding interaction between the chromophore and Cys69. Near the twisted S1 minimum, the chromophore hops to the S0 state via the S1/S0 conical intersection. Finally, the R52A mutation has small effects on the excited-state properties and photoisomerization of the locked PYP chromophore. The present work provides new insights for understanding the photochemistry of PYP chromophores in protein surroundings.
Collapse
Affiliation(s)
- Teng-Shuo Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P.R. China
| | - Ye-Guang Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P.R. China
| | - Xiu-Fang Song
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P.R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P.R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P.R. China
| |
Collapse
|
9
|
Andrikopoulos PC, Liu Y, Picchiotti A, Lenngren N, Kloz M, Chaudhari AS, Precek M, Rebarz M, Andreasson J, Hajdu J, Schneider B, Fuertes G. Femtosecond-to-nanosecond dynamics of flavin mononucleotide monitored by stimulated Raman spectroscopy and simulations. Phys Chem Chem Phys 2020; 22:6538-6552. [PMID: 31994556 DOI: 10.1039/c9cp04918e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Flavin mononucleotide (FMN) belongs to the large family of flavins, ubiquitous yellow-coloured biological chromophores that contain an isoalloxazine ring system. As a cofactor in flavoproteins, it is found in various enzymes and photosensory receptors, like those featuring the light-oxygen-voltage (LOV) domain. The photocycle of FMN is triggered by blue light and proceeds via a cascade of intermediate states. In this work, we have studied isolated FMN in an aqueous solution in order to elucidate the intrinsic electronic and vibrational changes of the chromophore upon excitation. The ultrafast transitions of excited FMN were monitored through the joint use of femtosecond stimulated Raman spectroscopy (FSRS) and transient absorption spectroscopy encompassing a time window between 0 ps and 6 ns with 50 fs time resolution. Global analysis of the obtained transient visible absorption and transient Raman spectra in combination with extensive quantum chemistry calculations identified unambiguously the singlet and triplet FMN populations and addressed solvent dynamics effects. The good agreement between the experimental and theoretical spectra facilitated the assignment of electronic transitions and vibrations. Our results represent the first steps towards more complex experiments aimed at tracking structural changes of FMN embedded in light-inducible proteins upon photoexcitation.
Collapse
Affiliation(s)
- Prokopis C Andrikopoulos
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, CZ-252 50 Vestec, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Schmidt-Engler JM, Blankenburg L, Zangl R, Hoffmann J, Morgner N, Bredenbeck J. Local dynamics of the photo-switchable protein PYP in ground and signalling state probed by 2D-IR spectroscopy of –SCN labels. Phys Chem Chem Phys 2020; 22:22963-22972. [DOI: 10.1039/d0cp04307a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We employ 2D-IR spectroscopy of the protein label –SCN to describe the local dynamics in the photo-switchable protein PYP in its dark state (pG) and after photoactivation, concomitant with vast structural rearrangements, in its signalling state (pB).
Collapse
Affiliation(s)
| | - Larissa Blankenburg
- Johann Wolfgang Goethe-University
- Institute of Biophysics
- 60438 Frankfurt am Main
- Germany
| | - Rene Zangl
- Johann Wolfgang Goethe-University
- Institute of Physical and Theoretical Chemistry
- Frankfurt am Main
- Germany
| | - Jan Hoffmann
- Johann Wolfgang Goethe-University
- Institute of Physical and Theoretical Chemistry
- Frankfurt am Main
- Germany
| | - Nina Morgner
- Johann Wolfgang Goethe-University
- Institute of Physical and Theoretical Chemistry
- Frankfurt am Main
- Germany
| | - Jens Bredenbeck
- Johann Wolfgang Goethe-University
- Institute of Biophysics
- 60438 Frankfurt am Main
- Germany
| |
Collapse
|
11
|
Pandey S, Bean R, Sato T, Poudyal I, Bielecki J, Cruz Villarreal J, Yefanov O, Mariani V, White TA, Kupitz C, Hunter M, Abdellatif MH, Bajt S, Bondar V, Echelmeier A, Doppler D, Emons M, Frank M, Fromme R, Gevorkov Y, Giovanetti G, Jiang M, Kim D, Kim Y, Kirkwood H, Klimovskaia A, Knoska J, Koua FHM, Letrun R, Lisova S, Maia L, Mazalova V, Meza D, Michelat T, Ourmazd A, Palmer G, Ramilli M, Schubert R, Schwander P, Silenzi A, Sztuk-Dambietz J, Tolstikova A, Chapman HN, Ros A, Barty A, Fromme P, Mancuso AP, Schmidt M. Time-resolved serial femtosecond crystallography at the European XFEL. Nat Methods 2020; 17:73-78. [PMID: 31740816 PMCID: PMC9113060 DOI: 10.1038/s41592-019-0628-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/03/2019] [Indexed: 11/08/2022]
Abstract
The European XFEL (EuXFEL) is a 3.4-km long X-ray source, which produces femtosecond, ultrabrilliant and spatially coherent X-ray pulses at megahertz (MHz) repetition rates. This X-ray source has been designed to enable the observation of ultrafast processes with near-atomic spatial resolution. Time-resolved crystallographic investigations on biological macromolecules belong to an important class of experiments that explore fundamental and functional structural displacements in these molecules. Due to the unusual MHz X-ray pulse structure at the EuXFEL, these experiments are challenging. Here, we demonstrate how a biological reaction can be followed on ultrafast timescales at the EuXFEL. We investigate the picosecond time range in the photocycle of photoactive yellow protein (PYP) with MHz X-ray pulse rates. We show that difference electron density maps of excellent quality can be obtained. The results connect the previously explored femtosecond PYP dynamics to timescales accessible at synchrotrons. This opens the door to a wide range of time-resolved studies at the EuXFEL.
Collapse
Affiliation(s)
- Suraj Pandey
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | | | - Ishwor Poudyal
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | - Jorvani Cruz Villarreal
- School of Molecular Sciences, and Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Hamburg, Germany
| | - Valerio Mariani
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Hamburg, Germany
| | - Thomas A White
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Hamburg, Germany
| | - Christopher Kupitz
- Linac Coherent Light Source, Stanford Linear Accelerator Center, National Accelerator Laboratory, Menlo Park, CA, USA
| | - Mark Hunter
- Linac Coherent Light Source, Stanford Linear Accelerator Center, National Accelerator Laboratory, Menlo Park, CA, USA
| | - Mohamed H Abdellatif
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Hamburg, Germany
| | - Saša Bajt
- Deutsches Elektronen Synchrotron, Hamburg, Germany
| | | | - Austin Echelmeier
- School of Molecular Sciences, and Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Diandra Doppler
- School of Molecular Sciences, and Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | | | - Matthias Frank
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Raimund Fromme
- School of Molecular Sciences, and Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Yaroslav Gevorkov
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Hamburg, Germany
- Institute of Vision Systems, Hamburg University of Technology, Hamburg, Germany
| | | | - Man Jiang
- European XFEL GmbH, Schenefeld, Germany
| | - Daihyun Kim
- School of Molecular Sciences, and Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | | | | | | | - Juraj Knoska
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Faisal H M Koua
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Hamburg, Germany
| | | | - Stella Lisova
- Physics Department, Arizona State University, Tempe, AZ, USA
| | - Luis Maia
- European XFEL GmbH, Schenefeld, Germany
| | - Victoria Mazalova
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Hamburg, Germany
| | - Domingo Meza
- Integrated Biology Infrastructure Life-Science Facility at the European XFEL, Schenefeld, Germany
| | | | - Abbas Ourmazd
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | | | - Robin Schubert
- Integrated Biology Infrastructure Life-Science Facility at the European XFEL, Schenefeld, Germany
| | - Peter Schwander
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | | | - Alexandra Tolstikova
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Hamburg, Germany
| | - Henry N Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
- Centre for Ultrafast Imaging, Hamburg, Germany
| | - Alexandra Ros
- School of Molecular Sciences, and Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Anton Barty
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Hamburg, Germany
| | - Petra Fromme
- School of Molecular Sciences, and Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Adrian P Mancuso
- European XFEL GmbH, Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
12
|
Gromov EV, Domratcheva T. Four resonance structures elucidate double-bond isomerisation of a biological chromophore. Phys Chem Chem Phys 2020; 22:8535-8544. [DOI: 10.1039/d0cp00814a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Four resonance structures determining the electronic structure of the chromophore’s ground and first excited states. Changing the relative energies of the structures by hydrogen-bonding interactions tunes all chromophore’s photochemical properties.
Collapse
Affiliation(s)
- Evgeniy V. Gromov
- Max-Planck Institute for Medical Research
- Jahnstraße 29
- 69120 Heidelberg
- Germany
| | - Tatiana Domratcheva
- Max-Planck Institute for Medical Research
- Jahnstraße 29
- 69120 Heidelberg
- Germany
| |
Collapse
|
13
|
Fang C, Tang L, Chen C. Unveiling coupled electronic and vibrational motions of chromophores in condensed phases. J Chem Phys 2019; 151:200901. [PMID: 31779327 DOI: 10.1063/1.5128388] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The quest for capturing molecular movies of functional systems has motivated scientists and engineers for decades. A fundamental understanding of electronic and nuclear motions, two principal components of the molecular Schrödinger equation, has the potential to enable the de novo rational design for targeted functionalities of molecular machines. We discuss the development and application of a relatively new structural dynamics technique, femtosecond stimulated Raman spectroscopy with broadly tunable laser pulses from the UV to near-IR region, in tracking the coupled electronic and vibrational motions of organic chromophores in solution and protein environments. Such light-sensitive moieties hold broad interest and significance in gaining fundamental knowledge about the intramolecular and intermolecular Hamiltonian and developing effective strategies to control macroscopic properties. Inspired by recent experimental and theoretical advances, we focus on the in situ characterization and spectroscopy-guided tuning of photoacidity, excited state proton transfer pathways, emission color, and internal conversion via a conical intersection.
Collapse
Affiliation(s)
- Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Longteng Tang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Cheng Chen
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
14
|
Hutchison CDM, van Thor JJ. Optical control, selection and analysis of population dynamics in ultrafast protein X-ray crystallography. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20170474. [PMID: 30929625 PMCID: PMC6452057 DOI: 10.1098/rsta.2017.0474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Ultrafast pump-probe X-ray crystallography has now been established at X-ray free electron lasers that operate at hard X-ray energies. We discuss the performance and development of current applications in terms of the available data quality and sensitivity to detect and analyse structural dynamics. A discussion of technical capabilities expected at future high repetition rate applications as well as future non-collinear multi-pulse schemes focuses on the possibility to advance the technique to the practical application of the X-ray crystallographic equivalent of an impulse time-domain Raman measurement of vibrational coherence. Furthermore, we present calculations of the magnitude of population differences and distributions prepared with ultrafast optical pumping of single crystals in the typical serial femtosecond crystallography geometry, which are developed for the general uniaxial and biaxial cases. The results present opportunities for polarization resolved anisotropic X-ray diffraction analysis of photochemical populations for the ultrafast time domain. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.
Collapse
|
15
|
Blankenburg L, Schroeder L, Habenstein F, Błasiak B, Kottke T, Bredenbeck J. Following local light-induced structure changes and dynamics of the photoreceptor PYP with the thiocyanate IR label. Phys Chem Chem Phys 2019; 21:6622-6634. [PMID: 30855039 DOI: 10.1039/c8cp05399e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoactive Yellow Protein (PYP) is a bacterial blue light receptor that enters a photocycle after excitation. The intermediate states are formed on time scales ranging from femtoseconds up to hundreds of milliseconds, after which the signaling state with a lifetime of about 1 s is reached. To investigate structural changes and dynamics, we incorporated the SCN IR label at distinct positions of the photoreceptor via cysteine mutation and cyanylation. FT-IR measurements of the SCN label at different sites of the well-established dark state structure of PYP characterized the spectral response of the label to differences in the environment. Under constant blue light irradiation, we observed the formation of the signaling state with significant changes of wavenumber and lineshape of the SCN bands. Thereby we deduced light-induced structural changes in the local environment of the labels. These results were supported by molecular dynamics simulations on PYP providing the solvent accessible surface area (SASA) at the different positions. To follow protein dynamics via the SCN label during the photocycle, we performed step-scan FT-IR measurements with a time resolution of 10 μs. Global analysis yielded similar time constants of τ1 = 70 μs, τ2 = 640 μs, and τ3 > 20 ms for the wild type and τ1 = 36 μs, τ2 = 530 μs, and τ3 > 20 ms for the SCN-labeled mutant PYP-A44C*, a mutant which provided a sufficiently large SCN difference signal to measure step-scan FT-IR spectra. In comparison to the protein (amide, E46) and chromophore bands the dynamics of the SCN label show a different behavior. This result indicates that the local kinetics sensed by the label are different from the global protein kinetics.
Collapse
Affiliation(s)
- Larissa Blankenburg
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Zhao L, Liu J, Zhou P. Does the wavelength dependent photoisomerization process of the p‑coumaric acid come out from the electronic state dependent pathways? SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 211:203-211. [PMID: 30544011 DOI: 10.1016/j.saa.2018.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Similar to the anion photoactive yellow protein (PYP) chromophore, the neutral form of the PYP chromophore was also found to exhibit a the wavelength-dependent photoisomerization quantum yield. The isomerization quantum yield increases with the increasing excitation energy on the S1 state, while decreases when being excited to the S2 state. Does this wavelength dependent product yield come out from the specific reaction pathways of the S1 and S2 states? This would mean that, the relaxation pathway of the S2 state is distinct from that of the S1 state and does not involve twisting motion. Does it break Kasha's rule by exhibiting a direct transition from the S2 state to the ground state? The underlying mechanism needs further in. In this article, we employed the on-the-fly dynamics simulations and static electronic structure calculations to reveal the deactivation mechanism of the neutral form of the PYP chromophore. Our results indicated that the CC twisting motion dominates the S1 state decay process. In contrast, for the decay process of the S2 state, an ultrafast transition from the S2 to the S1 state through a planar conical intersection is observed, and the excess energy activates a new reaction channel to the ground state characterized by a puckering distortion of the ring. This pathway competes with the photoisomerization channel. No direct transition from S2 to S0 is observed, hence Kasha's rule is valid for this process. Our calcualtions can provide a reasonable explanation of the wavelength-dependent isomerization quantum yield of neutral PYP chromophore, and we hope it can provide theoretical foundations for comparing the effect of protonation state on the dynamcal behaviors of PYP chromophore.
Collapse
Affiliation(s)
- Li Zhao
- School of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| | - Jianyong Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Panwang Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
17
|
Multidimensional Vibrational Coherence Spectroscopy. Top Curr Chem (Cham) 2018; 376:35. [DOI: 10.1007/s41061-018-0213-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
|
18
|
Kayal S, Roy K, Lakshmanna YA, Umapathy S. Probing the effect of solvation on photoexcited 2-(2′-hydroxyphenyl)benzothiazole via ultrafast Raman loss spectroscopic studies. J Chem Phys 2018; 149:044310. [DOI: 10.1063/1.5028274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Surajit Kayal
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012, India
| | - Khokan Roy
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012, India
| | - Y. Adithya Lakshmanna
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012, India
| | - Siva Umapathy
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012, India
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
19
|
Abstract
The first stage in biological signaling is based on changes in the functional state of a receptor protein triggered by interaction of the receptor with its ligand(s). The light-triggered nature of photoreceptors allows studies on the mechanism of such changes in receptor proteins using a wide range of biophysical methods and with superb time resolution. Here, we critically evaluate current understanding of proton and electron transfer in photosensory proteins and their involvement both in primary photochemistry and subsequent processes that lead to the formation of the signaling state. An insight emerging from multiple families of photoreceptors is that ultrafast primary photochemistry is followed by slower proton transfer steps that contribute to triggering large protein conformational changes during signaling state formation. We discuss themes and principles for light sensing shared by the six photoreceptor families: rhodopsins, phytochromes, photoactive yellow proteins, light-oxygen-voltage proteins, blue-light sensors using flavin, and cryptochromes.
Collapse
Affiliation(s)
- Tilman Kottke
- Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Aihua Xie
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Delmar S. Larsen
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - Wouter D. Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| |
Collapse
|
20
|
Kowalewski M, Fingerhut BP, Dorfman KE, Bennett K, Mukamel S. Simulating Coherent Multidimensional Spectroscopy of Nonadiabatic Molecular Processes: From the Infrared to the X-ray Regime. Chem Rev 2017; 117:12165-12226. [DOI: 10.1021/acs.chemrev.7b00081] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Markus Kowalewski
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Benjamin P. Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - Konstantin E. Dorfman
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Kochise Bennett
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
21
|
Šrajer V, Schmidt M. Watching Proteins Function with Time-resolved X-ray Crystallography. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2017; 50:373001. [PMID: 29353938 PMCID: PMC5771432 DOI: 10.1088/1361-6463/aa7d32] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron X-ray sources. An expansive database of more than 100,000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al., 2005a; Schmidt 2008; Neutze and Moffat, 2012; Šrajer 2014). In this approach, short and intense X-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron X-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard X-rays (XFELs; 5-20 keV), which provide exceptionally intense, femtosecond X-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al., 2014; Barends et al., 2015; Pande et al., 2016). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We also outline challenges and further developments necessary to broaden the application of these methods to many important proteins and enzymes of biomedical relevance.
Collapse
Affiliation(s)
- Vukica Šrajer
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, USA
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, IL, USA
| |
Collapse
|
22
|
Kuramochi H, Fujisawa T, Takeuchi S, Tahara T. Broadband stimulated Raman spectroscopy in the deep ultraviolet region. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Yu P, Song L, Qin J, Wang J. Capturing the photo-signaling state of a photoreceptor in a steady-state fashion by binding a transition metal complex. Protein Sci 2017; 26:2249-2256. [PMID: 28856755 DOI: 10.1002/pro.3284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/26/2017] [Indexed: 11/08/2022]
Abstract
Binding a small molecule to proteins causes conformational changes, but often to a limited extent. Here, we demonstrate that the interaction of a CO-releasing molecule (CORM3) with a photoreceptor photoactive yellow protein (PYP) drives large structural changes in the latter. The interaction of CORM3 and a mutant of PYP, Met100Ala, not only trigger the isomerization of its chromophore, p-coumaric acid, from its anionic trans configuration to a protonated cis configuration, but also increases the content of β-sheet at the cost of α-helix and random coil in the secondary structure of the protein. The CORM3 derived Met100Ala is found to highly resemble the signaling state, which is one of the key photo-intermediates of this photoactive protein, in both protein local conformation and chromophore configuration. The organometallic reagents hold promise as protein engineering tools. This work highlights a novel approach to structurally accessing short lived intermediates of proteins in a steady-state fashion.
Collapse
Affiliation(s)
- Pengyun Yu
- Beijing National Laboratory for Molecular Sciences; Molecular Reaction Dynamics Laboratory; CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, People's Republic of China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, People's Republic of China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences; Molecular Reaction Dynamics Laboratory; CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
24
|
Hall CR, Heisler IA, Jones GA, Frost JE, Gil AA, Tonge PJ, Meech SR. Femtosecond stimulated Raman study of the photoactive flavoprotein AppABLUF. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Oscar BG, Chen C, Liu W, Zhu L, Fang C. Dynamic Raman Line Shapes on an Evolving Excited-State Landscape: Insights from Tunable Femtosecond Stimulated Raman Spectroscopy. J Phys Chem A 2017; 121:5428-5441. [DOI: 10.1021/acs.jpca.7b04404] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Breland G. Oscar
- Department
of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Cheng Chen
- Department
of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Weimin Liu
- Department
of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Liangdong Zhu
- Department
of Physics, Oregon State University, 301 Weniger Hall, Corvallis, Oregon 97331, United States
| | - Chong Fang
- Department
of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
- Department
of Physics, Oregon State University, 301 Weniger Hall, Corvallis, Oregon 97331, United States
| |
Collapse
|
26
|
Schmidt M. A short history of structure based research on the photocycle of photoactive yellow protein. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:032201. [PMID: 28191482 PMCID: PMC5291790 DOI: 10.1063/1.4974172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/04/2017] [Indexed: 05/07/2023]
Abstract
The goals of time-resolved macromolecular crystallography are to extract the molecular structures of the reaction intermediates and the reaction dynamics from time-resolved X-ray data alone. To develop the techniques of time-resolved crystallography, biomolecules with special properties are required. The Photoactive Yellow Protein is the most sparkling of these.
Collapse
Affiliation(s)
- Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee , 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
27
|
Hutchison CD, van Thor JJ. Populations and coherence in femtosecond time resolved X-ray crystallography of the photoactive yellow protein. INT REV PHYS CHEM 2017. [DOI: 10.1080/0144235x.2017.1276726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Jasper J. van Thor
- Molecular Biophysics, Imperial College London, South Kensington Campus, London, UK
| |
Collapse
|
28
|
Probing the early stages of photoreception in photoactive yellow protein with ultrafast time-domain Raman spectroscopy. Nat Chem 2017. [PMID: 28644485 DOI: 10.1038/nchem.2717] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unveiling the nuclear motions of photoreceptor proteins in action is a crucial goal in protein science in order to understand their elaborate mechanisms and how they achieve optimal selectivity and efficiency. Previous studies have provided detailed information on the structures of intermediates that appear during the later stages (>ns) of such photoreception cycles, yet the initial events immediately after photoabsorption remain unclear because of experimental challenges in monitoring nuclear rearrangements on ultrafast timescales, including protein-specific low-frequency motions. Using time-domain Raman probing with sub-7-fs pulses, we obtain snapshot vibrational spectra of photoactive yellow protein and a mutant with high sensitivity, providing insights into the key responses that drive photoreception. Our data show a drastic intensity drop of the excited-state marker band at 135 cm-1 within a few hundred femtoseconds, suggesting a rapid weakening of the hydrogen bond that anchors the chromophore. We also track formation of the first ground-state intermediate over the first few picoseconds and fully characterize its vibrational structure, revealing a substantially-twisted cis conformation.
Collapse
|
29
|
Abstract
Time-resolved macromolecular crystallography unifies protein structure determination with chemical kinetics. With the advent of fourth generation X-ray sources the time-resolution can be on the order of 10-40 fs, which opens the ultrafast time scale to structure determination. Fundamental motions and transitions associated with chemical reactions in proteins can now be observed. Moreover, new experimental approaches at synchrotrons allow for the straightforward investigation of all kind of reactions in biological macromolecules. Here, recent developments in the field are reviewed.
Collapse
Affiliation(s)
- Marius Schmidt
- Kenwood Interdisciplinary Research Complex, Physics Department, University of Wisconsin-Milwaukee, Room 3087, 3135 North Maryland Avenue, Milwaukee, WI, 53211, USA.
| |
Collapse
|
30
|
Abstract
Stimulated Raman scattering (SRS) describes a family of techniques first discovered and developed in the 1960s. Whereas the nascent history of the technique is parallel to that of laser light sources, recent advances have spurred a resurgence in its use and development that has spanned across scientific fields and spatial scales. SRS is a nonlinear technique that probes the same vibrational modes of molecules that are seen in spontaneous Raman scattering. While spontaneous Raman scattering is an incoherent technique, SRS is a coherent process, and this fact provides several advantages over conventional Raman techniques, among which are much stronger signals and the ability to time-resolve the vibrational motions. Technological improvements in pulse generation and detection strategies have allowed SRS to probe increasingly smaller volumes and shorter time scales. This has enabled SRS research to move from its original domain, of probing bulk media, to imaging biological tissues and single cells at the micro scale, and, ultimately, to characterizing samples with subdiffraction resolution at the nanoscale. In this Review, we give an overview of the history of the technique, outline its basic properties, and present historical and current uses at multiple length scales to underline the utility of SRS to the molecular sciences.
Collapse
Affiliation(s)
- Richard C Prince
- Department of Biomedical Engineering, University of California, Irvine , 1436 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis , B-18, 139 Smith Hall, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Eric O Potma
- Department of Chemistry, University of California, Irvine , 1107 Natural Sciences II, Irvine, California 92697-2025, United States
| |
Collapse
|
31
|
Pande K, Hutchison CDM, Groenhof G, Aquila A, Robinson JS, Tenboer J, Basu S, Boutet S, DePonte DP, Liang M, White TA, Zatsepin NA, Yefanov O, Morozov D, Oberthuer D, Gati C, Subramanian G, James D, Zhao Y, Koralek J, Brayshaw J, Kupitz C, Conrad C, Roy-Chowdhury S, Coe JD, Metz M, Xavier PL, Grant TD, Koglin JE, Ketawala G, Fromme R, Šrajer V, Henning R, Spence JCH, Ourmazd A, Schwander P, Weierstall U, Frank M, Fromme P, Barty A, Chapman HN, Moffat K, van Thor JJ, Schmidt M. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 2016; 352:725-9. [PMID: 27151871 DOI: 10.1126/science.aad5081] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 04/05/2016] [Indexed: 11/02/2022]
Abstract
A variety of organisms have evolved mechanisms to detect and respond to light, in which the response is mediated by protein structural changes after photon absorption. The initial step is often the photoisomerization of a conjugated chromophore. Isomerization occurs on ultrafast time scales and is substantially influenced by the chromophore environment. Here we identify structural changes associated with the earliest steps in the trans-to-cis isomerization of the chromophore in photoactive yellow protein. Femtosecond hard x-ray pulses emitted by the Linac Coherent Light Source were used to conduct time-resolved serial femtosecond crystallography on photoactive yellow protein microcrystals over a time range from 100 femtoseconds to 3 picoseconds to determine the structural dynamics of the photoisomerization reaction.
Collapse
Affiliation(s)
- Kanupriya Pande
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA. Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | | | - Gerrit Groenhof
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, Post Office Box 35, 40014 Jyväskylä, Finland
| | - Andy Aquila
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Sand Hill Road, Menlo Park, CA 94025, USA
| | - Josef S Robinson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jason Tenboer
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Shibom Basu
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Sand Hill Road, Menlo Park, CA 94025, USA
| | - Daniel P DePonte
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Sand Hill Road, Menlo Park, CA 94025, USA
| | - Mengning Liang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Sand Hill Road, Menlo Park, CA 94025, USA
| | - Thomas A White
- Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Nadia A Zatsepin
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Oleksandr Yefanov
- Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Dmitry Morozov
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, Post Office Box 35, 40014 Jyväskylä, Finland
| | - Dominik Oberthuer
- Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Cornelius Gati
- Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | | | - Daniel James
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Yun Zhao
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Jake Koralek
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jennifer Brayshaw
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Christopher Kupitz
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Chelsie Conrad
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA
| | - Shatabdi Roy-Chowdhury
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA
| | - Jesse D Coe
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA
| | - Markus Metz
- Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Paulraj Lourdu Xavier
- Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany. IMPRS-UFAST, Max Planck Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Thomas D Grant
- Hauptman-Woodward Institute, State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Jason E Koglin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Sand Hill Road, Menlo Park, CA 94025, USA
| | - Gihan Ketawala
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA
| | - Raimund Fromme
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA
| | - Vukica Šrajer
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA
| | - Robert Henning
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA
| | - John C H Spence
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Abbas Ourmazd
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Peter Schwander
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Uwe Weierstall
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Matthias Frank
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Petra Fromme
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA
| | - Anton Barty
- Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Henry N Chapman
- Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany. Center for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Keith Moffat
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA. Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Jasper J van Thor
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Marius Schmidt
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
32
|
Redeckas K, Voiciuk V, Vengris M. Investigation of the S1/ICT equilibrium in fucoxanthin by ultrafast pump-dump-probe and femtosecond stimulated Raman scattering spectroscopy. PHOTOSYNTHESIS RESEARCH 2016; 128:169-181. [PMID: 26742754 DOI: 10.1007/s11120-015-0215-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 12/29/2015] [Indexed: 06/05/2023]
Abstract
Time-resolved multi-pulse spectroscopic methods-pump-dump-probe (PDP) and femtosecond stimulated Raman spectroscopy-were used to investigate the excited state photodynamics of the carbonyl group containing carotenoid fucoxanthin (FX). PDP experiments show that S1 and ICT states in FX are strongly coupled and that the interstate equilibrium is rapidly (<5 ps) reestablished after one of the interacting states is deliberately depopulated. Femtosecond stimulated Raman scattering experiments indicate that S1 and ICT are vibrationally distinct species. Identification of the FSRS modes on the S1 and ICT potential energy surfaces allows us to predict a possible coupling channel for the state interaction.
Collapse
Affiliation(s)
- Kipras Redeckas
- Department of Quantum Electronics, Faculty of Physics, Vilnius University, Saulėtekio AV. 10, 10223, Vilnius, Lithuania.
| | - Vladislava Voiciuk
- Department of Quantum Electronics, Faculty of Physics, Vilnius University, Saulėtekio AV. 10, 10223, Vilnius, Lithuania
| | - Mikas Vengris
- Department of Quantum Electronics, Faculty of Physics, Vilnius University, Saulėtekio AV. 10, 10223, Vilnius, Lithuania
| |
Collapse
|
33
|
Dietze DR, Mathies RA. Femtosecond Stimulated Raman Spectroscopy. Chemphyschem 2016; 17:1224-51. [DOI: 10.1002/cphc.201600104] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel R. Dietze
- Department of Chemistry; University of California in Berkeley; CA Berkeley 94720 USA
| | - Richard A. Mathies
- Department of Chemistry; University of California in Berkeley; CA Berkeley 94720 USA
| |
Collapse
|
34
|
Hamada N, Tan Z, Kanematsu Y, Inazumi N, Nakamura R. Influence of a chromophore analogue in the protein cage of a photoactive yellow protein. Photochem Photobiol Sci 2015; 14:1722-8. [PMID: 26178816 DOI: 10.1039/c5pp00176e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Time-resolved spectra of a photoactive yellow protein (PYP) containing cyano-p-coumaric acid (CHCA) were recorded. To understand the mechanism of photo-isomerization, an electron-withdrawing CN group was introduced into the PYP to alter the C[double bond, length as m-dash]C double bond character. Free CHCA chromophores in aqueous solution underwent photo-isomerization whereas PYP with a bound CHCA (PYP-CN) exhibited no photocycle at acidic or alkaline pH or in urea and other solutions. Furthermore, no photocycle was observed with PYP mutants after illumination. This phenomenon cannot be fully explained by the electron-withdrawing properties of the CN group. We conclude that the CHCA chromophore in PYP was locked in the protein cage and that the CN group interacted with the protein residues.
Collapse
Affiliation(s)
- Norio Hamada
- Science & Technology Entrepreneurship Laboratory (e-square), Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan.
| | | | | | | | | |
Collapse
|
35
|
Sum-Frequency-Generation-Based Laser Sidebands for Tunable Femtosecond Raman Spectroscopy in the Ultraviolet. APPLIED SCIENCES-BASEL 2015. [DOI: 10.3390/app5020048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Wavelength dependent resonance Raman band intensity of broadband stimulated Raman spectroscopy of malachite green in ethanol. J Chem Phys 2015; 142:114201. [DOI: 10.1063/1.4914188] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Tang L, Liu W, Wang Y, Zhao Y, Oscar BG, Campbell RE, Fang C. Unraveling ultrafast photoinduced proton transfer dynamics in a fluorescent protein biosensor for Ca(2+) imaging. Chemistry 2015; 21:6481-90. [PMID: 25761197 DOI: 10.1002/chem.201500491] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 11/08/2022]
Abstract
Imaging Ca(2+) dynamics in living systems holds great potential to advance neuroscience and cellular biology. G-GECO1.1 is an intensiometric fluorescent protein Ca(2+) biosensor with a Thr-Tyr-Gly chromophore. The protonated chromophore emits green upon photoexcitation via excited-state proton transfer (ESPT). Upon Ca(2+) binding, a significant population of the chromophores becomes deprotonated. It remains elusive how the chromophore structurally evolves prior to and during ESPT, and how it is affected by Ca(2+) . We use femtosecond stimulated Raman spectroscopy to dissect ESPT in both the Ca(2+) -free and bound states. The protein chromophores exhibit a sub-200 fs vibrational frequency shift due to coherent small-scale proton motions. After wavepackets move out of the Franck-Condon region, ESPT gets faster in the Ca(2+) -bound protein, indicative of the formation of a more hydrophilic environment. These results reveal the governing structure-function relationship of Ca(2+) -sensing protein biosensors.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003 (USA)
| | | | | | | | | | | | | |
Collapse
|
38
|
Gromov EV. Unveiling the mechanism of photoinduced isomerization of the photoactive yellow protein (PYP) chromophore. J Chem Phys 2014; 141:224308. [DOI: 10.1063/1.4903174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Evgeniy V. Gromov
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
39
|
Tan EMM, Amirjalayer S, Mazzella P, Bakker BH, van Maarseveen JH, Bieraugel H, Buma WJ. Molecular Beam and ab Initio Studies of Photoactive Yellow Protein Chromophores: Influence of the Thioester Functionality and Single Bond Rotation. J Phys Chem B 2014; 118:12395-403. [DOI: 10.1021/jp5075169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eric M. M. Tan
- van
’t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Saeed Amirjalayer
- van
’t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Physical
Institute and Center for Nanotechnology (CeNTech) Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
| | - Paul Mazzella
- van
’t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Bert H. Bakker
- van
’t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Jan H. van Maarseveen
- van
’t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Hans Bieraugel
- van
’t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Wybren J. Buma
- van
’t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
40
|
Hoffman DP, Ellis SR, Mathies RA. Characterization of a Conical Intersection in a Charge-Transfer Dimer with Two-Dimensional Time-Resolved Stimulated Raman Spectroscopy. J Phys Chem A 2014; 118:4955-65. [DOI: 10.1021/jp5041986] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David P. Hoffman
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Scott R. Ellis
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Richard A. Mathies
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
41
|
Affiliation(s)
- Hanning Chen
- Department
of Chemistry, The George Washington University, 725 21st Street, Northwest, Washington, District of Columbia 20052, United States
| |
Collapse
|