1
|
Lau JKC, Esuon F, Berden G, Oomens J, Hopkinson AC, Ryzhov V, Siu KWM. Generation, Characterization, and Dissociation of Radical Cations Derived from Prolyl-glycyl-glycine. J Phys Chem B 2021; 125:6121-6129. [PMID: 34097420 DOI: 10.1021/acs.jpcb.1c01732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Radical cations of an aliphatic tripeptide prolyl-glycyl-glycine (PGG•+) and its sequence ions [a3 + H]•+ and [b2 - H]•+ have been generated by collision-induced dissociation of the [Cu(Phen)(PGG)]•2+ complex, where Phen = 1,10-phenanthroline. Infrared multiple photon dissociation spectroscopy, ion-molecule reaction experiments, and theoretical calculations have been used to investigate the structures of these ions. The unpaired electron in these three radical cations is located at different α-carbons. The PGG•+ radical cation has a captodative structure with the radical at the α-carbon of the proline residue and the proton on the oxygen of the first amide group. This structure is at the global minimum on the potential energy surface (PES). By contrast, the [a3 + H]•+ and [b2 - H]•+ ions are not the lowest-energy structures on their respective PESs, and their radicals are formally located at the C-terminal and second α-carbons, respectively. Density functional theory calculations on the structures of the ternary copper(II) complex ion suggest that the charge-solvated isomer of the metal complex is the precursor ion that dissociates to give the PGG•+ radical cation. The isomer of the complex in which PGG is bound as a zwitterion dissociates to give the [a3 + H]•+ and [b2 - H]•+ ions.
Collapse
Affiliation(s)
- Justin Kai-Chi Lau
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.,Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Francis Esuon
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Giel Berden
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, the Netherlands
| | - Jos Oomens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, the Netherlands
| | - Alan C Hopkinson
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - K W Michael Siu
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.,Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
2
|
Tang WK, Mu X, Li M, Martens J, Berden G, Oomens J, Chu IK, Siu CK. Formation of n → π + interaction facilitating dissociative electron transfer in isolated tyrosine-containing molecular peptide radical cations. Phys Chem Chem Phys 2021; 22:21393-21402. [PMID: 32940309 DOI: 10.1039/d0cp00533a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Long-range electron transfer in proteins can be rationalized as a sequential short-distance electron-hopping processes via amino acid residues having low ionization energy as relay stations. Tyrosine residues can serve as such redox-active intermediates through one-electron oxidation to form a π-radical cation at its phenol side chain. An electron transfer from a vicinal functional group to this π-electron hole completes an elementary step of charge migration. However, transient oxidized/reduced intermediates formed at those relay stations during electron transfer processes have not been observed. In this study, formation of analog reactive intermediates via electron donor-acceptor coupling is observed by using IRMPD action spectroscopy. An elementary charge migration at the molecular level in model tyrosine-containing peptide radical cations [M]˙+ in the gas phase is revealed with its unusual Cα-Cβ bond cleavage at the side chain of the N-terminal residue. This reaction is induced by the radical character of the N-terminal amino group (-NH2˙+) resulting from an n → π+ interaction between the nonbonding electron pair of NH2 (n) and the π-electron hole at the Tyr side chain (π+). The formation of -NH2˙+ is supported by the IRMPD spectrum showing a characteristic NH2 scissor vibration coupled with Tyr side-chain stretches at 1577 cm-1. This n → π+ interaction facilitates a dissociative electron transfer with NH2 as the relay station. The occurrence of this side-chain cleavage may be an indicator of the formation of reactive conformers featuring the n → π+ interaction.
Collapse
Affiliation(s)
- Wai Kit Tang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Lyu Z, Hallett-Tapley G, Orlova G. A DFT study on radical-cationic methanol clusters: Structure, bonding and H-transfer. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2019.112661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Guo M, Wu H, Zhang H, Luo Z. Furthering the Diverse Hydrogen Atom Transfer and Carbon Bond Dissociation of Amino Acids under Vacuum Ultraviolet. ChemistrySelect 2019. [DOI: 10.1002/slct.201803564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mengdi Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS); State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 100190, Beijing China
| | - Haiming Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS); State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 100190, Beijing China
| | - Hanyu Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS); State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 100190, Beijing China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS); State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; University of Chinese Academy of Sciences; 100190, Beijing China
| |
Collapse
|
5
|
Kempkes LJ, Martens J, Berden G, Houthuijs KJ, Oomens J. Investigation of the position of the radical in z3-ions resulting from electron transfer dissociation using infrared ion spectroscopy. Faraday Discuss 2019; 217:434-452. [DOI: 10.1039/c8fd00202a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular structures of six open-shell z3-ions resulting from electron transfer dissociation mass spectrometry (ETD MS) were investigated using infrared ion spectroscopy in combination with density functional theory and molecular mechanics/molecular dynamics calculations.
Collapse
Affiliation(s)
| | - Jonathan Martens
- Radboud University
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | - Giel Berden
- Radboud University
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | - Kas J. Houthuijs
- Radboud University
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | - Jos Oomens
- Radboud University
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
- Van’t Hoff Institute for Molecular Sciences
| |
Collapse
|
6
|
Nagoshi K, Yamakoshi M, Sakamoto K, Takayama M. Specific Cα-C Bond Cleavage of β-Carbon-Centered Radical Peptides Produced by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1473-1483. [PMID: 29675742 DOI: 10.1007/s13361-018-1958-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/14/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Radical-driven dissociation (RDD) of hydrogen-deficient peptide ions [M - H + H]·+ has been examined using matrix-assisted laser dissociation/ionization in-source decay mass spectrometry (MALDI-ISD MS) with the hydrogen-abstracting matrices 4-nitro-1-naphthol (4,1-NNL) and 5-nitrosalicylic acid (5-NSA). The preferential fragment ions observed in the ISD spectra include N-terminal [a] + ions and C-terminal [x]+, [y + 2]+, and [w]+ ions which imply that β-carbon (Cβ)-centered radical peptide ions [M - Hβ + H]·+ are predominantly produced in MALDI conditions. RDD reactions from the peptide ions [M - Hβ + H]·+ successfully explains the fact that both [a]+ and [x]+ ions arising from cleavage at the Cα-C bond of the backbone of Gly-Xxx residues are missing from the ISD spectra. Furthermore, the formation of [a]+ ions originating from the cleavage of Cα-C bond of deuterated Ala(d3)-Xxx residues indicates that the [a]+ ions are produced from the peptide ions [M - Hβ + H]·+ generated by deuteron-abstraction from Ala(d3) residues. It is suggested that from the standpoint of hydrogen abstraction via direct interactions between the nitro group of matrix and hydrogen of peptides, the generation of the peptide radical ions [M - Hβ + H]·+ is more favorable than that of the α-carbon (Cα)-centered radical ions [M - Hα + H]·+ and the amide nitrogen-centered radical ions [M - HN + H]·+, while ab initio calculations indicate that the formation of [M - Hα + H]·+ is energetically most favorable. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Keishiro Nagoshi
- Mass Spectrometry Laboratory, Graduate School in Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Mariko Yamakoshi
- Mass Spectrometry Laboratory, Graduate School in Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Kenya Sakamoto
- Mass Spectrometry Laboratory, Graduate School in Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Mitsuo Takayama
- Mass Spectrometry Laboratory, Graduate School in Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan.
| |
Collapse
|
7
|
Viglino E, Lai CK, Mu X, Chu IK, Tureček F. Ground and Excited-Electronic-State Dissociations of Hydrogen-Rich and Hydrogen-Deficient Tyrosine Peptide Cation Radicals. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1454-1467. [PMID: 27278824 DOI: 10.1007/s13361-016-1425-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/10/2016] [Accepted: 05/20/2016] [Indexed: 06/06/2023]
Abstract
We report a comprehensive study of collision-induced dissociation (CID) and near-UV photodissociation (UVPD) of a series of tyrosine-containing peptide cation radicals of the hydrogen-rich and hydrogen-deficient types. Stable, long-lived, hydrogen-rich peptide cation radicals, such as [AAAYR + 2H](+●) and several of its sequence and homology variants, were generated by electron transfer dissociation (ETD) of peptide-crown-ether complexes, and their CID-MS(3) dissociations were found to be dramatically different from those upon ETD of the respective peptide dications. All of the hydrogen-rich peptide cation radicals contained major (77%-94%) fractions of species having radical chromophores created by ETD that underwent photodissociation at 355 nm. Analysis of the CID and UVPD spectra pointed to arginine guanidinium radicals as the major components of the hydrogen-rich peptide cation radical population. Hydrogen-deficient peptide cation radicals were generated by intramolecular electron transfer in Cu(II)(2,2':6',2″-terpyridine) complexes and shown to contain chromophores absorbing at 355 nm and undergoing photodissociation. The CID and UVPD spectra showed major differences in fragmentation for [AAAYR](+●) that diminished as the Tyr residue was moved along the peptide chain. UVPD was found to be superior to CID in localizing Cα-radical positions in peptide cation radical intermediates. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Emilie Viglino
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, WA, 981915-1700, USA
| | - Cheuk Kuen Lai
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaoyan Mu
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ivan K Chu
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - František Tureček
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, WA, 981915-1700, USA.
| |
Collapse
|