1
|
Li SX, Yang YJ, Chen DL. Structural Evolution and Electronic Properties of Two Sulfur Atom-Doped Boron Clusters. ACS OMEGA 2023; 8:30757-30767. [PMID: 37636960 PMCID: PMC10448743 DOI: 10.1021/acsomega.3c04967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023]
Abstract
We present a theoretical study of structural evolution, electronic properties, and photoelectron spectra of two sulfur atom-doped boron clusters S2Bn0/- (n = 2-13), which reveal that the global minima of the S2Bn0/- (n = 2-13) clusters show an evolution from a linear-chain structure to a planar or quasi-planar structure. Some S-doped boron clusters have the skeleton of corresponding pure boron clusters; however, the addition of two sulfur atoms modified and improved some of the pure boron cluster structures. Boron is electron-deficient and boron clusters do not form linear chains. Here, two sulfur atom doping can adjust the pure boron clusters to a linear-chain structure (S2B20/-, S2B30/-, and S2B4-), a quasi-linear-chain structure (S2B6-), single- and double-chain structures (S2B6 and S2B9-), and double-chain structures (S2B5, and S2B9). In particular, the smallest linear-chain boron clusters S2B20/- are shown with an S atom attached to each end of B2. The S2B2 cluster possesses the largest highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap of 5.57 eV and the S2B2- cluster possesses the largest average binding energy Eb of 5.63 eV, which shows the superior chemical stability and relative stability, respectively. Interestingly, two S-atom doping can adjust the quasi-planar pure boron clusters (B7-, B10-, and B120/-) to a perfect planar structure. AdNDP bonding analyses reveal that linear S2B3 and planar SeB11- have π aromaticity and σ antiaromaticity; however, S2B2, planar S2B6, and planar S2B7- clusters have π antiaromaticity and σ aromaticity. Furthermore, AdNDP bonding analyses reveal that planar S2B4, S2B10, and S2B12 clusters are doubly (π and σ) aromatic, whereas S2B5-, S2B8, S2B9-, and S2B13- clusters are doubly (π and σ) antiaromatic. The electron localization function (ELF) analysis shows that S2Bn0/- (n = 2-13) clusters have different electron delocalization characteristics, and the spin density analysis shows that the open-shell clusters have different characteristics of electron spin distribution. The calculated photoelectron spectra indicate that S2Bn- (n = 2-13) have different characteristic peaks that can be compared with future experimental values and provide a theoretical basis for the identification and confirmation of these doped boron clusters. Our work enriches the new database of geometrical structures of doped boron clusters, provides new examples of aromaticity for doped boron clusters, and is promising to offer new ideas for nanomaterials and nanodevices.
Collapse
Affiliation(s)
- Shi-Xiong Li
- School of Physics and Electronic
Science, Guizhou Education University, Guiyang 550018, China
| | - Yue-Ju Yang
- School of Physics and Electronic
Science, Guizhou Education University, Guiyang 550018, China
| | - De-Liang Chen
- School of Physics and Electronic
Science, Guizhou Education University, Guiyang 550018, China
| |
Collapse
|
2
|
Li PF, Zhai HJ. Structures and chemical bonding of boron-based B 12O and B 11Au clusters. A counterexample in boronyl chemistry. Phys Chem Chem Phys 2022; 24:10952-10961. [PMID: 35466336 DOI: 10.1039/d2cp01277d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Boron oxide clusters have structural diversity and unique chemical bonding, and recent literature has shown that boronyl complexes dominate boron-rich oxide clusters. A counterexample in boronyl chemistry is presented in this work. Using global structural searches, electronic structure calculations, and chemical bonding analyses, we shall report on the computational design of two boron-based quasi-planar or planar clusters: B12O and B11Au. Contrary to expectation, the B12O cluster has a circular quasi-planar shape with a peripheral B-O-B bridge, which resembles bare B12 cluster. It does not contain a boronyl ligand. The isomeric boronyl complex turns out to be 10.32 kcal mol-1 higher in energy at the single-point CCSD(T) level. In contrast, B11Au cluster behaves normally with an elongated B11 moiety and a terminal Au ligand. Chemical bonding analyses reveal three-fold π/σ aromaticity in circular B12O cluster, including global 6π aromaticity, as well as spatially isolated inner 2σ aromaticity and outer 10σ aromaticity. The three-fold 6π/2σ/10σ aromaticity underlies the stability of B12O cluster. This bonding picture is unknown for bare B12 cluster and its derivatives. The elongated B11Au cluster has conflicting π/σ aromaticity (with 6π versus 8σ electron-counting). The B12O cluster is actually isoelectronic with bare B12 cluster in terms of delocalized π/σ bonding, which inherits the structural and electronic robustness of the latter.
Collapse
Affiliation(s)
- Peng-Fei Li
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Hua-Jin Zhai
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
3
|
Gao SJ, Guo JC, Zhai HJ. Boron Oxide B 5O 6 - Cluster as a Boronyl-Based Inorganic Analog of Phenolate Anion. Front Chem 2022; 10:868782. [PMID: 35464225 PMCID: PMC9024314 DOI: 10.3389/fchem.2022.868782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Boron oxide clusters have structural richness and exotic chemical bonding. We report a quantum chemical study on the binary B5O6 - cluster, which is relatively oxygen-rich. A global structural search reveals planar C 2v (1A1) geometry as the global minimum structure, featuring a heteroatomic hexagonal B3O3 ring as its core. The three unsaturated B sites are terminated by two boronyl (BO) groups and an O- ligand. The B5O6 - cluster can be faithfully formulated as B3O3(BO)2O-. This structure is in stark contrast to that of its predecessors, C s B5O5 - and T d B5O4 -, both of which have a tetrahedral B center. Thus, there exists a major structural transformation in B5O n - series upon oxidation, indicating intriguing competition between tetrahedral and heterocyclic structures. The chemical bonding analyses show weak 6π aromaticity in the B5O6 - cluster, rendering it a boronyl analog of phenolate anion (C6H5O-) or boronyl boroxine. The calculated vertical detachment energy of B5O6 - cluster is 5.26 eV at PBE0, which greatly surpasses the electron affinities of halogens (Cl: 3.61 eV), suggesting that the cluster belongs to superhalogen anions.
Collapse
Affiliation(s)
- Shu-Juan Gao
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan, China
- Department of Chemistry and Chemical Engineering, Lvliang University, Lvliang, China
| | - Jin-Chang Guo
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Hua-Jin Zhai
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan, China
| |
Collapse
|
4
|
Structure and Chemical Bonding of the B3S n 0/− (n = 2–4) Boron Sulfide Clusters: A Density Functional Theory Investigation. J CLUST SCI 2016. [DOI: 10.1007/s10876-016-1026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Zhao LJ, Tian WJ, Ou T, Xu HG, Feng G, Xu XL, Zhai HJ, Li SD, Zheng WJ. Structures and chemical bonding of B3O3−/0 and B3O3H−/0: A combined photoelectron spectroscopy and first-principles theory study. J Chem Phys 2016; 144:124301. [DOI: 10.1063/1.4943768] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Li-Juan Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen-Juan Tian
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Ting Ou
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Hong-Guang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Gang Feng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xi-Ling Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hua-Jin Zhai
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China
| | - Si-Dian Li
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Wei-Jun Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Li DZ, Li R, Zhang LJ, Ou T, Zhai HJ. Planar B3S2H3−and B3S2H3clusters with a five-membered B3S2ring: boron–sulfur hydride analogues of cyclopentadiene. Phys Chem Chem Phys 2016; 18:21412-20. [DOI: 10.1039/c6cp03952a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Boron–sulfur hydride clusters,C2vB3S2H3−and B3S2H3, possess a five-membered B3S2ring as the core, which is analogous to cyclopentadiene in terms of π bonding.
Collapse
Affiliation(s)
- Da-Zhi Li
- Binzhou Key Laboratory of Materials Chemistry
- Department of Chemical Engineering
- Binzhou University
- Binzhou 256603
- China
| | - Rui Li
- Nanocluster Laboratory
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Li-Juan Zhang
- Binzhou Key Laboratory of Materials Chemistry
- Department of Chemical Engineering
- Binzhou University
- Binzhou 256603
- China
| | - Ting Ou
- Nanocluster Laboratory
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Hua-Jin Zhai
- Nanocluster Laboratory
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
7
|
Li DZ, Bai H, Ou T, Chen Q, Zhai HJ, Li SD. Planar dicyclic B6S6, B6S6−, and B6S62− clusters: Boron sulfide analogues of naphthalene. J Chem Phys 2015; 142:014302. [DOI: 10.1063/1.4904289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
8
|
Wang W, Chen Q, Wang YJ, Bai H, Gao TT, Li HR, Zhai HJ, Li SD. Boronyl as a terminal ligand in boron oxide clusters: hexagonal ring C2vB6O4and ethylene-like D2hB6O4−/2−. Phys Chem Chem Phys 2015; 17:19929-35. [DOI: 10.1039/c5cp00812c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Planar boron boronyl B6O40/−/2−clusters are predicted. B6O4is an inorganic analogue of benzene, whereas B6O4−/2−are ethylene-like with open structures.
Collapse
Affiliation(s)
- Wei Wang
- Nanocluster Laboratory
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Qiang Chen
- Nanocluster Laboratory
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Ying-Jin Wang
- Nanocluster Laboratory
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Hui Bai
- Nanocluster Laboratory
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Ting-Ting Gao
- Nanocluster Laboratory
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Hai-Ru Li
- Nanocluster Laboratory
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Hua-Jin Zhai
- Nanocluster Laboratory
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Si-Dian Li
- Nanocluster Laboratory
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
9
|
Zhai HJ, Chen Q, Bai H, Li SD, Wang LS. Boronyl chemistry: the BO group as a new ligand in gas-phase clusters and synthetic compounds. Acc Chem Res 2014; 47:2435-45. [PMID: 24915198 DOI: 10.1021/ar500136j] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Boronyl (BO) is a monovalent σ radical with a robust B≡O triple bond. Although BO/BO(-) are isovalent to CN/CN(-) and CO, the chemistry of boronyl has remained relatively unknown until recently, whereas CN/CN(-) and CO are well-known inorganic ligands. Further analogy may be established for BO versus H or Au ligands, which are all monovalent σ radicals. This Account intends to provide an overview of research activities over the past few years that are relevant to the development of boronyl chemistry, in particular, in size-selected gaseous clusters containing BO. The systems covered herein include transition metal boronyl clusters, carbon boronyl clusters, boron oxide clusters and boron boronyl complexes, the boronyl boroxine, and the first synthetic Pt-BO bulk compound. In these boronyl clusters and compounds, the BO groups show remarkable structural and chemical integrity as a ligand. Among transition metal boronyls, gold monoboronyl clusters Aun(BO)(-) and Aun(BO) (n = 1-3) have been characterized, and they are shown to possess electronic and structural properties similar to the corresponding Au(n+1)(-) and Au(n+1) bare clusters, demonstrating the BO/Au analogy. The Au-B bonding in the Au-BO clusters is highly covalent. A recent advance in boronyl chemistry is the successful synthesis and isolation of the first boronyl compound, trans-[(Cy3P)2BrPt(BO)]. This unique Pt-BO compound and other potential transition metal boronyl compounds may find applications in catalysis and as chemical building blocks. Carbon boronyl clusters versus boron carbonyl clusters is a topic of interest in designing new aromatic complexes. Experimental and theoretical data obtained to date show that carbon boronyl clusters are generally far more stable than their boron carbonyl counterparts, highlighting the potency of boronyl as a ligand in aromatic compounds. Notably, in light of the BO/H analogy, the perfectly hexagonal (CBO)6 cluster is a carbon boronyl analogue of benzene. The BO groups also dominate the structures and bonding of boron oxide clusters and boron boronyl complexes, in which BO groups occupy terminal, bridging, or face-capping positions. The bridging η(2)-BO groups feature three-center two-electron bonds, akin to the BHB τ bonds in boranes. A close isolobal analogy is thus established between boron oxide clusters and boranes, offering vast opportunities for the rational design of novel boron oxide clusters and compounds. Boron boronyl clusters may also serve as molecular models for mechanistic understanding of the combustion of boron and boranes. An effort to tune the B versus O composition in boron oxide clusters leads to the discovery of boronyl boroxine, D3h B3O3(BO)3, an analogue of boroxine and borazine and a new member of the "inorganic benzene" family. Furthermore, a unique concept of π and σ double conjugation is proposed for the first time to elucidate the structures and bonding in the double-chain nanoribbon boron diboronyl clusters, which appear to be inorganic analogues of polyenes, cumulenes, and polyynes. This Account concludes with a brief outlook for the future directions in this emerging and expanding research field.
Collapse
Affiliation(s)
- Hua-Jin Zhai
- Nanocluster
Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Qiang Chen
- Nanocluster
Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Hui Bai
- Nanocluster
Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Si-Dian Li
- Nanocluster
Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Lai-Sheng Wang
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
10
|
Chen Q, Lu H, Zhai HJ, Li SD. Chemical bonding in electron-deficient boron oxide clusters: core boronyl groups, dual 3c–4e hypervalent bonds, and rhombic 4c–4e bonds. Phys Chem Chem Phys 2014; 16:7274-9. [DOI: 10.1039/c4cp00406j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|