1
|
Travnikova O, Kimberg V, Cunha de Miranda B, Trinter F, Schöffler MS, Carniato S, Marchenko T, Guillemin R, Ismail I, Kastirke G, Piancastelli MN, Jahnke T, Dörner R, Simon M. X-ray-Induced Molecular Catapult: Ultrafast Dynamics Driven by Lightweight Linkages. J Phys Chem Lett 2024; 15:11883-11890. [PMID: 39569981 DOI: 10.1021/acs.jpclett.4c02511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
In our work, we demonstrate that X-ray photons can initiate a "molecular catapult" effect, leading to the dissociation of chemical bonds and the formation of heavy fragments within just a few femtoseconds. We reconstruct the momenta of fragments from a three-body dissociation in bromochloromethane using the ion pair average (IPA) reference frame, demonstrating how light atomic groups, such as alkylene and alkanylene, can govern nuclear dynamics during the dissociation process, akin to projectiles released by a catapult. Supported by ab initio calculations, this work highlights the crucial role of low-reduced-mass vibrational modes in driving ultrafast chemical processes.
Collapse
Affiliation(s)
- Oksana Travnikova
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - Victor Kimberg
- Division of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Barbara Cunha de Miranda
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - Florian Trinter
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, D-14195 Berlin, Germany
| | - Markus S Schöffler
- Institut für Kernphysik, Goethe-Universität, D-60438 Frankfurt am Main, Germany
| | - Stéphane Carniato
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - Tatiana Marchenko
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - Renaud Guillemin
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - Iyas Ismail
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - Gregor Kastirke
- Institut für Kernphysik, Goethe-Universität, D-60438 Frankfurt am Main, Germany
| | - Maria Novella Piancastelli
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - Till Jahnke
- European XFEL, D-22869 Schenefeld, Germany
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - Reinhard Dörner
- Institut für Kernphysik, Goethe-Universität, D-60438 Frankfurt am Main, Germany
| | - Marc Simon
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| |
Collapse
|
2
|
Caster KL, Lee J, Donnellan Z, Selby TM, Osborn DL, Goulay F. Formation of a Resonance-Stabilized Radical Intermediate by Hydroxyl Radical Addition to Cyclopentadiene. J Phys Chem A 2022; 126:9031-9041. [DOI: 10.1021/acs.jpca.2c06934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Kacee L. Caster
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - James Lee
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Zachery Donnellan
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Talitha M. Selby
- Department of Mathematics and Natural Sciences, University of Wisconsin-Milwaukee, West Bend, Wisconsin53095, United States
| | - David L. Osborn
- Combustion Research Facility, Sandia National Laboratories, Mail Stop 9055, Livermore, California94551, United States
- Department of Chemical Engineering, University of California, Davis, Davis, California95616, United States
| | - Fabien Goulay
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| |
Collapse
|
3
|
Recio P, Cachón J, Rubio-Lago L, Chicharro DV, Zanchet A, Limão-Vieira P, de Oliveira N, Samartzis PC, Marggi Poullain S, Bañares L. Imaging the Photodissociation Dynamics and Fragment Alignment of CH 2BrI at 193 nm. J Phys Chem A 2022; 126:8404-8422. [DOI: 10.1021/acs.jpca.2c05897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Pedro Recio
- Departamento de Química Física (Unidad Asociada I+D+i al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040Madrid, Spain
| | - Javier Cachón
- Departamento de Química Física (Unidad Asociada I+D+i al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040Madrid, Spain
| | - Luis Rubio-Lago
- Departamento de Química Física (Unidad Asociada I+D+i al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040Madrid, Spain
| | - David V. Chicharro
- Departamento de Química Física (Unidad Asociada I+D+i al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040Madrid, Spain
- Quantum Dynamics & Control, Max Planck Institute for Nuclear Physics (MPIK), Saupfercheckweg 1, 69117Heidelberg, Germany
| | - Alexandre Zanchet
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006Madrid, Spain
| | - Paulo Limão-Vieira
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516Caparica, Portugal
| | - Nelson de Oliveira
- Synchrotron SOLEIL, L’Orme des Merisiers, St. Aubin, BP 48, 91192Gif sur Yvette, France
| | - Peter C. Samartzis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), Vassilika Vouton, 70013Heraklion, Greece
| | - Sonia Marggi Poullain
- Departamento de Química Física (Unidad Asociada I+D+i al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040Madrid, Spain
| | - Luis Bañares
- Departamento de Química Física (Unidad Asociada I+D+i al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanoscience), Cantoblanco, 28049Madrid, Spain
| |
Collapse
|
4
|
Watson PD, Corkish TR, Haakansson CT, McKinley AJ, Wild DA. Halide–propene complexes: validated DSD-PBEP86-D3BJ calculations and photoelectron spectroscopy. Phys Chem Chem Phys 2022; 24:25842-25852. [DOI: 10.1039/d2cp03796c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Anion photoelectron spectroscopy has been used to determine the electron binding energies of the X−⋯C3H6 (X = Cl, Br, I) complexes.
Collapse
Affiliation(s)
- Peter D. Watson
- School of Molecular Sciences, The University of Western Australia, Crawley, 6009, Western Australia, Australia
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Timothy R. Corkish
- School of Molecular Sciences, The University of Western Australia, Crawley, 6009, Western Australia, Australia
| | - Christian T. Haakansson
- School of Molecular Sciences, The University of Western Australia, Crawley, 6009, Western Australia, Australia
| | - Allan J. McKinley
- School of Molecular Sciences, The University of Western Australia, Crawley, 6009, Western Australia, Australia
| | - Duncan A. Wild
- School of Molecular Sciences, The University of Western Australia, Crawley, 6009, Western Australia, Australia
- School of Science, Edith Cowan University, Joondalup, 6027, Western Australia, Australia
| |
Collapse
|
5
|
Marggi Poullain S, Chicharro DV, Navarro E, Rubio-Lago L, González-Vázquez J, Bañares L. Photodissociation dynamics of bromoiodomethane from the first and second absorption bands. A combined velocity map and slice imaging study. Phys Chem Chem Phys 2018; 20:3490-3503. [PMID: 29335697 DOI: 10.1039/c7cp07077b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ion imaging is applied to disentangle the selective bond cleavage in the photodissociation of bromoiodomethane from the two first absorption bands.
Collapse
Affiliation(s)
- Sonia Marggi Poullain
- Departamento de Qumica Fsica I
- Facultad de Ciencias Qumicas
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| | - David V. Chicharro
- Departamento de Qumica Fsica I
- Facultad de Ciencias Qumicas
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| | - Eduardo Navarro
- Departamento de Qumica Fsica I
- Facultad de Ciencias Qumicas
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| | - Luis Rubio-Lago
- Departamento de Qumica Fsica I
- Facultad de Ciencias Qumicas
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| | - Jesús González-Vázquez
- Departamento de Qumica
- Módulo 13
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049 Madrid
| | - Luis Bañares
- Departamento de Qumica Fsica I
- Facultad de Ciencias Qumicas
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| |
Collapse
|
6
|
Adams JD, Scrape PG, Li S, Lee SH, Butler LJ. Primary Product Branching in the Photodissociation of Chloroacetaldehyde at 157 nm. J Phys Chem A 2017; 121:6732-6741. [PMID: 28862852 DOI: 10.1021/acs.jpca.7b05318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We used crossed laser-molecular beam scattering to study the primary photodissociation channels of chloroacetaldehyde (CH2ClCHO) at 157 nm. In addition to the C-Cl bond fission primary photodissociation channel, the data evidence two other photodissociation channels: HCl photoelimination and C-C bond fission. This is the first direct evidence of the C-C bond fission channel in chloroacetaldehyde, and we found that it significantly competes with the C-Cl bond fission channel. We determined the total primary photodissociation branching fractions for C-Cl fission:HCl elimination:C-C fission to be 0.65:0.07:0.28. The branching between the primary channels suggests the presence of interesting excited state dynamics in chloroacetaldehyde. Some of the vinoxy radicals from C-Cl photofission and most of the ketene cofragments formed in HCl photoelimination have enough internal energy to undergo secondary dissociation. While our previous velocity map imaging study on the photodissociation of chloroacetaldehyde at 157 nm focused on the barrier for the unimolecular dissociation of vinoxy to H + ketene, this work shows that the HCl elimination channel contributed to the high kinetic energy portion of the m/z = 42 signal in that study.
Collapse
Affiliation(s)
| | | | | | - Shih-Huang Lee
- National Synchrotron Radiation Research Center , Hsinchu 30076, Taiwan, Republic of China
| | - Laurie J Butler
- The James Franck Institute, Department of Chemistry, The University of Chicago , Chicago, Illinois 60637, United States
| |
Collapse
|
7
|
Chicharro DV, Marggi Poullain S, González-Vázquez J, Bañares L. Slice imaging of the UV photodissociation of CH 2BrCl from the maximum of the first absorption band. J Chem Phys 2017; 147:013945. [PMID: 28688417 DOI: 10.1063/1.4984789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The photodissociation dynamics of bromochloromethane (CH2BrCl) have been investigated at the maximum of the first absorption band, at the excitation wavelengths 203 and 210 nm, using the slice imaging technique in combination with a probe detection of bromine-atom fragments, Br(2P3/2) and Br*(2P1/2), via (2 + 1) resonance enhanced multiphoton ionization. Translational energy distributions and angular distributions reported for both Br(2P3/2) and Br*(2P1/2) fragments show two contributions for the Br(2P3/2) channel and a single contribution for the Br*(2P1/2) channel. High level ab initio calculations have been performed in order to elucidate the dissociation mechanisms taking place. The computed absorption spectrum and potential energy curves indicate the main contribution of the populated 4A″, 5A', and 6A' excited states leading to a C-Br cleavage. Consistently with the results, the single contribution for the Br*(2P1/2) channel has been attributed to direct dissociation through the 6A' state as well as an indirect dissociation of the 5A' state requiring a 5A' → 4A' reverse non-adiabatic crossing. Similarly, a faster contribution for the Br(2P3/2) channel characterized by a similar energy partitioning and anisotropy than those for the Br*(2P1/2) channel is assigned to a direct dissociation through the 5A' state, while the slower component appears to be due to the direct dissociation on the 4A″ state.
Collapse
Affiliation(s)
- D V Chicharro
- Departmento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - S Marggi Poullain
- Departmento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - J González-Vázquez
- Departamento de Química and Institute for Advanced Research in Chemistry, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - L Bañares
- Departmento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
8
|
Lam CS, Adams JD, Butler LJ. The Onset of H + Ketene Products from Vinoxy Radicals Prepared by Photodissociation of Chloroacetaldehyde at 157 nm. J Phys Chem A 2016; 120:2521-36. [PMID: 27091706 DOI: 10.1021/acs.jpca.6b01256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigate the unimolecular dissociation of the vinoxy radical (CH2CHO) prepared with high internal energy imparted from the photodissociation of chloroacetaldehyde (CH2ClCHO) at 157 nm. Using a velocity map imaging apparatus, we measured the speed distribution of the recoiling chlorine atoms, Cl((2)P3/2) and Cl((2)P1/2), and derived from this the resulting distribution of kinetic energy, P(ET), imparted to the Cl + vinoxy fragments upon dissociation. Using conservation of energy, the distribution of kinetic energy was used to determine the total internal energy distribution in the radical. The P(ET) derived for the C-Cl bond fission presented in this work suggests the vinoxy radicals are mostly formed in the à state. We also took ion images at m/z = 42 and m/z = 15 to characterize the branching between the unimolecular dissociation channels of the vinoxy radical to H + ketene and methyl + CO products. Our results show a marked change in the branching ratio between the two channels from the previous study on the photodissociation of chloroacetaldehyde at 193 nm by Miller et al. (J. Chem. Phys., 2004, 121, 1830) in that the production of ketene is now favored over the production of methyl. To help analyze the data, we developed a model for the branching between the two channels that takes into account how the change in rotational energy en route to the products affects the vibrational energy available to surmount the barriers to the channels. The model predicts the portion of the C-Cl bond fission P(ET) that produces dissociative vinoxy radicals, then predicts the branching ratio between the H + ketene and CH3 + CO product channels at each ET. The model uses Rice-Ramsperger-Kassel-Marcus rate constants at the correct sums and densities of vibrational states while accounting for angular momentum conservation. We find that the predicted portion of the P(ET) that produces H + ketene products best fits the experimental portion (that we derive by taking advantage of conservation of momentum) if we use a barrier height for the H + ketene channel that is 4.0 ± 0.5 kcal/mol higher than the isomerization barrier en route to CH3 + CO products. Using the G4 computed isomerization barrier of 40.6 kcal/mol, this gives an experimentally determined barrier to the H + ketene channel of 44.6 kcal/mol. From these calculations, we also predict the branching ratio between the H + ketene and methyl + CO channels to be ∼2.1:1.
Collapse
Affiliation(s)
- Chow-Shing Lam
- The James Franck Institute and Department of Chemistry, The University of Chicago , Chicago, Illinois 60637 United States
| | - Jonathan D Adams
- The James Franck Institute and Department of Chemistry, The University of Chicago , Chicago, Illinois 60637 United States
| | - Laurie J Butler
- The James Franck Institute and Department of Chemistry, The University of Chicago , Chicago, Illinois 60637 United States
| |
Collapse
|
9
|
Merrill WG, Crim FF, Case AS. Dynamics and yields for CHBrCl2photodissociation from 215–265 nm. Phys Chem Chem Phys 2016; 18:32999-33008. [PMID: 27886282 DOI: 10.1039/c6cp05061a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We characterize the energy partitioning and spin–orbit yields for CHBrCl2photodissociation. Resonance enhanced multiphoton ionization selectively detects the Br and Br* product channels. Time of flight mass spectrometry and velocity-map imaging permit measurement of relative quantum yields, as well as kinetic and internal energy distributions. We further interpret the energy partitioning through use of impulsive models.
Collapse
Affiliation(s)
- Wyatt G. Merrill
- Department of Chemistry
- University of Wisconsin – Madison
- Madison
- USA
| | - F. Fleming Crim
- Department of Chemistry
- University of Wisconsin – Madison
- Madison
- USA
| | - Amanda S. Case
- Department of Chemistry
- University of Wisconsin – Madison
- Madison
- USA
| |
Collapse
|
10
|
Brynteson MD, Butler LJ. Predicting the effect of angular momentum on the dissociation dynamics of highly rotationally excited radical intermediates. J Chem Phys 2015; 142:054301. [PMID: 25662639 DOI: 10.1063/1.4905776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a model which accurately predicts the net speed distributions of products resulting from the unimolecular decomposition of rotationally excited radicals. The radicals are produced photolytically from a halogenated precursor under collision-free conditions so they are not in a thermal distribution of rotational states. The accuracy relies on the radical dissociating with negligible energetic barrier beyond the endoergicity. We test the model predictions using previous velocity map imaging and crossed laser-molecular beam scattering experiments that photolytically generated rotationally excited CD2CD2OH and C3H6OH radicals from brominated precursors; some of those radicals then undergo further dissociation to CD2CD2 + OH and C3H6 + OH, respectively. We model the rotational trajectories of these radicals, with high vibrational and rotational energy, first near their equilibrium geometry, and then by projecting each point during the rotation to the transition state (continuing the rotational dynamics at that geometry). This allows us to accurately predict the recoil velocity imparted in the subsequent dissociation of the radical by calculating the tangential velocities of the CD2CD2/C3H6 and OH fragments at the transition state. The model also gives a prediction for the distribution of angles between the dissociation fragments' velocity vectors and the initial radical's velocity vector. These results are used to generate fits to the previously measured time-of-flight distributions of the dissociation fragments; the fits are excellent. The results demonstrate the importance of considering the precession of the angular velocity vector for a rotating radical. We also show that if the initial angular momentum of the rotating radical lies nearly parallel to a principal axis, the very narrow range of tangential velocities predicted by this model must be convoluted with a J = 0 recoil velocity distribution to achieve a good result. The model relies on measuring the kinetic energy release when the halogenated precursor is photodissociated via a repulsive excited state but does not include any adjustable parameters. Even when different conformers of the photolytic precursor are populated, weighting the prediction by a thermal conformer population gives an accurate prediction for the relative velocity vectors of the fragments from the highly rotationally excited radical intermediates.
Collapse
Affiliation(s)
- Matthew D Brynteson
- Department of Chemistry and the James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Laurie J Butler
- Department of Chemistry and the James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
11
|
Papadimitriou VC, Spitieri CS, Papagiannakopoulos P, Cazaunau M, Lendar M, Daële V, Mellouki A. Atmospheric chemistry of (CF3)2CCH2: OH radicals, Cl atoms and O3 rate coefficients, oxidation end-products and IR spectra. Phys Chem Chem Phys 2015; 17:25607-20. [DOI: 10.1039/c5cp03840e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OH, Cl and O3 kinetics and IR spectra of (CF3)2CCH2 utilized to estimate tropospheric lifetimes, radiative efficiencies, global warming potentials, estimated photochemical ozone creation potentials and tropospheric oxidation end-products.
Collapse
Affiliation(s)
| | - Christina S. Spitieri
- Laboratory of Photochemistry and Kinetics
- Department of Chemistry
- University of Crete
- Heraklion
- Greece
| | - Panos Papagiannakopoulos
- Laboratory of Photochemistry and Kinetics
- Department of Chemistry
- University of Crete
- Heraklion
- Greece
| | - Mathieu Cazaunau
- Institut de Combustion
- Aérothermique
- Réactivité et Environnement
- CNRS/OSUC
- Orléans
| | - Maria Lendar
- Institut de Combustion
- Aérothermique
- Réactivité et Environnement
- CNRS/OSUC
- Orléans
| | - Véronique Daële
- Institut de Combustion
- Aérothermique
- Réactivité et Environnement
- CNRS/OSUC
- Orléans
| | - Abdelwahid Mellouki
- Institut de Combustion
- Aérothermique
- Réactivité et Environnement
- CNRS/OSUC
- Orléans
| |
Collapse
|