1
|
Zhou Y, Huang M, Tian F, Shi X, Zhang X. Einstein-Stokes relation for small bubbles at the nanoscale. J Chem Phys 2024; 160:054109. [PMID: 38341701 DOI: 10.1063/5.0189490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/15/2024] [Indexed: 02/13/2024] Open
Abstract
As the physicochemical properties of ultrafine bubble systems are governed by their size, it is crucial to determine the size and distribution of such bubble systems. At present, the size or size distribution of nanometer-sized bubbles in suspension is often measured by either dynamic light scattering or the nanoparticle tracking analysis. Both techniques determine the bubble size via the Einstein-Stokes equation based on the theory of the Brownian motion. However, it is not yet clear to which extent the Einstein-Stokes equation is applicable for such ultrafine bubbles. In this work, using atomic molecular dynamics simulation, we evaluate the applicability of the Einstein-Stokes equation for gas nanobubbles with a diameter less than 10 nm, and for a comparative analysis, both vacuum nanobubbles and copper nanoparticles are also considered. The simulation results demonstrate that the diffusion coefficient for rigid nanoparticles in water is found to be highly consistent with the Einstein-Stokes equation, with slight deviation only found for nanoparticle with a radius less than 1 nm. For nanobubbles, including both methane and vacuum nanobubbles, however, large deviation from the Einstein-Stokes equation is found for the bubble radius larger than 3 nm. The deviation is attributed to the deformability of large nanobubbles that leads to a cushioning effect for collision-induced bubble diffusion.
Collapse
Affiliation(s)
- Youbin Zhou
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengyuan Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - Falin Tian
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xinghua Shi
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Liu C, Zhang Y, Yang L, Wang C, Lu X, Lin S. Molecular dynamics of the spontaneous generation mechanism of natural gas hydrates during methane nanobubble rupture. Phys Chem Chem Phys 2023; 25:22862-22869. [PMID: 37587860 DOI: 10.1039/d3cp02823b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Natural gas hydrates have garnered significant attention as a potential new source of alternative energy, and understanding their formation mechanism is of paramount importance for efficient utilization and pipeline transportation. However, there is no consensus among academics on the formation mechanism of natural gas hydrates. In this paper, we propose a method for promoting the rapid formation of natural gas hydrates based on the rupture of methane nanobubbles, which creates local high temperature and pressure to facilitate the mixing of methane and water. The rapid decrease in system temperature and pressure during the process further enhances the formation of gas hydrates. Using molecular dynamics simulations, we theoretically verify the formation of natural gas hydrates. Our results indicate that the instantaneous rupture of methane nanobubbles induced by shock waves leads to a dramatic increase in the local molecular motion velocity around the bubbles. This results in extreme local high temperature and high pressure, leading to complete mixing of methane and water and rapid formation of gas hydrates during the cooling and pressure drop of the mixture. We confirm our findings by analyzing F3-order parameters, F4-order parameters, and water cage statistics.
Collapse
Affiliation(s)
- Changsheng Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
| | - Yan Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
| | - Liang Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
| | - Caizhuang Wang
- Ames Laboratory and Department of Physics, Iowa State University, Ames, IA 50011, USA
| | - Xihong Lu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Shiwei Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
3
|
Jing Z, Lin Y, Cheng C, Li X, Liu J, Jin T, Hu W, Ma Y, Zhao J, Wang S. Fast Formation of Hydrate Induced by Micro-Nano Bubbles: A Review of Current Status. Processes (Basel) 2023. [DOI: 10.3390/pr11041019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Hydrate-based technologies have excellent application potential in gas separation, gas storage, transportation, and seawater desalination, etc. However, the long induction time and the slow formation rate are critical factors affecting the application of hydrate-based technologies. Micro-nano bubbles (MNBs) can dramatically increase the formation rate of hydrates owing to their advantages of providing more nucleation sites, enhancing mass transfer, and increasing the gas–liquid interface and gas solubility. Initially, the review examines key performance MNBs on hydrate formation and dissociation processes. Specifically, a qualitative and quantitative assembly of the formation and residence characteristics of MNBs during hydrate dissociation is conducted. A review of the MNB characterization techniques to identify bubble size, rising velocity, and bubble stability is also included. Moreover, the advantages of MNBs in reinforcing hydrate formation and their internal relationship with the memory effect are summarized. Finally, combining with the current MNBs to reinforce hydrate formation technology, a new technology of gas hydrate formation by MNBs combined with ultrasound is proposed. It is anticipated that the use of MNBs could be a promising sustainable and low-cost hydrate-based technology.
Collapse
|
4
|
Influence of pipeline steel surface on the thermal stability of methane hydrate. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Molecular Insights into Factors Affecting the Generation Behaviors, Dynamic Properties, and Interfacial Structures of Methane Gas Bubbles. WATER 2022. [DOI: 10.3390/w14152327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Molecular dynamics simulations were performed to study the effects of temperatures, pressures, and methane mole fractions on the generation behaviors, dynamic properties, and interfacial structures of methane gas bubbles. Methane gas bubbling can be promoted by high temperatures and high mole fractions of methane, which come from the generation of larger methane clusters in solution. Bubbles were found to be highly dynamic, with more methane molecules exchanging between bubbles and the surrounding solution at high pressures and in systems with high mole fractions of methane. The interfacial structures between bubbles and the surrounding solution were rough at a molecular level, and the roughness of the outermost methane and water molecules was high at high temperatures, low pressures, and in systems with high methane mole fractions. The dissolution of methane molecules depended on the interactions between the outermost methane and water molecules, which would become stronger with decreasing temperatures, increasing pressures, and decreasing methane mole fractions. The results obtained can help in understanding both the generation behaviors of bubbles when gas hydrates decompose and the re-nucleation behaviors of gas hydrates in the presence of bubbles.
Collapse
|
6
|
Lu Y, Lv X, Li Q, Yang L, Zhang L, Zhao J, Song Y. Molecular behavior of hybrid gas hydrate nucleation: separation of soluble H 2S from mixed gas. Phys Chem Chem Phys 2022; 24:9509-9520. [PMID: 35388810 DOI: 10.1039/d1cp05302g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Soluble H2S widely exists in natural gas or oil potentially corroding oil/gas pipelines. Furthermore, it can affect the hydrate formation condition, resulting in pipeline blockage; the nucleation mechanism from mixed gas including H2S is still largely unclear. Molecular dynamics simulations were performed to reveal the effects of different initial mixed H2S/CH4 compositions on the hydrate nucleation and growth process. The geometric details of the nanobubbles and gas composition in the nanobubbles were analyzed; the size of the nanobubbles was found to decrease from 3.4 nm to 1.4 nm. With the increase in the initial H2S proportion, the diameter of the nanobubbles decreased; more guest molecules were dissolved in the water, which improved the initial concentration of guest molecules in the water. A multi-site nucleation process was observed, and separate hydrate clusters could grow independently until the simulation box limited their growth due to high local H2S concentration as a potential nucleation location. When the initial proportion of mixed gas approaches, H2S preferred to occupy and stabilize the incipient cage. Moreover, 512, 4151062, and 51262 cages accounted for approximately 95% of the first hydrate cage. Nucleation rates were shown to increase from 4.62 × 1024 to 9.438 × 1026 nuclei cm-3 s-1. The present high subcooling and H2S concentration provided a high driving force to promote mixed hydrate nucleation and growth. The proportion of cages occupied by H2S increased with increasing initial H2S proportion, but the largest enrichment factor of 1.38 occurred at 10% initial H2S/CH4 mixed gas.
Collapse
Affiliation(s)
- Yi Lu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, China.
| | - Xin Lv
- State Key Laboratory of Natural Gas Hydrate, Beijing, 100028, China
| | - Qingping Li
- State Key Laboratory of Natural Gas Hydrate, Beijing, 100028, China
| | - Lei Yang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, China.
| | - Lunxiang Zhang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, China.
| | - Jiafei Zhao
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, China.
| | - Yongchen Song
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
7
|
Hu W, Chen C, Sun J, Zhang N, Zhao J, Liu Y, Ling Z, Li W, Liu W, Song Y. Three-body aggregation of guest molecules as a key step in methane hydrate nucleation and growth. Commun Chem 2022; 5:33. [PMID: 36697657 PMCID: PMC9814777 DOI: 10.1038/s42004-022-00652-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Gas hydrates have an important role in environmental and astrochemistry, as well as in energy materials research. Although it is widely accepted that gas accumulation is an important and necessary process during hydrate nucleation, how guest molecules aggregate remains largely unknown. Here, we have performed molecular dynamics simulations to clarify the nucleation path of methane hydrate. We demonstrated that methane gather with a three-body aggregate pattern corresponding to the free energy minimum of three-methane hydrophobic interaction. Methane molecules fluctuate around one methane which later becomes the central gas molecule, and when several methanes move into the region within 0.8 nm of the potential central methane, they act as directional methane molecules. Two neighbor directional methanes and the potential central methane form a three-body aggregate as a regular triangle with a distance of ~6.7 Å which is well within the range of typical methane-methane distances in hydrates or in solution. We further showed that hydrate nucleation and growth is inextricably linked to three-body aggregates. By forming one, two, and three three-body aggregates, the possibility of hydrate nucleation at the aggregate increases from 3/6, 5/6 to 6/6. The results show three-body aggregation of guest molecules is a key step in gas hydrate formation.
Collapse
Affiliation(s)
- Wenfeng Hu
- School of Energy and Power Engineering, Dalian University of Technology, 116024, Dalian, P. R. China
| | - Cong Chen
- School of Energy and Power Engineering, Dalian University of Technology, 116024, Dalian, P. R. China.
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, 116024, Dalian, P. R. China.
| | - Jingyue Sun
- School of Energy and Power Engineering, Dalian University of Technology, 116024, Dalian, P. R. China
| | - Ning Zhang
- School of Petroleum and Chemical Engineering, Dalian University of Technology, 124221, Panjin, P. R. China
| | - Jiafei Zhao
- School of Energy and Power Engineering, Dalian University of Technology, 116024, Dalian, P. R. China
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, 116024, Dalian, P. R. China
| | - Yu Liu
- School of Energy and Power Engineering, Dalian University of Technology, 116024, Dalian, P. R. China
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, 116024, Dalian, P. R. China
| | - Zheng Ling
- School of Energy and Power Engineering, Dalian University of Technology, 116024, Dalian, P. R. China
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, 116024, Dalian, P. R. China
| | - Weizhong Li
- School of Energy and Power Engineering, Dalian University of Technology, 116024, Dalian, P. R. China
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, 116024, Dalian, P. R. China
| | - Weiguo Liu
- School of Energy and Power Engineering, Dalian University of Technology, 116024, Dalian, P. R. China
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, 116024, Dalian, P. R. China
| | - Yongchen Song
- School of Energy and Power Engineering, Dalian University of Technology, 116024, Dalian, P. R. China.
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, 116024, Dalian, P. R. China.
| |
Collapse
|
8
|
A review of clathrate hydrate nucleation, growth and decomposition studied using molecular dynamics simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Liu C, Zhou X, Liang D. Molecular insight into carbon dioxide hydrate formation from saline solution. RSC Adv 2021; 11:31583-31589. [PMID: 35496851 PMCID: PMC9041558 DOI: 10.1039/d1ra04015d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/15/2021] [Indexed: 01/12/2023] Open
Abstract
Carbon dioxide hydrate has been intensively investigated in recent years because of its potential use as gas and heat storage materials. To understand the hydrate formation mechanisms, the crystallization of CO2 hydrate from NaCl solutions was simulated at a molecular level. The influence of temperature, pressure, salt concentration and CO2 concentration on CO2 hydrate formation was evaluated. Results showed that the amount of the newly formed hydrate cages pressure went through a fast linear growth period followed by a relatively stable period. Pressure had little effect on CO2 hydrate formation and temperature had a significant influence. The linear growth rate was greatly reduced as the temperature dropped from 255 to 235 K. The salt ion pairs could inhibit CO2 hydrate formation, suggesting that we should choose the lower salinity areas if we want to storage CO2 as gas hydrates in the seabed sediments. The observations in this study can provide theoretical support for the micro mechanism of hydrate formation, and provide a theoretical reference for the technology of hydrate based CO2 storage. In the process of the carbon dioxide hydrate formation in NaCl solution, it could form 512, 51262 and 51263 cages, and the 51262 cage and 512 cage number ratio was slightly above 3 : 1.![]()
Collapse
Affiliation(s)
- Chanjuan Liu
- Chinese Acad Sci, Guangzhou Ctr Gas Hydrate Res, Guangzhou Inst Energy Convers Guangzhou 510640 Peoples R China .,CAS Key Lab Gas Hydrate Guangzhou 510640 Peoples R China.,Guangdong Prov Key Lab New & Renewable Energy Res Guangzhou 510640 Peoples R China.,State Key Lab Nat Gas Hydrate Beijing 100028 China
| | - Xuebing Zhou
- Chinese Acad Sci, Guangzhou Ctr Gas Hydrate Res, Guangzhou Inst Energy Convers Guangzhou 510640 Peoples R China .,CAS Key Lab Gas Hydrate Guangzhou 510640 Peoples R China.,Guangdong Prov Key Lab New & Renewable Energy Res Guangzhou 510640 Peoples R China.,State Key Lab Nat Gas Hydrate Beijing 100028 China
| | - Deqing Liang
- Chinese Acad Sci, Guangzhou Ctr Gas Hydrate Res, Guangzhou Inst Energy Convers Guangzhou 510640 Peoples R China .,CAS Key Lab Gas Hydrate Guangzhou 510640 Peoples R China.,Guangdong Prov Key Lab New & Renewable Energy Res Guangzhou 510640 Peoples R China.,State Key Lab Nat Gas Hydrate Beijing 100028 China
| |
Collapse
|
10
|
Chen C, Hu W, Yang L, Zhao J, Song Y. Gas supersaturation and diffusion joint controlled CH4 nanobubble evolution during hydrate dissociation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114614] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Liu N, Zhou J, Hong C. Molecular dynamics simulations on dissociation of CO2 hydrate in the presence of inhibitor. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Li J, Liang Z, Wang Z, Meng G. Decomposition dynamics of dodecahedron and tetrakaidecahedron structures in methane hydrate by molecular simulations. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jia Li
- Energy and Power Department, China University of Petroleum Qingdao China
| | - Zhenju Liang
- Energy and Power Department, China University of Petroleum Qingdao China
| | - Zhaoliang Wang
- Energy and Power Department, China University of Petroleum Qingdao China
| | - Guangfan Meng
- Energy and Power Department, China University of Petroleum Qingdao China
| |
Collapse
|
13
|
Sizova AA, Sizov VV, Brodskaya EN. Molecular Dynamics Simulation of the Stability of Spherical Nanoclusters of Methane and Carbon Dioxide Hydrates. COLLOID JOURNAL 2020. [DOI: 10.1134/s1061933x2002012x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Castillo-Borja F, Bravo-Sánchez UI, Vázquez-Román R, Díaz-Ovalle CO. Biogas purification via sII hydrates in the presence of THF and DMSO solutions using MD simulations. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Ilyina MG, Khamitov EM, Galiakhmetov RN, Mustafin IA, Akhmetov AF, Shayakhmetova RK, Mustafin AG. Light gasoil of catalytic cracking: A quantitative description of the physical properties by joint use of chromato‐mass‐spectrometry and molecular dynamics. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201800342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Margarita G. Ilyina
- Faculty of Chemistry, Chair of Physical Chemistry and Chemical Ecology, Bashkir State University Ufa Russia
| | - Edward M. Khamitov
- Laboratory of Quantum Chemistry and Molecular Dynamics of the Department of Chemistry and Technology, Institute of Petroleum Refining and Petrochemistry Ufa Russia
- Russian Academy of Sciences, Laboratory of Chemical PhysicsUfa Institute of Chemistry Ufa Russia
| | | | - Ildar A. Mustafin
- Technological Faculty, Department of Oil and Gas Technology, Ufa State Petroleum Technological University Ufa Russia
| | - Arslan F. Akhmetov
- Technological Faculty, Department of Oil and Gas Technology, Ufa State Petroleum Technological University Ufa Russia
| | - Regina Kh. Shayakhmetova
- Faculty of Chemistry, Chair of Physical Chemistry and Chemical Ecology, Bashkir State University Ufa Russia
| | - Akhat G. Mustafin
- Faculty of Chemistry, Chair of Physical Chemistry and Chemical Ecology, Bashkir State University Ufa Russia
- Russian Academy of Sciences, Laboratory of Chemical PhysicsUfa Institute of Chemistry Ufa Russia
| |
Collapse
|
16
|
Zuo Y, Chen Q, Li C, Kang C, Lei X. Removal of Fluorine from Wet-Process Phosphoric Acid Using a Solvent Extraction Technique with Tributyl Phosphate and Silicon Oil. ACS OMEGA 2019; 4:11593-11601. [PMID: 31460266 PMCID: PMC6682134 DOI: 10.1021/acsomega.9b01383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
The deep removal of fluorine from wet-process phosphoric acid is currently a very serious issue. In this paper, an efficient liquid-liquid separation method based on a bubble membrane was developed to solve this problem. Tributyl phosphate (TBP) and silicon oil (SIO) were used as the organic phase. The effects of the component proportion in the organic phase (TBP/SIO v/v), organic to aqueous phase ratio (O/A), pH, temperature, and reaction time on the extraction ratio were investigated. The extraction ratio of fluorine was 98.4% when using only one stage with the following conditions: 90 °C, pH -0.46, volume ratio (TBP/SIO v/v) of 7:3, phase ratio (O/A) of 1:5, stirring speed of 200 rpm, and reaction time of 50 min. Fourier-transform infrared spectroscopy and inverted fluorescence microscopy were used to investigate the reaction mechanism and reaction kinetics. In addition, the scrubbing and stripping process was investigated. When a 2 mol/L sodium hydroxide solution ([NaOH]) was used as the stripping agent with a phase ratio (O/A) of 1:10, a stirring speed of 200 rpm, and a reaction time of 30 min, a maximum stripping ratio of 90.1% was obtained.
Collapse
Affiliation(s)
- Yonghui Zuo
- School of Chemistry
and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Qianlin Chen
- School of Chemistry
and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Research Center of Phosphorus Chemical
Clean Productions of Guizhou, Guiyang 550025, China
| | - Cuiqin Li
- School of Chemistry
and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Chao Kang
- School of Chemistry
and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Xianyu Lei
- School of Chemistry
and Chemical Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
17
|
Wan L, Liang D, Guan J. New insights into decomposition characteristics of nanoscale methane hydrate below the ice point. RSC Adv 2018; 8:41397-41403. [PMID: 35559285 PMCID: PMC9091616 DOI: 10.1039/c8ra08955h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/05/2018] [Indexed: 11/21/2022] Open
Abstract
In this paper, molecular dynamics simulation was used to study the decomposition process of nanoscale methane hydrate at 1 atm and 227 K. The results predict that methane hydrate decomposes into supercooled water (SCW) and methane gas and the resulting SCW turns into very high density amorphous ice (VHDA). The density of the VHDA is as high as 1.2-1.4 g cm-3. The X-ray diffraction phase analysis showed that VHDA has a broad peak at 2θ of around 30°. The VHDA encapsulates the methane hydrate crystal so that the crystal can survive for a long time. The dissolved gas from the hydrate melt cannot escape out of the VHDA in a short time. The simulation results reveal new molecular insights into the decomposition behaviour of nanoscale methane hydrate below the ice point.
Collapse
Affiliation(s)
- Lihua Wan
- Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of SciencesGuangzhou 510640People's Republic of China
| | - Deqing Liang
- Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of SciencesGuangzhou 510640People's Republic of China
| | - Jinan Guan
- Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of SciencesGuangzhou 510640People's Republic of China
| |
Collapse
|
18
|
Han P, Li W, Tian H, Gao X, Ding R, Xiong C, Chen C. Designing and fabricating of time-depend self-strengthening inhibitor film: Synergistic inhibition of sodium dodecyl sulfate and 4-mercaptopyridine for mild steel. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Tajima H, Hattori M, Akagami H, Komatsu H, Yamagiwa K. Effects of hydrate-slurry decomposition conditions on gas generation and recovery performance. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.04.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Ranieri U, Koza MM, Kuhs WF, Klotz S, Falenty A, Gillet P, Bove LE. Fast methane diffusion at the interface of two clathrate structures. Nat Commun 2017; 8:1076. [PMID: 29057864 PMCID: PMC5715113 DOI: 10.1038/s41467-017-01167-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/23/2017] [Indexed: 11/30/2022] Open
Abstract
Methane hydrates naturally form on Earth and in the interiors of some icy bodies of the Universe, and are also expected to play a paramount role in future energy and environmental technologies. Here we report experimental observation of an extremely fast methane diffusion at the interface of the two most common clathrate hydrate structures, namely clathrate structures I and II. Methane translational diffusion—measured by quasielastic neutron scattering at 0.8 GPa—is faster than that expected in pure supercritical methane at comparable pressure and temperature. This phenomenon could be an effect of strong confinement or of methane aggregation in the form of micro-nanobubbles at the interface of the two structures. Our results could have implications for understanding the replacement kinetics during sI–sII conversion in gas exchange experiments and for establishing the methane mobility in methane hydrates embedded in the cryosphere of large icy bodies in the Universe. Methane dynamics at the interface of ice clathrate structures is expected to play a role in phenomena ranging from gas exchange to methane mobility in planetary cryospheres. Here, the authors observe extremely fast methane diffusion at the interface of the two most common clathrate hydrate structures.
Collapse
Affiliation(s)
- Umbertoluca Ranieri
- EPSL, ICMP, École polytechnique fédérale de Lausanne (EPFL), Station 3, CH-1015, Lausanne, Switzerland. .,Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042, Grenoble cedex 9, France.
| | - Michael Marek Koza
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042, Grenoble cedex 9, France
| | - Werner F Kuhs
- GZG Abt. Kristallographie, Universität Göttingen, Goldschmidtstrasse 1, 37077, Göttingen, Germany
| | - Stefan Klotz
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Université Pierre et Marie Curie Paris 06, CNRS Unité Mixte de Recherche 7590, Sorbonne Universités, F-75252, Paris, France
| | - Andrzej Falenty
- GZG Abt. Kristallographie, Universität Göttingen, Goldschmidtstrasse 1, 37077, Göttingen, Germany
| | - Philippe Gillet
- EPSL, ICMP, École polytechnique fédérale de Lausanne (EPFL), Station 3, CH-1015, Lausanne, Switzerland
| | - Livia E Bove
- EPSL, ICMP, École polytechnique fédérale de Lausanne (EPFL), Station 3, CH-1015, Lausanne, Switzerland. .,Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Université Pierre et Marie Curie Paris 06, CNRS Unité Mixte de Recherche 7590, Sorbonne Universités, F-75252, Paris, France.
| |
Collapse
|
21
|
Liu Y, Zhao L, Deng S, Bai D. Evolution of bubbles in decomposition and replacement process of methane hydrate. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1359745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yinan Liu
- Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin University, Ministry of Education of China, Tianjin, China
| | - Li Zhao
- Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin University, Ministry of Education of China, Tianjin, China
| | - Shuai Deng
- Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin University, Ministry of Education of China, Tianjin, China
| | - Dongsheng Bai
- Department of Chemistry, School of Science, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
22
|
Smirnov KS. A modeling study of methane hydrate decomposition in contact with the external surface of zeolites. Phys Chem Chem Phys 2017; 19:23095-23105. [DOI: 10.1039/c7cp01985h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methane hydrate dissociates on the external surface of siliceous zeolites with methane absorbed by the solid and water forming a liquid-like phase.
Collapse
Affiliation(s)
- Konstantin S. Smirnov
- Laboratoire de Spectrochimie Infrarouge et Raman
- UMR 8516 CNRS – Université de Lille
- Sciences et Technologies
- 59655 Villeneuve d'Ascq
- France
| |
Collapse
|
23
|
Sujith KS, Ramachandran CN. Natural Gas Evolution in a Gas Hydrate Melt: Effect of Thermodynamic Hydrate Inhibitors. J Phys Chem B 2016; 121:153-163. [DOI: 10.1021/acs.jpcb.6b07782] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K. S. Sujith
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - C. N. Ramachandran
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
24
|
Sujith KS, Ramachandran CN. Carbon dioxide induced bubble formation in a CH4–CO2–H2O ternary system: a molecular dynamics simulation study. Phys Chem Chem Phys 2016; 18:3746-54. [DOI: 10.1039/c5cp05623c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of carbon dioxide in the formation of gas bubbles in a CH4–CO2–H2O ternary system is studied using molecular dynamics simulations.
Collapse
Affiliation(s)
- K. S. Sujith
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee
| | | |
Collapse
|
25
|
Yagasaki T, Matsumoto M, Tanaka H. Effects of thermodynamic inhibitors on the dissociation of methane hydrate: a molecular dynamics study. Phys Chem Chem Phys 2015; 17:32347-57. [PMID: 26587576 DOI: 10.1039/c5cp03008k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate the effects of methanol and NaCl, which are known as thermodynamic hydrate inhibitors, on the dissociation kinetics of methane hydrate in aqueous solutions by using molecular dynamics simulations. It is shown that the dissociation rate is not constant but changes with time. The dissociation rate in the initial stage is increased by methanol whereas it is decreased by NaCl. This difference arises from the opposite effects of the two thermodynamic inhibitors on the hydration free energy of methane. The dissociation rate of methane hydrate is increased by the formation of methane bubbles in the aqueous phase because the bubbles absorb surrounding methane molecules. It is found that both methanol and NaCl facilitate the bubble formation. However, their mechanisms are completely different from each other. The presence of ions enhances the hydrophobic interactions between methane molecules. In addition, the ions in the solution cause a highly non-uniform distribution of dissolved methane molecules. These two effects result in the easy formation of bubbles in the NaCl solution. In contrast, methanol assists the bubble formation because of its amphiphilic character.
Collapse
Affiliation(s)
- Takuma Yagasaki
- Department of Chemistry, Faculty of Science, Okayama University, Okayama, 700-8530, Japan
| | - Masakazu Matsumoto
- Department of Chemistry, Faculty of Science, Okayama University, Okayama, 700-8530, Japan
| | - Hideki Tanaka
- Department of Chemistry, Faculty of Science, Okayama University, Okayama, 700-8530, Japan and Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama, 700-8530, Japan.
| |
Collapse
|
26
|
Costandy J, Michalis VK, Tsimpanogiannis IN, Stubos AK, Economou IG. The role of intermolecular interactions in the prediction of the phase equilibria of carbon dioxide hydrates. J Chem Phys 2015; 143:094506. [DOI: 10.1063/1.4929805] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joseph Costandy
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Vasileios K. Michalis
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Ioannis N. Tsimpanogiannis
- Environmental Research Laboratory, National Center for Scientific Research “Demokritos,” GR-15310 Aghia Paraskevi Attikis, Greece
| | - Athanassios K. Stubos
- Environmental Research Laboratory, National Center for Scientific Research “Demokritos,” GR-15310 Aghia Paraskevi Attikis, Greece
| | - Ioannis G. Economou
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| |
Collapse
|
27
|
Bagherzadeh SA, Alavi S, Ripmeester J, Englezos P. Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth. J Chem Phys 2015; 142:214701. [DOI: 10.1063/1.4920971] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Míguez JM, Conde MM, Torré JP, Blas FJ, Piñeiro MM, Vega C. Molecular dynamics simulation of CO2hydrates: Prediction of three phase coexistence line. J Chem Phys 2015; 142:124505. [DOI: 10.1063/1.4916119] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- J. M. Míguez
- Laboratoire des Fluides Complexes et leurs Réservoirs, UMR 5150, Université de Pau et des Pays de l’Adour, B. P. 1155, Pau-Cedex 64013, France
| | - M. M. Conde
- Laboratoire des Fluides Complexes et leurs Réservoirs, UMR 5150, Université de Pau et des Pays de l’Adour, B. P. 1155, Pau-Cedex 64013, France
| | - J.-P. Torré
- Laboratoire des Fluides Complexes et leurs Réservoirs, UMR 5150, Université de Pau et des Pays de l’Adour, B. P. 1155, Pau-Cedex 64013, France
| | - F. J. Blas
- Departamento de Física Aplicada, Facultad de Ciencias Experimentales, and Centro de Física Teórica y Matemática FIMAT, Universidad de Huelva, 21071 Huelva, Spain
| | - M. M. Piñeiro
- Departamento de Física Aplicada, Facultade de Ciencias, Universidade de Vigo, E36310 Vigo, Spain
| | - C. Vega
- Departamento de Química-Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E28040 Madrid, Spain
| |
Collapse
|
29
|
Daskalakis V, Charalambous F, Panagiotou F, Nearchou I. Effects of surface-active organic matter on carbon dioxide nucleation in atmospheric wet aerosols: a molecular dynamics study. Phys Chem Chem Phys 2014; 16:23723-34. [PMID: 25272147 DOI: 10.1039/c4cp03580a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Organic matter (OM) uptake in cloud droplets produces water-soluble secondary organic aerosols (SOA) via aqueous chemistry. These play a significant role in aerosol properties. We report the effects of OM uptake in wet aerosols, in terms of the dissolved-to-gas carbon dioxide nucleation using molecular dynamics (MD) simulations. Carbon dioxide has been implicated in the natural rainwater as well as seawater acidity. Variability of the cloud and raindrop pH is assumed in space and time, as regional emissions, local human activities and geophysical characteristics differ. Rain scavenging of inorganic SOx, NOx and NH3 plays a major role in rain acidity in terms of acid-base activity, however carbon dioxide solubility also remains a key parameter. Based on the MD simulations we propose that the presence of surface-active OM promotes the dissolved-to-gas carbon dioxide nucleation in wet aerosols, even at low temperatures, strongly decreasing carbon dioxide solubility. A discussion is made on the role of OM in controlling the pH of a cloud or raindrop, as a consequence, without involving OM ionization equilibrium. The results are compared with experimental and computational studies in the literature.
Collapse
Affiliation(s)
- Vangelis Daskalakis
- Cyprus University of Technology, Department of Environmental Science and Technology, P.O. Box 50329, 3603 Limassol, Cyprus.
| | | | | | | |
Collapse
|
30
|
Yagasaki T, Matsumoto M, Andoh Y, Okazaki S, Tanaka H. Dissociation of Methane Hydrate in Aqueous NaCl Solutions. J Phys Chem B 2014; 118:11797-804. [DOI: 10.1021/jp507978u] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takuma Yagasaki
- Department
of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Masakazu Matsumoto
- Department
of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Yoshimichi Andoh
- Department
of Applied Chemistry, Nagoya University, Nagoya 464-8603, Japan
| | - Susumu Okazaki
- Department
of Applied Chemistry, Nagoya University, Nagoya 464-8603, Japan
| | - Hideki Tanaka
- Department
of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
- Research Center
of New Functional Materials for Energy Production, Storage and Transport, Okayama 700-8530, Japan
| |
Collapse
|