1
|
Dalvand P, Nchimi Nono K, Shetty D, Benyettou F, Asfari Z, Platas-Iglesias C, Olson MA, Trabolsi A, Elhabiri M. Viologen–cucurbituril host/guest chemistry – redox control of dimerization versus inclusion. RSC Adv 2021; 11:29543-29554. [PMID: 35479532 PMCID: PMC9040574 DOI: 10.1039/d1ra05488k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
Two calix[4]arene systems, C234+ and C244+ – where 2 corresponds to the number of viologen units and 3–4 corresponds to the number of carbon atoms connecting the viologen units to the macrocyclic core – have been synthesized and led to the formation of [3]pseudorotaxanes when combined with either CB[7] or CB[8]. The [3]pseudorotaxanes spontaneously dissociate upon reduction of the bipyridinium units as the result of intramolecular dimerization of the two face-to-face viologen radical cations. CB[7] and CB[8]-based [2]pseudorotaxanes containing monomeric viologen guest model compounds, MC32+ and MC4+, do not undergo decomplexation and dimerization following electrochemical reduction of their bipyridinium units. Two calix[4]arenes with two viologen units separated by 3 or 4 carbon atoms from the macrocyclic core were synthesized and led to the formation of [3]pseudorotaxanes when combined with CB[7] or CB[8].![]()
Collapse
Affiliation(s)
- Parastoo Dalvand
- Université de Strasbourg, Université de Haute-Alsace, CNRS, LIMA, UMR 7042, Equipe Chimie Bioorganique et Médicinale, ECPM, 25 Rue Becquerel, 67000 Strasbourg, France
| | - Katia Nchimi Nono
- Department of Inorganic Chemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Dinesh Shetty
- Department of Chemistry & Center for Catalysis and Separation (CeCaS), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Farah Benyettou
- New York University Abu Dhabi (NYUAD), Experimental Research Building, Building C1, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Zouhair Asfari
- Equipe de Synthèse Pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/Université de Strasbourg, ECPM, Bâtiment R1N0, 25-rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Carlos Platas-Iglesias
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias, 15071 A Coruña, Galicia, Spain
| | - Mark A. Olson
- Northwestern University, Department of Chemistry, 2145 Sheridan Rd, Evanston, Illinois, USA
| | - Ali Trabolsi
- New York University Abu Dhabi (NYUAD), Experimental Research Building, Building C1, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Mourad Elhabiri
- Université de Strasbourg, Université de Haute-Alsace, CNRS, LIMA, UMR 7042, Equipe Chimie Bioorganique et Médicinale, ECPM, 25 Rue Becquerel, 67000 Strasbourg, France
| |
Collapse
|
2
|
Tian T, Qian T, Jiang T, Deng Y, Li X, Yuan W, Chen Y, Wang YX, Hu W. A donor-acceptor type macrocycle: toward photolyzable self-assembly. Chem Commun (Camb) 2020; 56:3939-3942. [PMID: 32215387 DOI: 10.1039/d0cc01350a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A water-soluble macrocyclic host is reported, composed of alkoxyanthracene as the donor (D), and 4,4-bipyridinium as the acceptor (A). The intramolecular D-A structure renders the host highly photostable. However, the introduction of a strong electron-donating guest promotes the photodecomposition of alkoxyanthracene, yielding photolyzable host-guest complexes or aggregates.
Collapse
Affiliation(s)
- Tian Tian
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Hossen T, Sahu K. Photo-induced Electron Transfer or Proton-Coupled Electron Transfer in Methylbipyridine/Phenol Complexes: A Time-Dependent Density Functional Theory Investigation. J Phys Chem A 2019; 123:8122-8129. [DOI: 10.1021/acs.jpca.9b06274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Tousif Hossen
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kalyanasis Sahu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
4
|
Santos WG, Budkina DS, Santagneli SH, Tarnovsky AN, Zukerman-Schpector J, Ribeiro SJL. Ion-Pair Complexes of Pyrylium and Tetraarylborate as New Host-Guest Dyes: Photoinduced Electron Transfer Promoting Radical Polymerization. J Phys Chem A 2019; 123:7374-7383. [PMID: 31386369 DOI: 10.1021/acs.jpca.9b03581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ultrafast transient absorption spectroscopy, NOESY-NMR, and EPR spectroscopy shed light on how π-π stacking interactions combined with electrostatic interactions can be used to form stable ion-pair complexes between pyrylium and tetraarylborate ions in which the interaction of the π-delocalized clouds promotes the observation of new radiative processes and also electron transfer processes excitation using visible light. The results exhibit a striking combination of properties, chemical stability and photophysical and photochemical events, that make these ion-pair complexes as a step toward the realization of chromophore/luminescent materials and also their use as a new monophotoinitiator system in radical polymerization reactions.
Collapse
Affiliation(s)
- Willy G Santos
- Institute of Chemistry , São Paulo State University - UNESP , CP 355, Araraquara , SP 14801-970 , Brazil.,Department of Chemistry , Federal University of São Carlos , UFSCar, CP 676, São Carlos , SP 13565-905 , Brazil
| | - Darya S Budkina
- Center for Photochemical Sciences, Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| | - Silvia H Santagneli
- Institute of Chemistry , São Paulo State University - UNESP , CP 355, Araraquara , SP 14801-970 , Brazil
| | - Alexander N Tarnovsky
- Center for Photochemical Sciences, Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| | - Julio Zukerman-Schpector
- Department of Chemistry , Federal University of São Carlos , UFSCar, CP 676, São Carlos , SP 13565-905 , Brazil
| | - Sidney J L Ribeiro
- Institute of Chemistry , São Paulo State University - UNESP , CP 355, Araraquara , SP 14801-970 , Brazil
| |
Collapse
|
5
|
Lewis FD, Young RM, Wasielewski MR. Tracking Photoinduced Charge Separation in DNA: from Start to Finish. Acc Chem Res 2018; 51:1746-1754. [PMID: 30070820 DOI: 10.1021/acs.accounts.8b00090] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The initial studies of the dynamics of photoinduced charge separation conducted in our laboratories 20 years ago found strongly distance-dependent rate constants over short distances but failed to detect intermediates in the transport of positive charge (holes). These observations were consistent with the single-step superexchange or tunneling mechanism that had been observed for numerous donor-bridge-acceptor systems at that time. Subsequent studies found weak distance dependence for hole transport over longer distances in DNA, characteristic of incoherent hopping of either localized or delocalized holes. The introduction of synthetic DNA capped hairpin constructs possessing hole donor and acceptor chromophores (or purine bases) at opposite ends of a base-pair domain made it possible to determine the time required for transit of charge from one chromophore to the other and, in some cases, to distinguish between the transit time and the much faster initial charge injection time. These studies eliminated conventional tunneling as a viable mechanism for charge transport in DNA except at very short donor-acceptor separations; however, they did not establish the presence or nature of intermediates in the charge separation process. Recent studies in our laboratories have succeeded in identifying key intermediates as well as untangling the dynamics and efficiency of the charge separation process from start to finish. The dynamics of the initial charge injection process is dependent upon both its free energy and the stacking of the hole donor chromophore and adjacent purine base. The transport of positive charge (holes) over multiple base pairs in duplex DNA occurs most efficiently via repeating adenine bases, known as A-tracts. The transit time across an A-tract is strongly dependent upon the free energy for hole injection, whereas the efficiency of charge separation depends on the competition between charge delocalization and charge recombination in the contact radical ion pair. The guanine cation radical has been detected both by femtosecond transient absorption and by stimulated Raman spectroscopies when the guanine is located near the chromophore employed for hole injection into an A-tract. Replacement of guanine by its derivative 8-phenylethynylguanine (EG), permits tracking of hole transport across longer poly(purine) sequences as a consequence of the stronger transient absorption and stimulated Raman scattering for EG+• vs G+•. We have recently obtained evidence based on femtosecond transient absorption spectroscopy for the formation of delocalized A-polarons in A-tracts possessing four or more A-T base pairs. Similar methods have been used to track hole transport across less-common DNA structures including diblock and triblock poly(purines), locked nucleic acids, three-way junctions, and G-quadruplexes. Similar methods are have been applied to the study of photoinduced electron transport in DNA.
Collapse
Affiliation(s)
- Frederick D. Lewis
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M. Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R. Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
6
|
Brown KE, Singh APN, Wu YL, Ma L, Mishra AK, Phelan BT, Young RM, Lewis FD, Wasielewski MR. Fluorescent excimers and exciplexes of the purine base derivative 8-phenylethynyl-guanine in DNA hairpins. Faraday Discuss 2018; 207:217-232. [PMID: 29362748 DOI: 10.1039/c7fd00186j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ground- and excited-state electronic interactions between the nucleobase analog 8-(4'-phenylethynyl)deoxyguanosine, EG, with natural nucleobases and 7-deazaguanine, as well as between adjacent EG base analogs, have been characterized using a combination of steady-state spectroscopy and time-resolved fluorescence, absorption, and stimulated Raman spectroscopies. The properties of the nucleoside EG-H2 are only weakly perturbed upon incorporation into synthetic DNA hairpins in which thymine, cytosine or adenine are the bases flanking EG. Incorporation of the nucleoside to be adjacent to guanine or deazaguanine results in the formation of short-lived (40-80 ps) exciplexes, the charge transfer character of which increases as the oxidation potential of the donor decreases. Hairpins possessing two or three adjacent EG base analogs display exciton-coupled circular dichroism in the ground state and form long-lived fluorescent excited states upon electronic excitation. Incorporation of EG into the helical scaffold of the DNA hairpins places it adjacent to its neighboring nucleobases or a second EG, thus providing the close proximity required for the formation of exciplex or excimer intermediates upon geometric relaxation of the short-lived EG excited state. The three time-resolved spectroscopic methods employed permit both the characterization of the several intermediates and the kinetics of their formation and decay.
Collapse
Affiliation(s)
- Kristen E Brown
- Department of Chemistry, Argonne-Northwestern Solar Energy Research (ANSER) Center, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chiu CC, Hung CC, Cheng PY. Ultrafast Charge Recombination Dynamics in Ternary Electron Donor–Acceptor Complexes: (Benzene)2-Tetracyanoethylene Complexes. J Phys Chem B 2016; 120:12390-12403. [DOI: 10.1021/acs.jpcb.6b10593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chih-Chung Chiu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, R. O. C
| | - Chih-Chang Hung
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, R. O. C
| | - Po-Yuan Cheng
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, R. O. C
| |
Collapse
|
8
|
Zhang X, Clennan EL, Arulsamy N, Weber R, Weber J. Synthesis, Structure, and Photochemical Behavior of [5]Heli-viologen Isomers. J Org Chem 2016; 81:5474-86. [DOI: 10.1021/acs.joc.6b00835] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiaoping Zhang
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Edward L. Clennan
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Navamoney Arulsamy
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Rachael Weber
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Jacob Weber
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
9
|
Datta S, Bhattacharya S. Carbon-Nanotube-Mediated Electrochemical Transition in a Redox-Active Supramolecular Hydrogel Derived from Viologen and an l-Alanine-Based Amphiphile. Chemistry 2016; 22:7524-32. [PMID: 27059107 DOI: 10.1002/chem.201600214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Indexed: 12/16/2022]
Abstract
A two-component hydrogelator (16-A)2 -V(2+) , comprising an l-alanine-based amphiphile (16-A) and a redox-active viologen based partner (V(2+) ), is reported. The formation the hydrogel depended, not only on the acid-to-amine stoichiometric ratio, but on the choice of the l-amino acid group and also on the hydrocarbon chain length of the amphiphilic component. The redox responsive property and the electrochemical behavior of this two-component system were further examined by step-wise chemical and electrochemical reduction of the viologen nucleus (V(2+) /V(+) and V(+) /V(0) ). The half-wave reduction potentials (E1/2 ) associated with the viologen ring shifted to more negative values with increasing amine component. This indicates that higher extent of salt formation hinders reduction of the viologen moiety. Interestingly, the incorporation of single-walled carbon nanotubes in the electrochemically irreversible hydrogel (16-A)2 -V(2+) transformed it into a quasi-reversible electrochemical system.
Collapse
Affiliation(s)
- Sougata Datta
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India.,Director's Research Unit (DRU), Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India. .,Director's Research Unit (DRU), Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India. .,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560 064, Jakkur, India.
| |
Collapse
|
10
|
Sun JK, Chen C, Cai LX, Ren CX, Tan B, Zhang J. Mechanical grinding of a single-crystalline metal–organic framework triggered emission with tunable violet-to-orange luminescence. Chem Commun (Camb) 2014; 50:15956-9. [DOI: 10.1039/c4cc08316d] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Mondal JH, Ahmed S, Das D. Physicochemical analysis of mixed micelles of a viologen surfactant: extended to water-in-oil (w/o) microemulsion and cucurbit[8]uril-assisted vesicle formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:8290-8299. [PMID: 24959928 DOI: 10.1021/la5020785] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A systematic study of the self-assembly process of a viologen-containing surfactant in aqueous medium is reported. Dodecyl-ethyl-viologendibromide (DDEV) is mixed in different proportions with dodecyltrimethylammonium bromide (DTAB), and the physicochemical properties of micellization are evaluated in order to find a suitable combination which does not interfere with the micellar properties of DTAB but introduces the characteristic properties of viologen. In this process, 1% doping of DDEV with DTAB was found to be the most appropriate, as negligible changes were observed in the physicochemical behavior of this system with respect to that of pure DTAB. The 1% DDEV-doped DTAB mixed micellar system showed the characteristic two-step reduction process for the viologen units at the interface as revealed by CV experiments. 1% mixing of DDEV with DTAB also allowed us to prepare stable w/o microemulsions containing viologen units at the interface which is otherwise unattainable with pure viologen surfactants. The charge-transfer capability of the viologen unit to the electron-rich 2,6-dihydroxynaphthalene (DHN) moiety inside the macrocyclic host, cucurbit[8]uril (CB[8]) is also evaluated for this system, and surprisingly even at this very low concentration, the ternary complex of DDEV-DHN@CB[8] transformed the micellar assembly to uniform vesicles. All of these properties have been further extended to other tetraalkylammonium surfactants, and similar effects were observed.
Collapse
Affiliation(s)
- Julfikar Hassan Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati , North Guwahati, Kamrup, Assam 781039, India
| | | | | |
Collapse
|