1
|
Biswas S, Niedzwiedzki DM, Pakrasi HB. Energy dissipation efficiency in the CP43 assembly intermediate complex of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148982. [PMID: 37146928 DOI: 10.1016/j.bbabio.2023.148982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023]
Abstract
Photosystem II in oxygenic organisms is a large membrane bound rapidly turning over pigment protein complex. During its biogenesis, multiple assembly intermediates are formed, including the CP43-preassembly complex (pCP43). To understand the energy transfer dynamics in pCP43, we first engineered a His-tagged version of the CP43 in a CP47-less strain of the cyanobacterium Synechocystis 6803. Isolated pCP43 from this engineered strain was subjected to advanced spectroscopic analysis to evaluate its excitation energy dissipation characteristics. These included measurements of steady-state absorption and fluorescence emission spectra for which correlation was tested with Stepanov relation. Comparison of fluorescence excitation and absorptance spectra determined that efficiency of energy transfer from β-carotene to chlorophyll a is 39 %. Time-resolved fluorescence images of pCP43-bound Chl a were recorded on streak camera, and fluorescence decay dynamics were evaluated with global fitting. These demonstrated that the decay kinetics strongly depends on temperature and buffer used to disperse the protein sample and fluorescence decay lifetime was estimated in 3.2-5.7 ns time range, depending on conditions. The pCP43 complex was also investigated with femtosecond and nanosecond time-resolved absorption spectroscopy upon excitation of Chl a and β-carotene to reveal pathways of singlet excitation relaxation/decay, Chl a triplet dynamics and Chl a → β-carotene triplet state sensitization process. The latter demonstrated that Chl a triplet in the pCP43 complex is not efficiently quenched by carotenoids. Finally, detailed kinetic analysis of the rise of the population of β-carotene triplets determined that the time constant of the carotenoid triplet sensitization is 40 ns.
Collapse
Affiliation(s)
- Sandeep Biswas
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University, St. Louis, MO 63130, USA; Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, MO 63130, USA.
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
2
|
Lu X, Selvaraj B, Ghimire-Rijal S, Orf GS, Meilleur F, Blankenship RE, Cuneo MJ, Myles DAA. Neutron and X-ray analysis of the Fenna-Matthews-Olson photosynthetic antenna complex from Prosthecochloris aestuarii. Acta Crystallogr F Struct Biol Commun 2019; 75:171-175. [PMID: 30839291 PMCID: PMC6404856 DOI: 10.1107/s2053230x19000724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/16/2019] [Indexed: 11/10/2022] Open
Abstract
The Fenna-Matthews-Olson protein from Prosthecochloris aestuarii (PaFMO) has been crystallized in a new form that is amenable to high-resolution X-ray and neutron analysis. The crystals belonged to space group H3, with unit-cell parameters a = b = 83.64, c = 294.78 Å, and diffracted X-rays to ∼1.7 Å resolution at room temperature. Large PaFMO crystals grown to volumes of 0.3-0.5 mm3 diffracted neutrons to 2.2 Å resolution on the MaNDi neutron diffractometer at the Spallation Neutron Source. The resolution of the neutron data will allow direct determination of the positions of H atoms in the structure, which are believed to be fundamentally important in tuning the individual excitation energies of bacteriochlorophylls in this archetypal photosynthetic antenna complex. This is one of the largest unit-cell systems yet studied using neutron diffraction, and will allow the first high-resolution neutron analysis of a photosynthetic antenna complex.
Collapse
Affiliation(s)
- Xun Lu
- Neutron Science Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Brinda Selvaraj
- Neutron Science Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Sudipa Ghimire-Rijal
- Neutron Science Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gregory S. Orf
- Departments of Biology and Chemistry, Washington University in St Louis, St Louis, MO 63130, USA
| | - Flora Meilleur
- Neutron Science Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Molecular and Structural Biochemistry, North Carolina State University, Campus Box 7622, Raleigh, NC 27695, USA
| | - Robert E. Blankenship
- Departments of Biology and Chemistry, Washington University in St Louis, St Louis, MO 63130, USA
| | - Matthew J. Cuneo
- Neutron Science Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Dean A. A. Myles
- Neutron Science Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
3
|
Ranjbar Choubeh R, Koehorst RBM, Bína D, Struik PC, Pšenčík J, van Amerongen H. Efficiency of excitation energy trapping in the green photosynthetic bacterium Chlorobaculum tepidum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:147-154. [PMID: 30537470 DOI: 10.1016/j.bbabio.2018.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 01/05/2023]
Abstract
During the millions of years of evolution, photosynthetic organisms have adapted to almost all terrestrial and aquatic habitats, although some environments are obviously more suitable for photosynthesis than others. Photosynthetic organisms living in low-light conditions require on the one hand a large light-harvesting apparatus to absorb as many photons as possible. On the other hand, the excitation trapping time scales with the size of the light-harvesting system, and the longer the distance over which the formed excitations have to be transferred, the larger the probability to lose excitations. Therefore a compromise between photon capture efficiency and excitation trapping efficiency needs to be found. Here we report results on the whole cells of the green sulfur bacterium Chlorobaculum tepidum. Its efficiency of excitation energy transfer and charge separation enables the organism to live in environments with very low illumination. Using fluorescence measurements with picosecond resolution, we estimate that despite a rather large size and complex composition of its light-harvesting apparatus, the quantum efficiency of its photochemistry is around ~87% at 20 °C, ~83% at 45 °C, and about ~81% at 77 K when part of the excitation energy is trapped by low-energy bacteriochlorophyll a molecules. The data are evaluated using target analysis, which provides further insight into the functional organization of the low-light adapted photosynthetic apparatus.
Collapse
Affiliation(s)
| | - Rob B M Koehorst
- Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands; MicroSpectroscopy Research Facility, Wageningen University, Wageningen, the Netherlands
| | - David Bína
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University, Wageningen, the Netherlands
| | - Jakub Pšenčík
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands; MicroSpectroscopy Research Facility, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
4
|
Magdaong NCM, Niedzwiedzki DM, Saer RG, Goodson C, Blankenship RE. Excitation energy transfer kinetics and efficiency in phototrophic green sulfur bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1180-1190. [DOI: 10.1016/j.bbabio.2018.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 01/16/2023]
|
5
|
Khmelnitskiy A, Kell A, Reinot T, Saer RG, Blankenship RE, Jankowiak R. Energy landscape of the intact and destabilized FMO antennas from C. tepidum and the L122Q mutant: Low temperature spectroscopy and modeling study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:165-173. [DOI: 10.1016/j.bbabio.2017.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022]
|
6
|
Stadnytskyi V, Orf GS, Blankenship RE, Savikhin S. Near shot-noise limited time-resolved circular dichroism pump-probe spectrometer. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:033104. [PMID: 29604771 DOI: 10.1063/1.5009468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We describe an optical near shot-noise limited time-resolved circular dichroism (TRCD) pump-probe spectrometer capable of reliably measuring circular dichroism signals in the order of μdeg with nanosecond time resolution. Such sensitivity is achieved through a modification of existing TRCD designs and introduction of a new data processing protocol that eliminates approximations that have caused substantial nonlinearities in past measurements and allows the measurement of absorption and circular dichroism transients simultaneously with a single pump pulse. The exceptional signal-to-noise ratio of the described setup makes the TRCD technique applicable to a large range of non-biological and biological systems. The spectrometer was used to record, for the first time, weak TRCD kinetics associated with the triplet state energy transfer in the photosynthetic Fenna-Matthews-Olson antenna pigment-protein complex.
Collapse
Affiliation(s)
- Valentyn Stadnytskyi
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47906, USA
| | - Gregory S Orf
- Departments of Biology and Chemistry, Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Robert E Blankenship
- Departments of Biology and Chemistry, Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Sergei Savikhin
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47906, USA
| |
Collapse
|
7
|
Light harvesting in phototrophic bacteria: structure and function. Biochem J 2017; 474:2107-2131. [DOI: 10.1042/bcj20160753] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/23/2022]
Abstract
This review serves as an introduction to the variety of light-harvesting (LH) structures present in phototrophic prokaryotes. It provides an overview of the LH complexes of purple bacteria, green sulfur bacteria (GSB), acidobacteria, filamentous anoxygenic phototrophs (FAP), and cyanobacteria. Bacteria have adapted their LH systems for efficient operation under a multitude of different habitats and light qualities, performing both oxygenic (oxygen-evolving) and anoxygenic (non-oxygen-evolving) photosynthesis. For each LH system, emphasis is placed on the overall architecture of the pigment–protein complex, as well as any relevant information on energy transfer rates and pathways. This review addresses also some of the more recent findings in the field, such as the structure of the CsmA chlorosome baseplate and the whole-cell kinetics of energy transfer in GSB, while also pointing out some areas in need of further investigation.
Collapse
|
8
|
Magdaong NCM, Saer RG, Niedzwiedzki DM, Blankenship RE. Ultrafast Spectroscopic Investigation of Energy Transfer in Site-Directed Mutants of the Fenna-Matthews-Olson (FMO) Antenna Complex from Chlorobaculum tepidum. J Phys Chem B 2017; 121:4700-4712. [PMID: 28422512 DOI: 10.1021/acs.jpcb.7b01270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ultrafast transient absorption (TA) and time-resolved fluorescence (TRF) spectroscopic studies were performed on several mutants of the bacteriochlorophyll (BChl) a-containing Fenna-Matthews-Olson (FMO) complex from the green sulfur bacterium Chlorobaculum tepidum. These mutants were generated to perturb a particular BChl a site and determine its effects on the optical spectroscopic properties of the pigment-protein complex. Measurements conducted at 77 K under both oxidizing and reducing conditions revealed changes in the dynamics of the various spectral components as compared to the data set from wild-type FMO. TRF results show that under reducing conditions all FMO samples decay with a similar lifetime in the ∼2 ns range. The oxidized samples revealed varying fluorescence lifetimes of the terminal BChl a emitter, considerably shorter than those recorded for the reduced samples, indicating that the quenching mechanism in wild-type FMO is still present in the mutants. Global fitting of TA data yielded similar overall results, and in addition, the lifetimes of early decaying components were determined. Target analyses of TA data for select FMO samples generated kinetic models that better simulate the TA data. A comparison of the lifetime of excitonic components for all samples reveals that the mutations affect mainly the early kinetic components, but not that of the lowest energy exciton, which reflects the flexibility of energy transfer in FMO.
Collapse
Affiliation(s)
- Nikki Cecil M Magdaong
- Department of Biology, ‡Department of Chemistry, and §Photosynthetic Antenna Research Center, Washington University in Saint Louis , One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Rafael G Saer
- Department of Biology, ‡Department of Chemistry, and §Photosynthetic Antenna Research Center, Washington University in Saint Louis , One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Dariusz M Niedzwiedzki
- Department of Biology, ‡Department of Chemistry, and §Photosynthetic Antenna Research Center, Washington University in Saint Louis , One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Robert E Blankenship
- Department of Biology, ‡Department of Chemistry, and §Photosynthetic Antenna Research Center, Washington University in Saint Louis , One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
9
|
Chen HYS, Liberton M, Pakrasi HB, Niedzwiedzki DM. Reevaluating the mechanism of excitation energy regulation in iron-starved cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:249-258. [DOI: 10.1016/j.bbabio.2017.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/20/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022]
|
10
|
Perturbation of bacteriochlorophyll molecules in Fenna–Matthews–Olson protein complexes through mutagenesis of cysteine residues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1455-1463. [DOI: 10.1016/j.bbabio.2016.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 11/19/2022]
|
11
|
Orf GS, Saer RG, Niedzwiedzki DM, Zhang H, McIntosh CL, Schultz JW, Mirica LM, Blankenship RE. Evidence for a cysteine-mediated mechanism of excitation energy regulation in a photosynthetic antenna complex. Proc Natl Acad Sci U S A 2016; 113:E4486-93. [PMID: 27335466 PMCID: PMC4978306 DOI: 10.1073/pnas.1603330113] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Light-harvesting antenna complexes not only aid in the capture of solar energy for photosynthesis, but regulate the quantity of transferred energy as well. Light-harvesting regulation is important for protecting reaction center complexes from overexcitation, generation of reactive oxygen species, and metabolic overload. Usually, this regulation is controlled by the association of light-harvesting antennas with accessory quenchers such as carotenoids. One antenna complex, the Fenna-Matthews-Olson (FMO) antenna protein from green sulfur bacteria, completely lacks carotenoids and other known accessory quenchers. Nonetheless, the FMO protein is able to quench energy transfer in aerobic conditions effectively, indicating a previously unidentified type of regulatory mechanism. Through de novo sequencing MS, chemical modification, and mutagenesis, we have pinpointed the source of the quenching action to cysteine residues (Cys49 and Cys353) situated near two low-energy bacteriochlorophylls in the FMO protein from Chlorobaculum tepidum Removal of these cysteines (particularly removal of the completely conserved Cys353) through N-ethylmaleimide modification or mutagenesis to alanine abolishes the aerobic quenching effect. Electrochemical analysis and electron paramagnetic resonance spectra suggest that in aerobic conditions the cysteine thiols are converted to thiyl radicals which then are capable of quenching bacteriochlorophyll excited states through electron transfer photochemistry. This simple mechanism has implications for the design of bio-inspired light-harvesting antennas and the redesign of natural photosynthetic systems.
Collapse
Affiliation(s)
- Gregory S Orf
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130; Department of Biology, Washington University in St. Louis, St. Louis, MO 63130; Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, MO 63130
| | - Rafael G Saer
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130; Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, MO 63130
| | - Dariusz M Niedzwiedzki
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, MO 63130
| | - Hao Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130; Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, MO 63130
| | - Chelsea L McIntosh
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Jason W Schultz
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Liviu M Mirica
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Robert E Blankenship
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130; Department of Biology, Washington University in St. Louis, St. Louis, MO 63130; Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
12
|
Kell A, Blankenship RE, Jankowiak R. Effect of Spectral Density Shapes on the Excitonic Structure and Dynamics of the Fenna–Matthews–Olson Trimer from Chlorobaculum tepidum. J Phys Chem A 2016; 120:6146-54. [DOI: 10.1021/acs.jpca.6b03107] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Robert E. Blankenship
- Departments
of Chemistry and Biology, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | | |
Collapse
|
13
|
Baker LA, Habershon S. Robustness, efficiency, and optimality in the Fenna-Matthews-Olson photosynthetic pigment-protein complex. J Chem Phys 2015; 143:105101. [DOI: 10.1063/1.4930110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Lewis A. Baker
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Scott Habershon
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
14
|
He G, Niedzwiedzki DM, Orf GS, Zhang H, Blankenship RE. Dynamics of Energy and Electron Transfer in the FMO-Reaction Center Core Complex from the Phototrophic Green Sulfur Bacterium Chlorobaculum tepidum. J Phys Chem B 2015; 119:8321-9. [PMID: 26061391 DOI: 10.1021/acs.jpcb.5b04170] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The reaction center core (RCC) complex and the RCC with associated Fenna-Matthews-Olson protein (FMO-RCC) complex from the green sulfur bacterium Chlorobaculum tepidum were studied comparatively by steady-state and time-resolved fluorescence (TRF) and femtosecond time-resolved transient absorption (TA) spectroscopies. The energy transfer efficiency from the FMO to the RCC complex was calculated to be ∼40% based on the steady-state fluorescence. TRF showed that most of the FMO complexes (66%), regardless of the fact that they were physically attached to the RCC, were not able to transfer excitation energy to the reaction center. The TA spectra of the RCC complex showed a 30-38 ps lifetime component regardless of the excitation wavelengths, which is attributed to charge separation. Excitonic equilibration was shown in TA spectra of the RCC complex when excited into the BChl a Qx band at 590 nm and the Chl a Qy band at 670 nm, while excitation at 840 nm directly populated the low-energy excited state and equilibration within the excitonic BChl a manifold was not observed. The TA spectra for the FMO-RCC complex excited into the BChl a Qx band could be interpreted by a combination of the excited FMO protein and RCC complex. The FMO-RCC complex showed an additional fast kinetic component compared with the FMO protein and the RCC complex, which may be due to FMO-to-RCC energy transfer.
Collapse
Affiliation(s)
- Guannan He
- †Departments of Chemistry and Biology and ‡Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St Louis, Missouri 63130, United States
| | - Dariusz M Niedzwiedzki
- †Departments of Chemistry and Biology and ‡Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St Louis, Missouri 63130, United States
| | - Gregory S Orf
- †Departments of Chemistry and Biology and ‡Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St Louis, Missouri 63130, United States
| | - Hao Zhang
- †Departments of Chemistry and Biology and ‡Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St Louis, Missouri 63130, United States
| | - Robert E Blankenship
- †Departments of Chemistry and Biology and ‡Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St Louis, Missouri 63130, United States
| |
Collapse
|
15
|
Kihara S, Hartzler DA, Orf GS, Blankenship RE, Savikhin S. The Fate of the Triplet Excitations in the Fenna–Matthews–Olson Complex. J Phys Chem B 2015; 119:5765-72. [DOI: 10.1021/jp512222c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shigeharu Kihara
- Department
of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Daniel A. Hartzler
- Department
of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Gregory S. Orf
- Photosynthetic
Antenna Research Center, Departments of Chemistry and Biology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Robert E. Blankenship
- Photosynthetic
Antenna Research Center, Departments of Chemistry and Biology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Sergei Savikhin
- Department
of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|