1
|
Chon NL, Lin H. Fluoride Ion Binding and Translocation in the CLC F Fluoride/Proton Antiporter: Molecular Insights from Combined Quantum-Mechanical/Molecular-Mechanical Modeling. J Phys Chem B 2024; 128:2697-2706. [PMID: 38447081 PMCID: PMC10962343 DOI: 10.1021/acs.jpcb.4c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
CLCF fluoride/proton antiporters move fluoride ions out of bacterial cells, leading to fluoride resistance in these bacteria. However, many details about their operating mechanisms remain unclear. Here, we report a combined quantum-mechanical/molecular-mechanical (QM/MM) study of a CLCF homologue from Enterococci casseliflavus (Eca), in accord with the previously proposed windmill mechanism. Our multiscale modeling sheds light on two critical steps in the transport cycle: (i) the external gating residue E118 pushing a fluoride in the external binding site into the extracellular vestibule and (ii) an incoming fluoride reconquering the external binding site by forcing out E118. Both steps feature competitions for the external binding site between the negatively charged carboxylate of E118 and the fluoride. Remarkably, the displaced E118 by fluoride accepts a proton from the nearby R117, initiating the next transport cycle. We also demonstrate the importance of accurate quantum descriptions of fluoride solvation. Our results provide clues to the mysterious E318 residue near the central binding site, suggesting that the transport activities are unlikely to be disrupted by the glutamate interacting with a well-solvated fluoride at the central binding site. This differs significantly from the structurally similar CLC chloride/proton antiporters, where a fluoride trapped deep in the hydrophobic pore causes the transporter to be locked down. A free-energy barrier of 10-15 kcal/mol was estimated via umbrella sampling for a fluoride ion traveling through the pore to repopulate the external binding site.
Collapse
Affiliation(s)
- Nara L. Chon
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217, United States
| | - Hai Lin
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217, United States
| |
Collapse
|
2
|
Asgharpour S, Chi LA, Spehr M, Carloni P, Alfonso-Prieto M. Fluoride Transport and Inhibition Across CLC Transporters. Handb Exp Pharmacol 2024; 283:81-100. [PMID: 36042142 DOI: 10.1007/164_2022_593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Chloride Channel (CLC) family includes proton-coupled chloride and fluoride transporters. Despite their similar protein architecture, the former exchange two chloride ions for each proton and are inhibited by fluoride, whereas the latter efficiently transport one fluoride in exchange for one proton. The combination of structural, mutagenesis, and functional experiments with molecular simulations has pinpointed several amino acid changes in the permeation pathway that capitalize on the different chemical properties of chloride and fluoride to fine-tune protein function. Here we summarize recent findings on fluoride inhibition and transport in the two prototypical members of the CLC family, the chloride/proton transporter from Escherichia coli (CLC-ec1) and the fluoride/proton transporter from Enterococcus casseliflavus (CLCF-eca).
Collapse
Affiliation(s)
- Somayeh Asgharpour
- Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - L América Chi
- Laboratory for the Design and Development of New Drugs and Biotechnological Innovation, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México, Mexico
| | - Marc Spehr
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Paolo Carloni
- Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany.
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany.
- Department of Physics, RWTH Aachen University, Aachen, Germany.
- JARA Institute Molecular Neuroscience and Neuroimaging (INM-11), Forschungszentrum Jülich, Jülich, Germany.
- JARA-HPC, Forschungszentrum Jülich, Jülich, Germany.
| | - Mercedes Alfonso-Prieto
- Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany.
- Medical Faculty, Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
3
|
Chon NL, Schultz NJ, Zheng H, Lin H. Anion Pathways in the NarK Nitrate/Nitrite Exchanger. J Chem Inf Model 2023; 63:5142-5152. [PMID: 37585651 PMCID: PMC10482320 DOI: 10.1021/acs.jcim.3c00295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 08/18/2023]
Abstract
NarK nitrate/nitrite antiporter imports nitrate (a mineral form of the essential element nitrogen) into the cell and exports nitrite (a metabolite that can be toxic in high concentrations) out of the cell. However, many details about its operational mechanism remain poorly understood. In this work, we performed steered molecular dynamics simulations of anion translocations and quantum-chemistry model calculations of the binding sites to study the wild-type NarK protein and its R89K mutant. Our results shed light on the importance of the two strictly conserved binding-site arginine residues (R89 and R305) and two glycine-rich signature motifs (G164-M176 and G408-F419) in anion movement through the pore. We also observe conformational changes of the protein during anion migration. For the R89K mutant, our quantum calculations reveal a competition for a proton between the anion (especially nitrite) and lysine, which can potentially slow down or even trap the anion in the pore. Our findings provide a possible explanation for the striking experimental finding that the arginine-to-lysine mutation, despite preserving the charge, impedes or abolishes anion transport in such mutants of NarK and other similar nitrate/nitrite exchangers.
Collapse
Affiliation(s)
- Nara Lee Chon
- Department
of Chemistry, University of Colorado Denver, Denver, Colorado 80217, United States
| | - Natalie Jean Schultz
- Department
of Chemistry, University of Colorado Denver, Denver, Colorado 80217, United States
| | - Hongjin Zheng
- Department
of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Hai Lin
- Department
of Chemistry, University of Colorado Denver, Denver, Colorado 80217, United States
| |
Collapse
|
4
|
Berkowitz ML. Molecular Simulations of Aqueous Electrolytes: Role of Explicit Inclusion of Charge Transfer into Force Fields. J Phys Chem B 2021; 125:13069-13076. [PMID: 34807628 DOI: 10.1021/acs.jpcb.1c08383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe here simulations of aqueous salt solutions that are performed using an explicit charge transfer force field. The emphasis of the discussion is on the calculation of a dynamical property of the solutions: self-diffusion of water. While force fields that are based on pairwise additive potentials or on potentials with explicit inclusion of polarization or with scaled charges can provide at best a qualitative agreement with experiments, force fields with explicit inclusion of charge transfer can produce quantitative agreement with experiment for NaCl and KCl solutions. We argue that a force field with explicit charge transfer contains new physics absent in the previously used force fields described in recent reviews of molecular simulations of aqueous electrolytes.
Collapse
Affiliation(s)
- Max L Berkowitz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Duster AW, Garza CM, Aydintug BO, Negussie MB, Lin H. Adaptive Partitioning QM/MM for Molecular Dynamics Simulations: 6. Proton Transport through a Biological Channel. J Chem Theory Comput 2019; 15:892-905. [DOI: 10.1021/acs.jctc.8b01128] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adam W. Duster
- Chemistry Department, CB 194, University of Colorado, Denver, Colorado 80217, United States
| | - Christina M. Garza
- Chemistry Department, CB 194, University of Colorado, Denver, Colorado 80217, United States
| | - Baris O. Aydintug
- Chemistry Department, CB 194, University of Colorado, Denver, Colorado 80217, United States
| | - Mikias B. Negussie
- Chemistry Department, CB 194, University of Colorado, Denver, Colorado 80217, United States
| | - Hai Lin
- Chemistry Department, CB 194, University of Colorado, Denver, Colorado 80217, United States
| |
Collapse
|
6
|
Stasyuk OA, Sedlak R, Guerra CF, Hobza P. Comparison of the DFT-SAPT and Canonical EDA Schemes for the Energy Decomposition of Various Types of Noncovalent Interactions. J Chem Theory Comput 2018; 14:3440-3450. [PMID: 29926727 DOI: 10.1021/acs.jctc.8b00034] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interaction energies computed with density functional theory can be divided into physically meaningful components by symmetry-adapted perturbation theory (DFT-SAPT) or the canonical energy decomposition analysis (EDA). In this work, the decomposition results obtained by these schemes were compared for more than 200 hydrogen-, halogen-, and pnicogen-bonded, dispersion-bound, and mixed complexes to investigate their similarity in the evaluation of the nature of noncovalent interactions. BLYP functional with D3(BJ) correction was used for the EDA scheme, whereas asymptotically corrected PBE0 functional for DFT-SAPT provided some of the best combinations for description of noncovalent interactions. Both schemes provide similar results concerning total interaction energies and insight into the individual energy components. For most complexes, the dominant energetic term was identified equally by both decomposition schemes. Because the canonical EDA is computationally less demanding than the DFT-SAPT, the former can be especially used in cases where the systems investigated are very large.
Collapse
Affiliation(s)
- Olga A Stasyuk
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic , 166 10 Prague 6, Czech Republic
| | - Robert Sedlak
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic , 166 10 Prague 6, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry , Palacký University , 771 46 Olomouc , Czech Republic
| | - Célia Fonseca Guerra
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling , VU Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands.,Leiden Institute of Chemistry, Gorlaeus Laboratories , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry , Academy of Sciences of the Czech Republic , 166 10 Prague 6, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry , Palacký University , 771 46 Olomouc , Czech Republic
| |
Collapse
|
7
|
Wang CH, Duster AW, Aydintug BO, Zarecki MG, Lin H. Chloride Ion Transport by the E. coli CLC Cl -/H + Antiporter: A Combined Quantum-Mechanical and Molecular-Mechanical Study. Front Chem 2018; 6:62. [PMID: 29594103 PMCID: PMC5859129 DOI: 10.3389/fchem.2018.00062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/26/2018] [Indexed: 01/05/2023] Open
Abstract
We performed steered molecular dynamics (SMD) and umbrella sampling simulations of Cl- ion migration through the transmembrane domain of a prototypical E. coli CLC Cl-/H+ antiporter by employing combined quantum-mechanical (QM) and molecular-mechanical (MM) calculations. The SMD simulations revealed interesting conformational changes of the protein. While no large-amplitude motions of the protein were observed during pore opening, the side chain rotation of the protonated external gating residue Glu148 was found to be critical for full access of the channel entrance by Cl-. Moving the anion into the external binding site (Sext) induced small-amplitude shifting of the protein backbone at the N-terminal end of helix F. As Cl- traveled through the pore, rigid-body swinging motions of helix R separated it from helix D. Helix R returned to its original position once Cl- exited the channel. Population analysis based on polarized wavefunction from QM/MM calculations discovered significant (up to 20%) charge loss for Cl- along the ion translocation pathway inside the pore. The delocalized charge was redistributed onto the pore residues, especially the functional groups containing π bonds (e.g., the Tyr445 side chain), while the charges of the H atoms coordinating Cl- changed almost negligibly. Potentials of mean force computed from umbrella sampling at the QM/MM and MM levels both displayed barriers at the same locations near the pore entrance and exit. However, the QM/MM PMF showed higher barriers (~10 kcal/mol) than the MM PMF (~2 kcal/mol). Binding energy calculations indicated that the interactions between Cl- and certain pore residues were overestimated by the semi-empirical PM3 Hamiltonian and underestimated by the CHARMM36 force fields, both of which were employed in the umbrella sampling simulations. In particular, CHARMM36 underestimated binding interactions for the functional groups containing π bonds, missing the stabilizations of the Cl- ion due to electron delocalization. The results suggested that it is important to explore these quantum effects for accurate descriptions of the Cl- transport.
Collapse
Affiliation(s)
- Chun-Hung Wang
- Department of Chemistry, University of Colorado Denver, Denver, CO, United States
| | - Adam W Duster
- Department of Chemistry, University of Colorado Denver, Denver, CO, United States
| | - Baris O Aydintug
- Department of Chemistry, University of Colorado Denver, Denver, CO, United States
| | - MacKenzie G Zarecki
- Department of Chemistry, University of Colorado Denver, Denver, CO, United States
| | - Hai Lin
- Department of Chemistry, University of Colorado Denver, Denver, CO, United States
| |
Collapse
|
8
|
Mayes HB, Lee S, White AD, Voth GA, Swanson JMJ. Multiscale Kinetic Modeling Reveals an Ensemble of Cl -/H + Exchange Pathways in ClC-ec1 Antiporter. J Am Chem Soc 2018; 140:1793-1804. [PMID: 29332400 PMCID: PMC5812667 DOI: 10.1021/jacs.7b11463] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Despite several years of research, the ion exchange mechanisms in chloride/proton antiporters and many other coupled transporters are not yet understood at the molecular level. Here, we present a novel approach to kinetic modeling and apply it to ion exchange in ClC-ec1. Our multiscale kinetic model is developed by (1) calculating the state-to-state rate coefficients with reactive and polarizable molecular dynamics simulations, (2) optimizing these rates in a global kinetic network, and (3) predicting new electrophysiological results. The model shows that the robust Cl:H exchange ratio (2.2:1) can indeed arise from kinetic coupling without large protein conformational changes, indicating a possible facile evolutionary connection to chloride channels. The E148 amino acid residue is shown to couple chloride and proton transport through protonation-dependent blockage of the central anion binding site and an anion-dependent pKa value, which influences proton transport. The results demonstrate how an ensemble of different exchange pathways, as opposed to a single series of transitions, culminates in the macroscopic observables of the antiporter, such as transport rates, chloride/proton stoichiometry, and pH dependence.
Collapse
Affiliation(s)
- Heather B Mayes
- Department of Chemistry, The University of Chicago , Chicago, Illinois 60637, United States.,Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Sangyun Lee
- Department of Chemistry, The University of Chicago , Chicago, Illinois 60637, United States.,Computational Biology Center, IBM Thomas J. Watson Research Center , Yorktown Heights, New York 10598, United States
| | - Andrew D White
- Department of Chemistry, The University of Chicago , Chicago, Illinois 60637, United States.,Department of Chemical Engineering, University of Rochester , Rochester, New York 14627-0166, United States
| | - Gregory A Voth
- Department of Chemistry, The University of Chicago , Chicago, Illinois 60637, United States.,James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago , Chicago, Illinois 60637, United States
| | - Jessica M J Swanson
- Department of Chemistry, The University of Chicago , Chicago, Illinois 60637, United States
| |
Collapse
|
9
|
Phipps MJS, Fox T, Tautermann CS, Skylaris CK. Intuitive Density Functional Theory-Based Energy Decomposition Analysis for Protein–Ligand Interactions. J Chem Theory Comput 2017; 13:1837-1850. [DOI: 10.1021/acs.jctc.6b01230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. J. S. Phipps
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - T. Fox
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - C. S. Tautermann
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - C.-K. Skylaris
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| |
Collapse
|
10
|
Chen Z, Beck TL. Free Energies of Ion Binding in the Bacterial CLC-ec1 Chloride Transporter with Implications for the Transport Mechanism and Selectivity. J Phys Chem B 2016; 120:3129-39. [DOI: 10.1021/acs.jpcb.6b01150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhihong Chen
- Department
of Physics, and ‡Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Thomas L. Beck
- Department
of Physics, and ‡Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
11
|
Phipps MJS, Fox T, Tautermann CS, Skylaris CK. Energy decomposition analysis approaches and their evaluation on prototypical protein–drug interaction patterns. Chem Soc Rev 2015; 44:3177-211. [DOI: 10.1039/c4cs00375f] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The partitioning of the interaction energy into chemical components such as electrostatics, polarization, and charge transfer is possible with energy decomposition analysis approaches. We review and evaluate these for biomolecular applications.
Collapse
Affiliation(s)
| | - Thomas Fox
- Lead Identification and Optimization Support
- Boehringer Ingelheim Pharma GmbH & Co. KG
- 88397 Biberach
- Germany
| | - Christofer S. Tautermann
- Lead Identification and Optimization Support
- Boehringer Ingelheim Pharma GmbH & Co. KG
- 88397 Biberach
- Germany
| | | |
Collapse
|
12
|
Pezeshki S, Davis C, Heyden A, Lin H. Adaptive-Partitioning QM/MM Dynamics Simulations: 3. Solvent Molecules Entering and Leaving Protein Binding Sites. J Chem Theory Comput 2014; 10:4765-76. [DOI: 10.1021/ct500553x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Soroosh Pezeshki
- Chemistry
Department, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| | - Christal Davis
- Chemistry
Department, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| | - Andreas Heyden
- Department
of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Hai Lin
- Chemistry
Department, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| |
Collapse
|