1
|
Wang G, Yu P, Wang J. Structures and dynamics of 8-oxo-7,8-dihydro-2'-deoxyguanosine in neutral and basic aqueous solutions by spectroscopy. J Chem Phys 2024; 161:024201. [PMID: 38973759 DOI: 10.1063/5.0209256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/15/2024] [Indexed: 07/09/2024] Open
Abstract
8-oxo-7,8-dihydro-2'-dexyoguanine (8-oxo-dG) can be tautomerized to a 6-enolate,8-keto tautomer through nearby-NH deprotonation at elevated pH. In this work, the N3-protonated 8-oxo-dG tautomers in deuterated pH-buffer solutions were studied using steady-state UV/Vis, FTIR, and ultrafast two-dimensional IR spectroscopies. The presence of 6,8-diketo and C6-anionic tautomers at neutral to basic conditions (pD = 7.4-12.0) was revealed by UV/Vis and FTIR results and was further confirmed by 2D IR signals in both diagonal and off-diagonal regions. However, the C6-enol tautomer, which may be an intermediate during the transition from 6,8-diketo to C6-enolate,C8-keto, was not observed appreciably due to its extreme low population. Furthermore, the neutral-to-anionic tautomeric transition of N3H-8-oxo-dG studied in this work occurs under more basic conditions than the N1H-8-oxo-dG reported previously, showing a higher pKa value for N3H than N1H. Finally, vibrational relaxation of the carbonyl stretching mode was found to be both molecular site dependent and pD dependent for 8oxo-dG. Taken together, this work shows that the ultrafast infrared spectroscopic method is effective for examining tautomers and their dynamics in nucleic acids.
Collapse
Affiliation(s)
- Guixiu Wang
- Department of Marine Technology, Rizhao Polytechnic, Yantai North Road, 16, Rizhao, Shandong Province 276800, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Pengyun Yu
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
2
|
Zhao L, Zhou P, Liu X, Zheng H, Zhan K, Luo J, Liu B. Theoretical studies of the ultrafast deactivation mechanism of 8-oxo-guanine on the S 1 and S 2 electronic states in gas phase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118884. [PMID: 32898726 DOI: 10.1016/j.saa.2020.118884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
The 8-oxo-deoxyguanosine is the most abundant specie of the DNA oxidative damage. Despite the deleterious effects such as gene mutation it may cause, the 8-oxodG was also reported to have beneficial effect such as repairing the nearby cyclobutane pyrimidine dimer (CPD) after photoexcitation. Due to its strong biological relevance, the photoinduced excited state dynamics behavior of 8-oxo-deoxyguanosine is of particular interest. In this work, a theoretical investigation by combination of complete active space self-consistent field (CASSCF) ab initio calculations and on-the-fly nonadiabatic dynamics simulations are implemented to provide intrinsic deactivation mechanism of its free base 8-oxoguanine after being excited to the S1 and S2 states. Two minimum energy conical intersections (MECIs) characterized by the C3-puckered motion with attractive chiral character are located, which contribute appreciably to the S1 state deactivation process. When the system is being excited to the S2 state directly, a S2 → S1 → S0 two-step decay pattern is proposed. A nearly planar S2/S1 intersection plays a significant role in the S2 → S1 decay process. The subsequent S1 state relaxation process is also dominated by the C3-puckered deformation motion. One decay time is estimated to be 704 fs, which compares well with the experimental observation of 0.9 ± 0.1 ps in solvents. Particular illustration is the fact that the MECIs configurations we located bear an exceptional resemblance with previous reported thymine, cytosine and guanine, suggesting that the current work could lend support for better understanding of the non-natural nucleobases and derivatives.
Collapse
Affiliation(s)
- Li Zhao
- College of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, PR China.
| | - Panwang Zhou
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266235, PR China
| | - Xiaoxu Liu
- College of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, PR China
| | - Haixia Zheng
- College of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, PR China
| | - Kaiyun Zhan
- College of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, PR China
| | - Jianhui Luo
- Research Institute of Petroleum Exploration & Development (RIPED), PetroChina, Beijing 100083, PR China
| | - Bing Liu
- College of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, PR China.
| |
Collapse
|
3
|
Ashwood B, Ortiz-Rodríguez LA, Crespo-Hernández CE. Photochemical relaxation pathways of S 6-methylthioinosine and O 6-methylguanosine in solution. Faraday Discuss 2018; 207:351-374. [PMID: 29372193 DOI: 10.1039/c7fd00193b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
S6-Methylthioinosine and O6-methylguanosine are byproducts resulting from the enzymatic reactions of sulfur-substituted prodrugs in cells and from the interaction of alkylating agents with cellular DNA, respectively. Their photochemistry has not been investigated, and it is currently unknown whether light absorption by these byproducts may pose any threat to the cell. In this contribution, their photoinduced processes upon absorption of UVB radiation are reported using broadband transient absorption spectroscopy. Plausible electronic relaxation mechanisms are proposed for both biological molecules, which are supported by steady-state absorption and emission measurements, and by singlet and triplet vertical excitation energies performed on a large subset of ground-state optimized conformational isomers in solution. The results are compared to the body of knowledge gathered in the scientific literature about the light-induced processes in the sulfur-substituted and canonical purine monomers. In particular, it is shown that S6-methylation decreases the rate to populate the lowest-energy triplet state and blueshifts the ground-state absorption spectrum compared to those for the sulfur-substituted prodrugs and for the 6-thioguanosine metabolite. Similarly, O6-methylation decreases the rate of internal conversion to the ground state observed in the guanine monomers by more than 10-fold in acetonitrile and 40-fold in aqueous solution, while it redshifts the ground-state absorption spectrum. Collectively, this investigation provides relevant new insights about the relationship between structural modifications of the purine chromophore and the electronic relaxation mechanisms in this important group of biological molecules.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, Center for Chemical Dynamics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
4
|
Miyata S, Yamada T, Isozaki T, Sugimura H, Xu YZ, Suzuki T. Absorption Characteristics and Quantum Yields of Singlet Oxygen Generation of Thioguanosine Derivatives. Photochem Photobiol 2018; 94:677-684. [DOI: 10.1111/php.12900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Shoma Miyata
- Department of Chemistry and Biological Science; Aoyama Gakuin University; Sagamihara Kanagawa Japan
| | - Takeshi Yamada
- Department of Chemistry and Biological Science; Aoyama Gakuin University; Sagamihara Kanagawa Japan
| | - Tasuku Isozaki
- Department of Chemistry and Biological Science; Aoyama Gakuin University; Sagamihara Kanagawa Japan
| | - Hideyuki Sugimura
- Department of Chemistry and Biological Science; Aoyama Gakuin University; Sagamihara Kanagawa Japan
| | - Yao-Zhong Xu
- School of Life, Health and Chemical Sciences; the Open University; Milton Keynes UK
| | - Tadashi Suzuki
- Department of Chemistry and Biological Science; Aoyama Gakuin University; Sagamihara Kanagawa Japan
| |
Collapse
|
5
|
Miyata S, Hoshino M, Isozaki T, Yamada T, Sugimura H, Xu YZ, Suzuki T. Acid Dissociation Equilibrium and Singlet Molecular Oxygen Quantum Yield of Acetylated 6,8-Dithioguanosine in Aqueous Buffer Solution. J Phys Chem B 2018; 122:2912-2921. [DOI: 10.1021/acs.jpcb.8b00517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Shoma Miyata
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Mina Hoshino
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Tasuku Isozaki
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Takeshi Yamada
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Hideyuki Sugimura
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Yao-Zhong Xu
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, U.K
| | - Tadashi Suzuki
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| |
Collapse
|
6
|
Kumar Das D, Makhal K, Goswami D. Observing ground state vibrational coherence and excited state relaxation dynamics of a cyanine dye in pure solvents. Phys Chem Chem Phys 2018; 20:13400-13411. [DOI: 10.1039/c7cp08605a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a degenerate pump probe technique at 800 nm, Ground State Vibrational Coherence (GSVC) of a cyanine dye (IR780) is explored in various solvents.
Collapse
Affiliation(s)
- Dipak Kumar Das
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur – 208016
- India
| | - Krishnandu Makhal
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur – 208016
- India
| | - Debabrata Goswami
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur – 208016
- India
| |
Collapse
|
7
|
Mondal S, Puranik M. Sub-50 fs excited state dynamics of 6-chloroguanine upon deep ultraviolet excitation. Phys Chem Chem Phys 2017; 18:13874-87. [PMID: 27146198 DOI: 10.1039/c6cp01746k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The photophysical properties of natural nucleobases and their respective nucleotides are ascribed to the sub-picosecond lifetime of their first singlet states in the UV-B region (260-350 nm). Electronic transitions of the ππ* type, which are stronger than those in the UV-B region, lie at the red edge of the UV-C range (100-260 nm) in all isolated nucleobases. The lowest energetic excited states in the UV-B region of nucleobases have been investigated using a plethora of experimental and theoretical methods in gas and solution phases. The sub-picosecond lifetime of these molecules is not a general attribute of all nucleobases but specific to the five primary nucleobases and a few xanthine and methylated derivatives. To determine the overall UV photostability, we aim to understand the effect of more energetic photons lying in the UV-C region on nucleobases. To determine the UV-C initiated photophysics of a nucleobase system, we chose a halogen substituted purine, 6-chloroguanine (6-ClG), that we had investigated previously using resonance Raman spectroscopy. We have performed quantitative measurements of the resonance Raman cross-section across the Bb absorption band (210-230 nm) and constructed the Raman excitation profiles. We modeled the excitation profiles using Lee and Heller's time-dependent theory of resonance Raman intensities to extract the initial excited state dynamics of 6-ClG within 30-50 fs after photoexcitation. We found that imidazole and pyrimidine rings of 6-ClG undergo expansion and contraction, respectively, following photoexcitation to the Bb state. The amount of distortions of the excited state structure from that of the ground state structure is reflected by the total internal reorganization energy that is determined at 112 cm(-1). The contribution of the inertial component of the solvent response towards the total reorganization energy was obtained at 1220 cm(-1). In addition, our simulation also yields an instantaneous response of the first solvation shell within an ultrafast timescale of less than 30 fs following photoexcitation.
Collapse
Affiliation(s)
- Sayan Mondal
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Mrinalini Puranik
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| |
Collapse
|
8
|
Wu X, Karsili TNV, Domcke W. Role of Electron-Driven Proton-Transfer Processes in the Ultrafast Deactivation of Photoexcited Anionic 8-oxoGuanine-Adenine and 8-oxoGuanine-Cytosine Base Pairs. Molecules 2017; 22:molecules22010135. [PMID: 28098833 PMCID: PMC6155867 DOI: 10.3390/molecules22010135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/28/2016] [Accepted: 01/10/2017] [Indexed: 11/16/2022] Open
Abstract
It has been reported that 8-oxo-7,8-dihydro-guanosine (8-oxo-G), which is the main product of oxidative damage of DNA, can repair cyclobutane pyrimidine dimer (CPD) lesions when incorporated into DNA or RNA strands in proximity to such lesions. It has therefore been suggested that the 8-oxo-G nucleoside may have been a primordial precursor of present-day flavins in DNA or RNA repair. Because the electron transfer leading to the splitting of a thymine-thymine pair in a CPD lesion occurs in the photoexcited state, a reasonably long excited-state lifetime of 8-oxo-G is required. The neutral (protonated) form of 8-oxo-G exhibits a very short (sub-picosecond) intrinsic excited-state lifetime which is unfavorable for repair. It has therefore been argued that the anionic (deprotonated) form of 8-oxo-G, which exhibits a much longer excited-state lifetime, is more likely to be a suitable cofactor for DNA repair. Herein, we have investigated the exited-state quenching mechanisms in the hydrogen-bonded complexes of deprotonated 8-oxo-G- with adenine (A) and cytosine (C) using ab initio wave-function-based electronic-structure calculations. The calculated reaction paths and potential-energy profiles reveal the existence of barrierless electron-driven inter-base proton-transfer reactions which lead to low-lying S₁/S₀ conical intersections. The latter can promote ultrafast excited-state deactivation of the anionic base pairs. While the isolated deprotonated 8-oxo-G- nucleoside may have been an efficient primordial repair cofactor, the excited states of the 8-oxo-G--A and 8-oxo-G--C base pairs are likely too short-lived to be efficient electron-transfer repair agents.
Collapse
Affiliation(s)
- Xiuxiu Wu
- Department of Chemistry, Technische Universitat Munchen, Lichtenbergstr. 4, Garching D-85747, Germany.
| | - Tolga N V Karsili
- Department of Chemistry, Temple University, 130 Beury Hall, 1901 N. 13th St., Philadelphia, PA 19122, USA.
| | - Wolfgang Domcke
- Department of Chemistry, Technische Universitat Munchen, Lichtenbergstr. 4, Garching D-85747, Germany.
| |
Collapse
|
9
|
Zhang Y, Beckstead AA, Hu Y, Piao X, Bong D, Kohler B. Excited-State Dynamics of Melamine and Its Lysine Derivative Investigated by Femtosecond Transient Absorption Spectroscopy. Molecules 2016; 21:molecules21121645. [PMID: 27916910 PMCID: PMC5489438 DOI: 10.3390/molecules21121645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/24/2016] [Accepted: 11/24/2016] [Indexed: 11/20/2022] Open
Abstract
Melamine may have been an important prebiotic information carrier, but its excited-state dynamics, which determine its stability under UV radiation, have never been characterized. The ability of melamine to withstand the strong UV radiation present on the surface of the early Earth is likely to have affected its abundance in the primordial soup. Here, we studied the excited-state dynamics of melamine (a proto-nucleobase) and its lysine derivative (a proto-nucleoside) using the transient absorption technique with a UV pump, and UV and infrared probe pulses. For melamine, the excited-state population decays by internal conversion with a lifetime of 13 ps without coupling significantly to any photochemical channels. The excited-state lifetime of the lysine derivative is slightly longer (18 ps), but the dominant deactivation pathway is otherwise the same as for melamine. In both cases, the vast majority of excited molecules return to the electronic ground state on the aforementioned time scales, but a minor population is trapped in a long-lived triplet state.
Collapse
Affiliation(s)
- Yuyuan Zhang
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Ashley A Beckstead
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Yuesong Hu
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Xijun Piao
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| | - Dennis Bong
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| | - Bern Kohler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
10
|
Beckstead AA, Zhang Y, de Vries MS, Kohler B. Life in the light: nucleic acid photoproperties as a legacy of chemical evolution. Phys Chem Chem Phys 2016; 18:24228-38. [PMID: 27539809 DOI: 10.1039/c6cp04230a] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photophysical investigations of the canonical nucleobases that make up DNA and RNA during the past 15 years have revealed that excited states formed by the absorption of UV radiation decay with subpicosecond lifetimes (i.e., <10(-12) s). Ultrashort lifetimes are a general property of absorbing sunscreen molecules, suggesting that the nucleobases are molecular survivors of a harsh UV environment. Encoding the genome using photostable building blocks is an elegant solution to the threat of photochemical damage. Ultrafast excited-state deactivation strongly supports the hypothesis that UV radiation played a major role in shaping molecular inventories on the early Earth before the emergence of life and the subsequent development of a protective ozone shield. Here, we review the general physical and chemical principles that underlie the photostability, or "UV hardiness", of modern nucleic acids and discuss the possible implications of these findings for prebiotic chemical evolution. In RNA and DNA strands, much longer-lived excited states are observed, which at first glance appear to increase the risk of photochemistry. It is proposed that the dramatically different photoproperties that emerge from assemblies of photostable building blocks may explain the transition from a world of molecular survival to a world in which energy-rich excited electronic states were eventually tamed for biological purposes such as energy transduction, signaling, and repair of the genetic machinery.
Collapse
Affiliation(s)
- Ashley A Beckstead
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717-3400, USA.
| | | | | | | |
Collapse
|
11
|
Tuna D, Domcke W. Excited-state deactivation in 8-oxo-deoxyguanosine: comparison between anionic and neutral forms. Phys Chem Chem Phys 2016; 18:947-55. [DOI: 10.1039/c5cp05804j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ab initio explorations of excited-state potential-energy surfaces show that a radiationless deactivation mechanism via intramolecular excited-state proton transfer is available in neutral 8-oxo-deoxyguanosine, whereas it is not available in the anionic form.
Collapse
Affiliation(s)
- Deniz Tuna
- Max-Planck-Institut für Kohlenforschung
- 45470 Mülheim an der Ruhr
- Germany
| | - Wolfgang Domcke
- Department of Chemistry
- Technische Universität München
- 85747 Garching
- Germany
| |
Collapse
|
12
|
Lu Z, Beckstead AA, Kohler B, Matsika S. Excited State Relaxation of Neutral and Basic 8-Oxoguanine. J Phys Chem B 2015; 119:8293-301. [DOI: 10.1021/acs.jpcb.5b03565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Lu
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122-6081, United States
| | - Ashley A. Beckstead
- Department
of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Bern Kohler
- Department
of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Spiridoula Matsika
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122-6081, United States
| |
Collapse
|
13
|
Changenet-Barret P, Gustavsson T, Improta R, Markovitsi D. Ultrafast Excited-State Deactivation of 8-Hydroxy-2'-deoxyguanosine Studied by Femtosecond Fluorescence Spectroscopy and Quantum-Chemical Calculations. J Phys Chem A 2015; 119:6131-9. [PMID: 25752921 DOI: 10.1021/acs.jpca.5b00688] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The fluorescence properties of the 8-hydroxy-2'-deoxyguanosine (8-oxo-dG) in aqueous solution at pH 6.5 are studied by steady-state spectroscopy and femtosecond fluorescence up-conversion and compared with those of 2'-deoxyguanine (dG) and 2'-deoxyguanine monophosphate (dGMP). The steady-state fluorescence spectrum of 8-oxo-dG is composed of a broad band that peaks at 356 nm and extends over the entire visible spectral region, and its fluorescence quantum yield is twice that of dG/dGMP. After excitation at 267 nm, the initial fluorescence anisotropy at all wavelengths is lower than 0.1, giving evidence of an ultrafast internal conversion (<100 fs) between the two lowest excited ππ* states (Lb and La). The fluorescence decays of 8-oxo-dG are biexponential with an average lifetime of 0.7 ± 0.1 ps, which is about two times longer than that of dGMP. In contrast with dGMP, only a moderate dynamical shift (∼1400 vs 10,000 cm(-1)) of the fluorescence spectra of 8-oxo-dG is observed on the time scale of a few picoseconds without modification of the spectral shape. PCM/TD-DFT calculations, employing either the PBE0 or the M052X functionals, provide absorption spectra in good agreement with the experimental one and show that the deactivation path is similar to that proposed for dGMP, with a fast motion toward an energy plateau, where the purine ring keeps an almost planar geometry, followed by decay to S0, via out-of-the plane motion of amino substituent.
Collapse
Affiliation(s)
- Pascale Changenet-Barret
- †CNRS, IRAMIS, LIDyL, Laboratoire Francis Perrin, URA 2453, CEA Saclay, 91191 Gif sur Yvette, France
| | - Thomas Gustavsson
- †CNRS, IRAMIS, LIDyL, Laboratoire Francis Perrin, URA 2453, CEA Saclay, 91191 Gif sur Yvette, France
| | - Roberto Improta
- ‡Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini, 80136 Naples, Italy
| | - Dimitra Markovitsi
- †CNRS, IRAMIS, LIDyL, Laboratoire Francis Perrin, URA 2453, CEA Saclay, 91191 Gif sur Yvette, France
| |
Collapse
|
14
|
Zhang Y, Dood J, Beckstead AA, Li XB, Nguyen KV, Burrows CJ, Improta R, Kohler B. Photoinduced Electron Transfer in DNA: Charge Shift Dynamics Between 8-Oxo-Guanine Anion and Adenine. J Phys Chem B 2015; 119:7491-502. [PMID: 25660103 DOI: 10.1021/jp511220x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Femtosecond time-resolved IR spectroscopy is used to investigate the excited-state dynamics of a dinucleotide containing an 8-oxoguanine anion at the 5'-end and neutral adenine at the 3'-end. UV excitation of the dinucleotide transfers an electron from deprotonated 8-oxoguanine to its π-stacked neighbor adenine in less than 1 ps, generating a neutral 8-oxoguanine radical and an adenine radical anion. These species are identified by the excellent agreement between the experimental and calculated IR difference spectra. The quantum efficiency of this ultrafast charge shift reaction approaches unity. Back electron transfer from the adenine radical anion to the 8-oxguanine neutral radical occurs in 9 ps, or approximately 6 times faster than between the adenine radical anion and the 8-oxoguanine radical cation (Zhang, Y. et al. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 11612-11617). The large asymmetry in forward and back electron transfer rates is fully rationalized by semiclassical nonadiabatic electron transfer theory. Forward electron transfer is ultrafast because the driving force is nearly equal to the reorganization energy, which is estimated to lie between 1 and 2 eV. Back electron transfer is highly exergonic and takes place much more slowly in the Marcus inverted region.
Collapse
Affiliation(s)
- Yuyuan Zhang
- †Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Jordan Dood
- †Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Ashley A Beckstead
- †Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Xi-Bo Li
- ‡Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, Utah 84112, United States
| | - Khiem V Nguyen
- ‡Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, Utah 84112, United States
| | - Cynthia J Burrows
- ‡Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, Utah 84112, United States
| | - Roberto Improta
- §CNR-Consiglio Nazionale delle Ricerche Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via Mezzocannone 16, 80136 Napoli, Italy
| | - Bern Kohler
- †Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
15
|
Chandraboss VL, Karthikeyan B, Senthilvelan S. Experimental and first-principles investigation of the adsorption and entrapping of guanine with SiO2 clusters of sol–gel silicate material for understanding DNA photodamage. Phys Chem Chem Phys 2015; 17:12100-14. [DOI: 10.1039/c5cp00451a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A sol–gel silicate matrix containing entrapped guanine was prepared. The SiO2 matrix provides UVA protection by reducing the light penetration to the entrapped guanine molecules.
Collapse
|
16
|
Efficient UV-induced charge separation and recombination in an 8-oxoguanine-containing dinucleotide. Proc Natl Acad Sci U S A 2014; 111:11612-7. [PMID: 25071180 DOI: 10.1073/pnas.1404411111] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
During the early evolution of life, 8-oxo-7,8-dihydro-2'-deoxyguanosine (O) may have functioned as a proto-flavin capable of repairing cyclobutane pyrimidine dimers in DNA or RNA by photoinduced electron transfer using longer wavelength UVB radiation. To investigate the ability of O to act as an excited-state electron donor, a dinucleotide mimic of the FADH2 cofactor containing O at the 5'-end and 2'-deoxyadenosine at the 3'-end was studied by femtosecond transient absorption spectroscopy in aqueous solution. Following excitation with a UV pulse, a broadband mid-IR pulse probed vibrational modes of ground-state and electronically excited molecules in the double-bond stretching region. Global analysis of time- and frequency-resolved transient absorption data coupled with ab initio quantum mechanical calculations reveal vibrational marker bands of nucleobase radical ions formed by electron transfer from O to 2'-deoxyadenosine. The quantum yield of charge separation is 0.4 at 265 nm, but decreases to 0.1 at 295 nm. Charge recombination occurs in 60 ps before the O radical cation can lose a deuteron to water. Kinetic and thermodynamic considerations strongly suggest that all nucleobases can undergo ultrafast charge separation when π-stacked in DNA or RNA. Interbase charge transfer is proposed to be a major decay pathway for UV excited states of nucleic acids of great importance for photostability as well as photoredox activity.
Collapse
|
17
|
Chen J, Zhang Y, Kohler B. Excited States in DNA Strands Investigated by Ultrafast Laser Spectroscopy. PHOTOINDUCED PHENOMENA IN NUCLEIC ACIDS II 2014; 356:39-87. [DOI: 10.1007/128_2014_570] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|