1
|
Zeng J, Tang Y, Dong X, Li F, Wei G. Influence of ALS-linked M337V mutation on the conformational ensembles of TDP-43 321-340 peptide monomer and dimer. Proteins 2024; 92:1059-1069. [PMID: 36841957 DOI: 10.1002/prot.26482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
The transactive response (TAR) DNA/RNA-binding protein 43 (TDP-43) can self-assemble into both functional stress granules via liquid-liquid phase separation (LLPS) and pathogenic amyloid fibrillary aggregates that are closely linked to amyotrophic lateral sclerosis. Previous experimental studies reported that the low complexity domain (LCD) of TDP-43 plays an essential role in the LLPS and aggregation of the full-length protein, and it alone can also undergo LLPS to form liquid droplets mainly via intermolecular interactions in the 321-340 region. And the ALS-associated M337V mutation impairs LCD's LLPS and facilitates liquid-solid phase transition. However, the underlying atomistic mechanism is not well understood. Herein, as a first step to understand the M337V-caused LLPS disruption of TDP-43 LCD mediated by the 321-340 region and the fibrillization enhancement, we investigated the conformational properties of monomer/dimer of TDP-43321-340 peptide and its M337V mutant by performing extensive all-atom explicit-solvent replica exchange molecular dynamic simulations. Our simulations demonstrate that M337V mutation alters the residue regions with high helix/β-structure propensities and thus affects the conformational ensembles of both monomer and dimer. M337V mutation inhibits helix formation in the N-terminal Ala-rich region and the C-terminal mutation site region, while facilitating their long β-sheet formation, albeit with a minor impact on the average probability of both helix structure and β-structure. Further analysis of dimer system shows that M337V mutation disrupts inter-molecular helix-helix interactions and W334-W334 π-π stacking interactions which were reported to be important for the LLPS of TDP-43 LCD, whereas enhances the overall peptide residue-residue interactions and weakens peptide-water interactions, which is conducive to peptide fibrillization. This study provides mechanistic insights into the M337V-mutation-induced impairment of phase separation and facilitation of fibril formation of TDP-43 LCD.
Collapse
Affiliation(s)
- Jiyuan Zeng
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China
| | - Xuewei Dong
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu, China
| | - Fangying Li
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China
| |
Collapse
|
2
|
Fu Z, Crooks EJ, Irizarry BA, Zhu X, Chowdhury S, Van Nostrand WE, Smith SO. An electrostatic cluster guides Aβ40 fibril formation in sporadic and Dutch-type cerebral amyloid angiopathy. J Struct Biol 2024; 216:108092. [PMID: 38615725 PMCID: PMC11162928 DOI: 10.1016/j.jsb.2024.108092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is associated with the accumulation of fibrillar Aβ peptides upon and within the cerebral vasculature, which leads to loss of vascular integrity and contributes to disease progression in Alzheimer's disease (AD). We investigate the structure of human-derived Aβ40 fibrils obtained from patients diagnosed with sporadic or familial Dutch-type (E22Q) CAA. Using cryo-EM, two primary structures are identified containing elements that have not been observed in in vitro Aβ40 fibril structures. One population has an ordered N-terminal fold comprised of two β-strands stabilized by electrostatic interactions involving D1, E22, D23 and K28. This charged cluster is disrupted in the second population, which exhibits a disordered N-terminus and is favored in fibrils derived from the familial Dutch-type CAA patient. These results illustrate differences between human-derived CAA and AD fibrils, and how familial CAA mutations can guide fibril formation.
Collapse
Affiliation(s)
- Ziao Fu
- Center for Structural Biology, Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, United States; Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY 10065, United States
| | - Elliot J Crooks
- Center for Structural Biology, Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, United States
| | - Brandon A Irizarry
- Center for Structural Biology, Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, United States
| | - Xiaoyue Zhu
- George and Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - Saikat Chowdhury
- Center for Structural Biology, Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, United States; CSIR-Centre for Cellular & Molecular Biology, Habsiguda, Uppal Road, Hyderabad 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Kamala Nehru Nagar, Gaziabad 201 002, Uttar Pradesh, India
| | - William E Van Nostrand
- George and Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, United States.
| | - Steven O Smith
- Center for Structural Biology, Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, United States
| |
Collapse
|
3
|
Ruttenberg SM, Nowick JS. A turn for the worse: Aβ β-hairpins in Alzheimer's disease. Bioorg Med Chem 2024; 105:117715. [PMID: 38615460 DOI: 10.1016/j.bmc.2024.117715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
Amyloid-β (Aβ) oligomers are a cause of neurodegeneration in Alzheimer's disease (AD). These soluble aggregates of the Aβ peptide have proven difficult to study due to their inherent metastability and heterogeneity. Strategies to isolate and stabilize homogenous Aβ oligomer populations have emerged such as mutations, covalent cross-linking, and protein fusions. These strategies along with molecular dynamics simulations have provided a variety of proposed structures of Aβ oligomers, many of which consist of molecules of Aβ in β-hairpin conformations. β-Hairpins are intramolecular antiparallel β-sheets composed of two β-strands connected by a loop or turn. Three decades of research suggests that Aβ peptides form several different β-hairpin conformations, some of which are building blocks of toxic Aβ oligomers. The insights from these studies are currently being used to design anti-Aβ antibodies and vaccines to treat AD. Research suggests that antibody therapies designed to target oligomeric Aβ may be more successful at treating AD than antibodies designed to target linear epitopes of Aβ or fibrillar Aβ. Aβ β-hairpins are good epitopes to use in antibody development to selectively target oligomeric Aβ. This review summarizes the research on β-hairpins in Aβ peptides and discusses the relevance of this conformation in AD pathogenesis and drug development.
Collapse
Affiliation(s)
- Sarah M Ruttenberg
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, United States
| | - James S Nowick
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, United States.
| |
Collapse
|
4
|
Nguyen PH, Derreumaux P. Insights into the Mixture of Aβ24 and Aβ42 Peptides from Atomistic Simulations. J Phys Chem B 2022; 126:10689-10696. [PMID: 36493347 DOI: 10.1021/acs.jpcb.2c07321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyloid-β (Aβ) oligomers play a central role in Alzheimer's disease (AD). Plaques of AD patients consist of Aβ40 and Aβ42 peptides and truncated Aβ peptides. The Aβ24 peptide, identified in human AD brains, was found to impair Aβ42 clearance through the brain-blood barrier. The Aβ24 peptide was also shown to reduce Aβ42 aggregation kinetics in pure buffer, but the underlying mechanism is unknown at atomistic level. In this study, we explored the conformational ensemble of the equimolar mixture of Aβ24 and Aβ42 by replica exchange molecular dynamics simulations and compared it to our previous results on the pure Aβ42 dimer. Our simulations demonstrate that the truncation at residue 24 changes the secondary, tertiary, and quaternary structures of the dimer, offering an explanation of the slower aggregation kinetics of the mixture.
Collapse
Affiliation(s)
- Phuong H Nguyen
- Université Paris Cité, UPR 9080 CNRS, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Université Paris Cité, UPR 9080 CNRS, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France.,Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
5
|
Sonar K, Mancera RL. Characterization of the Conformations of Amyloid Beta 42 in Solution That May Mediate Its Initial Hydrophobic Aggregation. J Phys Chem B 2022; 126:7916-7933. [PMID: 36179370 DOI: 10.1021/acs.jpcb.2c04743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intrinsically disordered peptides, such as amyloid β42 (Aβ42), lack a well-defined structure in solution. Aβ42 can undergo abnormal aggregation and amyloidogenesis in the brain, forming fibrillar plaques, a hallmark of Alzheimer's disease. The insoluble fibrillar forms of Aβ42 exhibit well-defined, cross β-sheet structures at the molecular level and are less toxic than the soluble, intermediate disordered oligomeric forms. However, the mechanism of initial interaction of monomers and subsequent oligomerization is not well understood. The structural disorder of Aβ42 adds to the challenges of determining the structural properties of its monomers, making it difficult to understand the underlying molecular mechanism of pathogenic aggregation. Certain regions of Aβ42 are known to exhibit helical propensity in different physiological conditions. NMR spectroscopy has shown that the Aβ42 monomer at lower pH can adopt an α-helical conformation and as the pH is increased, the peptide switches to β-sheet conformation and aggregation occurs. CD spectroscopy studies of aggregation have shown the presence of an initial spike in the amount of α-helical content at the start of aggregation. Such an increase in α-helical content suggests a mechanism wherein the peptide can expose critical non-polar residues for interaction, leading to hydrophobic aggregation with other interacting peptides. We have used molecular dynamics simulations to characterize in detail the conformational landscape of monomeric Aβ42 in solution to identify molecular properties that may mediate the early stages of oligomerization. We hypothesized that conformations with α-helical structure have a higher probability of initiating aggregation because they increase the hydrophobicity of the peptide. Although random coil conformations were found to be the most dominant, as expected, α-helical conformations are thermodynamically accessible, more so than β-sheet conformations. Importantly, for the first time α-helical conformations are observed to increase the exposure of aromatic and hydrophobic residues to the aqueous solvent, favoring their hydrophobically driven interaction with other monomers to initiate aggregation. These findings constitute a first step toward characterizing the mechanism of formation of disordered, low-order oligomers of Aβ42.
Collapse
Affiliation(s)
- Krushna Sonar
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin Institute for Computation, Curtin University, P. O. Box U1987, Perth, Western Australia6845, Australia
| | - Ricardo L Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin Institute for Computation, Curtin University, P. O. Box U1987, Perth, Western Australia6845, Australia
| |
Collapse
|
6
|
Lu Y, Salsbury F, Derreumaux P. Impact of A2T and D23N mutations on C99 homodimer conformations. J Chem Phys 2022; 157:085102. [DOI: 10.1063/5.0101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The proteolytic cleavage of C99 by γ-secretase is the last step in the production of amyloid-β (Aβ) peptides. Previous studies have shown that membrane lipid composition, cholesterol concentration, and mutation in the transmembrane helix modified the structures and fluctuations of C99. In this study, we performed atomistic molecular dynamics simulations of the homodimer of the 55-residue congener of the C-terminal domain of the amyloid protein precursor, C99(1-55), in a POPC-cholesterol lipid bilayer, and we compared the conformational ensemble of WT sequence to those of the A2T and D23N variants. These mutations are particularly interesting as the protective Alzheimer's disease (AD) A2T mutation is known to decrease Aβ production, whereas the early onset AD D23N mutation does not affect Aβ production. We found noticeable differences in the structural ensembles of the three sequences. In particular, A2T varies from both WT and D23N by having long-range effects on the population of the extracellular justamembrane helix, the interface between the G29xxx-G33xxx-G37 motifs and the fluctuations of the transmembrane helical topologies.
Collapse
Affiliation(s)
- Yan Lu
- School of Physics, Xidian University, China
| | | | | |
Collapse
|
7
|
Nguyen PH, Derreumaux P. Molecular Dynamics Simulations of the Tau Amyloid Fibril Core Dimer at the Surface of a Lipid Bilayer Model: I. In Alzheimer's Disease. J Phys Chem B 2022; 126:4849-4856. [PMID: 35759677 DOI: 10.1021/acs.jpcb.2c02836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A tau R3-R4 domain spanning residues 306-378 was shown to form an amyloid fibril core of a full-length tau in the brain of patients with Alzheimer's disease. Recently, we studied the dynamics of a tau R3-R4 monomer at the surface of a lipid bilayer model and revealed deep insertion of the amino acids spanning the PHF6 motif (residues 306-311) and its flanking residues. Here, we explore the membrane-associated conformational ensemble of a tau R3-R4 dimer by means of atomistic molecular dynamics. Similar to the monomer simulation, the R3-R4 dimer has the propensity to form β-hairpin-like conformation. Unlike the monomer, the dimer shows insertion of the C-terminal R4 region and transient adsorption of the PHF6 motif. Taken together, these results reveal the multiplicity of adsorption and insertion modes of tau into membranes depending on its oligomer size.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France.,Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
8
|
Nguyen PH, Derreumaux P. Molecular Dynamics Simulations of the Tau R3-R4 Domain Monomer in the Bulk Solution and at the Surface of a Lipid Bilayer Model. J Phys Chem B 2022; 126:3431-3438. [PMID: 35476504 DOI: 10.1021/acs.jpcb.2c01692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aggregation of the tau protein plays a significant role in Alzheimer's disease, and the tau R3-R4 domain spanning residues 306-378 was shown to form the amyloid fibril core of a full-length tau. The conformations of the tau R3-R4 monomer in the bulk solution and at the surface of membranes are unknown. In this study, we address these questions by means of atomistic molecular dynamics. The simulations in the bulk solution show a very heterogeneous ensemble of conformations with low β and helical contents. The tau R3-R4 monomer has the propensity to form transient β-hairpins within the R3 repeat and between the R3 and R4 repeats and parallel β-sheets spanning the R3 and R4 repeats. The simulations also show that the surface of the membrane does not induce β-sheet insertion and leads to an ensemble of structures very different from those in the bulk solution. They also reveal the dynamical properties of the membrane-bound state of the tau R3-R4 monomer, enabling insertion of the residues 306-318 and 376-378.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005 Paris, France.,Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
9
|
Nguyen TH, Nguyen PH, Ngo ST, Derreumaux P. Effect of Cholesterol Molecules on Aβ1-42 Wild-Type and Mutants Trimers. Molecules 2022; 27:molecules27041395. [PMID: 35209177 PMCID: PMC8879133 DOI: 10.3390/molecules27041395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease displays aggregates of the amyloid-beta (Aβ) peptide in the brain, and there is increasing evidence that cholesterol may contribute to the pathogenesis of the disease. Though many experimental and theoretical studies have focused on the interactions of Aβ oligomers with membrane models containing cholesterol, an understanding of the effect of free cholesterol on small Aβ42 oligomers is not fully established. To address this question, we report on replica exchange with a solute tempering simulation of an Aβ42 trimer with cholesterol and compare it with a previous replica exchange molecular dynamics simulation. We show that the binding hot spots of cholesterol are rather complex, involving hydrophobic residues L17–F20 and L30–M35 with a non-negligible contribution of loop residues D22–K28 and N-terminus residues. We also examine the effects of cholesterol on the trimers of the disease-causing A21G and disease-protective A2T mutations by molecular dynamics simulations. We show that these two mutations moderately impact cholesterol-binding modes. In our REST2 simulations, we find that cholesterol is rarely inserted into aggregates but rather attached as dimers and trimers at the surface of Aβ42 oligomers. We propose that cholesterol acts as a glue to speed up the formation of larger aggregates; this provides a mechanistic link between cholesterol and Alzheimer’s disease.
Collapse
Affiliation(s)
- Trung Hai Nguyen
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam; (T.H.N.); (S.T.N.)
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Phuong H. Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 75005 Paris, France
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam; (T.H.N.); (S.T.N.)
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 75005 Paris, France
- Institut Universitaire de France (IUF), 75005 Paris, France
- Correspondence:
| |
Collapse
|
10
|
Nguyen PH, Derreumaux P. Computer Simulations Aimed at Exploring Protein Aggregation and Dissociation. Methods Mol Biol 2022; 2340:175-196. [PMID: 35167075 DOI: 10.1007/978-1-0716-1546-1_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein aggregation can lead to well-defined structures that are functional, but is also the cause of the death of neuron cells in many neurodegenerative diseases. The complexity of the molecular events involved in the aggregation kinetics of amyloid proteins and the transient and heterogeneous characters of all oligomers prevent high-resolution structural experiments. As a result, computer simulations have been used to determine the atomic structures of amyloid proteins at different association stages as well as to understand fibril dissociation. In this chapter, we first review the current computer simulation methods used for aggregation with some atomistic and coarse-grained results aimed at better characterizing the early formed oligomers and amyloid fibril formation. Then we present the applications of non-equilibrium molecular dynamics simulations to comprehend the dissociation of protein assemblies.
Collapse
Affiliation(s)
- Phuong H Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université de Paris, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université de Paris, Paris, France.
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| |
Collapse
|
11
|
Nguyen PH, Tufféry P, Derreumaux P. Dynamics of Amyloid Formation from Simplified Representation to Atomistic Simulations. Methods Mol Biol 2022; 2405:95-113. [PMID: 35298810 DOI: 10.1007/978-1-0716-1855-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amyloid fibril formation is an intrinsic property of short peptides, non-disease proteins, and proteins associated with neurodegenerative diseases. Aggregates of the Aβ and tau proteins, the α-synuclein protein, and the prion protein are observed in the brain of Alzheimer's, Parkinson's, and prion disease patients, respectively. Due to the transient short-range and long-range interactions of all species and their high aggregation propensities, the conformational ensemble of these devastating proteins, the exception being for the monomeric prion protein, remains elusive by standard structural biology methods in bulk solution and in lipid membranes. To overcome these limitations, an increasing number of simulations using different sampling methods and protein models have been performed. In this chapter, we first review our main contributions to the field of amyloid protein simulations aimed at understanding the early aggregation steps of short linear amyloid peptides, the conformational ensemble of the Aβ40/42 dimers in bulk solution, and the stability of Aβ aggregates in lipid membrane models. Then we focus on our studies on the interactions of amyloid peptides/inhibitors to prevent aggregation, and long amyloid sequences, including new results on a monomeric tau construct.
Collapse
Affiliation(s)
- Phuong Hoang Nguyen
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Pierre Tufféry
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, RPBS, Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, Paris, France.
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| |
Collapse
|
12
|
Structures of the intrinsically disordered Aβ, tau and α-synuclein proteins in aqueous solution from computer simulations. Biophys Chem 2020; 264:106421. [PMID: 32623047 DOI: 10.1016/j.bpc.2020.106421] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022]
Abstract
Intrinsically disordered proteins (IDPs) play many biological roles in the human proteome ranging from vesicular transport, signal transduction to neurodegenerative diseases. The Aβ and tau proteins, and the α-synuclein protein, key players in Alzheimer's and Parkinson's diseases, respectively are fully disordered at the monomer level. The structural heterogeneity of the monomeric and oligomeric states and the high self-assembly propensity of these three IDPs have precluded experimental structural determination. Simulations have been used to determine the atomic structures of these IDPs. In this article, we review recent computer models to capture the equilibrium ensemble of Aβ, tau and α-synuclein proteins at different association steps in aqueous solution and present new results of the PEP-FOLD framework on α-synuclein monomer.
Collapse
|
13
|
Derreumaux P, Man VH, Wang J, Nguyen PH. Tau R3-R4 Domain Dimer of the Wild Type and Phosphorylated Ser356 Sequences. I. In Solution by Atomistic Simulations. J Phys Chem B 2020; 124:2975-2983. [PMID: 32216358 DOI: 10.1021/acs.jpcb.0c00574] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In Alzheimer's disease, neurofibrillary lesions correlate with cognitive deficits and consist of inclusions of tau protein with cross-β structure. A stable dimeric form of soluble tau has been evidenced in the cells, but its high-resolution structure is missing in solution. We know, however, that cryo-electron microscopy (c-EM) of full-length tau in the brain of an individual with AD displays a core of eight β-sheets with a C-shaped architecture spanning the R3-R4 repeat domain, while the rest of the protein is very flexible. To address the conformational ensemble of the dimer, we performed atomistic replica exchange molecular dynamics simulations on the tau R3-R4 domain starting from the c-EM configuration. We find that the wild type tau R3-R4 dimer explores elongated, U-shaped, V-shaped, and globular forms rather than the C-shape. Phosphorylation of Ser356, pSer356, is known to block the interaction between the tau protein and the amyloid-β42 peptide. Standard molecular dynamics simulations of this phosphorylated sequence for a total of 5 μs compared to its wild type counterpart show a modulation of the population of β-helices and accessible topologies and a decrease of intermediates near the fibril-like conformers.
Collapse
Affiliation(s)
- Philippe Derreumaux
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000, Ho Chi Minh City, Vietnam.,Faculty of Pharmacy, Ton Duc Thang University, 33000, Ho Chi Minh City, Vietnam
| | - Viet Hoang Man
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Phuong H Nguyen
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005, Paris, France.,Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 75000, Paris, France
| |
Collapse
|
14
|
Ngo ST, Nguyen PH, Derreumaux P. Impact of A2T and D23N Mutations on Tetrameric Aβ42 Barrel within a Dipalmitoylphosphatidylcholine Lipid Bilayer Membrane by Replica Exchange Molecular Dynamics. J Phys Chem B 2020; 124:1175-1182. [DOI: 10.1021/acs.jpcb.9b11881] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City 33000, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 33000, Vietnam
| | - Phuong H. Nguyen
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, Ho Chi Minh City 33000, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 33000, Vietnam
| |
Collapse
|
15
|
Ngo ST, Nguyen PH, Derreumaux P. Stability of Aβ11-40 Trimers with Parallel and Antiparallel β-Sheet Organizations in a Membrane-Mimicking Environment by Replica Exchange Molecular Dynamics Simulation. J Phys Chem B 2020; 124:617-626. [PMID: 31931566 DOI: 10.1021/acs.jpcb.9b10982] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aggregation of the amyloid (Aβ) peptide of 39-43 amino acids into plaques is observed in the brain of Alzheimer's disease (AD) patients, but the mechanisms underlying the neurotoxicity of Aβ oligomers are still elusive. One suggested initial mechanism is related to the implications of amyloid membrane interactions, but characterization of these assemblies is challenging by experimental means. In this study, we have explored the stability of a trimer of Aβ11-40 in parallel and antiparallel β-sheet structures for the wild-type sequence and its F20W mutant in a dipalmitoylphosphatidylcholine membrane using atomistic replica exchange molecular dynamic simulations. We show that both the U-shape organization and the assembly of β-hairpins are maintained in the membrane and are resistant to the mutation F20W. In contrast the models are destabilized by the F19P mutation. Overall, our results indicate that these two assemblies represent minimal seeds or nuclei for the formation of either amyloid fibrils, a variety of β-barrel pores, or various aggregates for many Aβ sequences in a membrane-mimicking environment.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics , Ton Duc Thang University , Ho Chi Minh City , Vietnam.,Faculty of Applied Sciences , Ton Duc Thang University , Ho Chi Minh City , Vietnam
| | - Phuong H Nguyen
- Laboratoire de Biochimie Théorique , UPR 9080, CNRS, Université de Paris , 13 rue Pierre et Marie Curie , 75005 , Paris , France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University , 75005 Paris , France
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry , Ton Duc Thang University , Ho Chi Minh City , Vietnam.,Faculty of Pharmacy , Ton Duc Thang University , Ho Chi Minh City , Vietnam
| |
Collapse
|
16
|
Nguyen PH, Sterpone F, Derreumaux P. Aggregation of disease-related peptides. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:435-460. [PMID: 32145950 DOI: 10.1016/bs.pmbts.2019.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein misfolding and aggregation of amyloid proteins is the fundamental cause of more than 20 diseases. Molecular mechanisms of the self-assembly and the formation of the toxic aggregates are still elusive. Computer simulations have been intensively used to study the aggregation of amyloid peptides of various amino acid lengths related to neurodegenerative diseases. We review atomistic and coarse-grained simulations of short amyloid peptides aimed at determining their transient oligomeric structures and the early and late aggregation steps.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
17
|
Li H, Salimi A, Lee JY. Intrinsic Origin of Amyloid Aggregation: Collective Effects of the Mutation and Tautomerism of Histidine. ACS Chem Neurosci 2019; 10:4729-4734. [PMID: 31600048 DOI: 10.1021/acschemneuro.9b00491] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mutation is considered an important factor in the accumulation of amyloid-β (Aβ), which is a hallmark of Alzheimer's disease (AD). A2V Aβ40 shows a higher aggregation tendency; however, the existing knowledge is not sufficient to explain the mechanism. We performed replica-exchange molecular dynamics simulations (REMD) to investigate the structural properties of A2V Aβ40 monomers and consider the tautomerism of histidine. The collective effects of the mutation and tautomerism leads A2V Aβ40 to much higher β-sheet and lower α-helix contents than WT Aβ40, which may explain the enhanced aggregation kinetics of A2V Aβ40 with respect to WT Aβ40. The current research provides new insights on understanding the pathology of AD.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Abbas Salimi
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
- School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
18
|
Shuaib S, Saini RK, Goyal D, Goyal B. Impact of K16A and K28A mutation on the structure and dynamics of amyloid-β42 peptide in Alzheimer’s disease: key insights from molecular dynamics simulations. J Biomol Struct Dyn 2019; 38:708-721. [DOI: 10.1080/07391102.2019.1586587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Suniba Shuaib
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Rajneet Kaur Saini
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Deepti Goyal
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| |
Collapse
|
19
|
Lu Y, Shi XF, Nguyen PH, Sterpone F, Salsbury FR, Derreumaux P. Amyloid-β(29-42) Dimeric Conformations in Membranes Rich in Omega-3 and Omega-6 Polyunsaturated Fatty Acids. J Phys Chem B 2019; 123:2687-2696. [PMID: 30813725 DOI: 10.1021/acs.jpcb.9b00431] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The omega-3 and omega-6 polyunsaturated fatty acids are two important components of cell membranes in human brains. When incorporated into phospholipids, omega-3 slows the progression of Alzheimer's disease (AD), whereas omega-6 is linked to increased risk of AD. Little is known on the amyloid-β (Aβ) conformations in membranes rich in omega-3 and omega-6 phospholipids. Herein, the structural properties of the Aβ29-42 dimer embedded in both fatty acid membranes were comparatively studied to a 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine (POPC) bilayer using all-atom molecular dynamics (MD) simulations. Starting from α-helix, both omega-6 and omega-3 membranes promote new orientations and conformations of the dimer, in agreement with the observed dependence of Aβ production upon addition of these two fatty acids. This conformational result is corroborated by atomistic MD simulations of the dimer of the 99 amino acid C-terminal fragment of amyloid precursor protein spanning the residues 15-55. Starting from β-sheet, omega-6 membrane promotes helical and disordered structures of Aβ29-42 dimer, whereas omega-3 membrane preserves the β-sheet structures differing however from those observed in POPC. Remarkably, the mixture of the two fatty acids and POPC depicts another conformational ensemble of the Aβ29-42 dimer. This finding demonstrates that variation in the abundance of the molecular phospholipids, which changes with age, modulates membrane-embedded Aβ oligomerization.
Collapse
Affiliation(s)
- Yan Lu
- School of Physics and Optoelectronic Engineering , Xidian University , Xi'an 710071 , China
| | - Xiao-Feng Shi
- School of Physics and Optoelectronic Engineering , Xidian University , Xi'an 710071 , China
| | - Phuong H Nguyen
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS , Université Paris Diderot, Sorbonne Paris Cite , 13 rue Pierre et Marie Curie , 75005 Paris , France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS , Université Paris Diderot, Sorbonne Paris Cite , 13 rue Pierre et Marie Curie , 75005 Paris , France
| | - Freddie R Salsbury
- Department of Physics , Wake Forest University , Winston-Salem , North Carolina 27106 , United States
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry , Ton Duc Thang University , Ho Chi Minh City , Vietnam.,Faculty of Pharmacy , Ton Duc Thang University , Ho Chi Minh City , Vietnam
| |
Collapse
|
20
|
Ngo ST, Derreumaux P, Vu VV. Probable Transmembrane Amyloid α-Helix Bundles Capable of Conducting Ca2+ Ions. J Phys Chem B 2019; 123:2645-2653. [DOI: 10.1021/acs.jpcb.8b10792] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Son Tung Ngo
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Philippe Derreumaux
- Laboratoire de Biochimie Theorique, UPR 9080 CNRS, IBPC, Universite Paris, 7, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Van V. Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
21
|
Katyal N, Agarwal M, Sen R, Kumar V, Deep S. Paradoxical Effect of Trehalose on the Aggregation of α-Synuclein: Expedites Onset of Aggregation yet Reduces Fibril Load. ACS Chem Neurosci 2018; 9:1477-1491. [PMID: 29601727 DOI: 10.1021/acschemneuro.8b00056] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aggregation of α-synuclein is closely connected to the pathology of Parkinson's disease. The phenomenon involves multiple steps, commenced by partial misfolding and eventually leading to mature amyloid fibril formation. Trehalose, a widely accepted osmolyte, has been shown previously to inhibit aggregation of various globular proteins owing to its ability to prevent the initial unfolding of protein. In this study, we have examined if it behaves in a similar fashion with intrinsically disordered protein α-synuclein and possesses the potential to act as therapeutic agent against Parkinson's disease. It was observed experimentally that samples coincubated with trehalose fibrillate faster compared to the case in its absence. Molecular dynamics simulations suggested that this initial acceleration is manifestation of trehalose's tendency to perturb the conformational transitions between different conformers of monomeric protein. It stabilizes the aggregation prone "extended" conformer of α-synuclein, by binding to its exposed acidic residues of the C terminus. It also favors the β-rich oligomers once formed. Interestingly, the total fibrils formed are still promisingly less since it accelerates the competing pathway toward formation of amorphous aggregates.
Collapse
Affiliation(s)
- Nidhi Katyal
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| | - Manish Agarwal
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| | - Raktim Sen
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| | - Vinay Kumar
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| |
Collapse
|
22
|
Nguyen PH, del Castillo-Frias MP, Berthoumieux O, Faller P, Doig AJ, Derreumaux P. Amyloid-β/Drug Interactions from Computer Simulations and Cell-Based Assays. J Alzheimers Dis 2018; 64:S659-S672. [DOI: 10.3233/jad-179902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Phuong H. Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, Paris, France
| | - Maria P. del Castillo-Frias
- Manchester Institute of Biotechnology and Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Olivia Berthoumieux
- CNRS, LCC (Laboratoire de Chimie de Coordination), Toulouse Cedex 4, France et Université de Toulouse, UPS, INPT, Toulouse Cedex 4, France
| | - Peter Faller
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, Strasbourg, France
| | - Andrew J. Doig
- Manchester Institute of Biotechnology and Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, Paris, France
| |
Collapse
|
23
|
Das P, Matysiak S, Mittal J. Looking at the Disordered Proteins through the Computational Microscope. ACS CENTRAL SCIENCE 2018; 4:534-542. [PMID: 29805999 PMCID: PMC5968442 DOI: 10.1021/acscentsci.7b00626] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Indexed: 05/04/2023]
Abstract
Intrinsically disordered proteins (IDPs) have attracted wide interest over the past decade due to their surprising prevalence in the proteome and versatile roles in cell physiology and pathology. A large selection of IDPs has been identified as potential targets for therapeutic intervention. Characterizing the structure-function relationship of disordered proteins is therefore an essential but daunting task, as these proteins can adapt transient structure, necessitating a new paradigm for connecting structural disorder to function. Molecular simulation has emerged as a natural complement to experiments for atomic-level characterizations and mechanistic investigations of this intriguing class of proteins. The diverse range of length and time scales involved in IDP function requires performing simulations at multiple levels of resolution. In this Outlook, we focus on summarizing available simulation methods, along with a few interesting example applications. We also provide an outlook on how these simulation methods can be further improved in order to provide a more accurate description of IDP structure, binding, and assembly.
Collapse
Affiliation(s)
- Payel Das
- IBM Thomas J.
Watson Research Center, Yorktown Heights, New York 10598, United States
- E-mail:
| | - Silvina Matysiak
- Fischell
Department of Bioengineering, University
of Maryland, College Park, Maryland 20742, United States
| | - Jeetain Mittal
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
24
|
Lu Y, Shi XF, Salsbury FR, Derreumaux P. Influence of electric field on the amyloid-β(29-42) peptides embedded in a membrane bilayer. J Chem Phys 2018; 148:045105. [DOI: 10.1063/1.5018459] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yan Lu
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
| | - Xiao-Feng Shi
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
| | - Freddie R. Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27106, USA
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
25
|
Barz B, Liao Q, Strodel B. Pathways of Amyloid-β Aggregation Depend on Oligomer Shape. J Am Chem Soc 2017; 140:319-327. [PMID: 29235346 DOI: 10.1021/jacs.7b10343] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
One of the main research topics related to Alzheimer's disease is the aggregation of the amyloid-β peptide, which was shown to follow different pathways for the two major alloforms of the peptide, Aβ40 and the more toxic Aβ42. Experimental studies emphasized that oligomers of specific sizes appear in the early aggregation process in different quantities and might be the key toxic agents for each of the two alloforms. We use transition networks derived from all-atom molecular dynamics simulations to show that the oligomers leading to the type of oligomer distributions observed in experiments originate from compact conformations. Extended oligomers, on the other hand, contribute more to the production of larger aggregates thus driving the aggregation process. We further demonstrate that differences in the aggregation pathways of the two Aβ alloforms occur as early as during the dimer stage. The higher solvent-exposure of hydrophobic residues in Aβ42 oligomers contributes to the different aggregation pathways of both alloforms and also to the increased cytotoxicity of Aβ42.
Collapse
Affiliation(s)
- Bogdan Barz
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH , 52425 Jülich, Germany.,Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf , 40225 Düsseldorf, Germany
| | - Qinghua Liao
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH , 52425 Jülich, Germany.,Department of Cell and Molecular Biology, Uppsala University , S-75124 Uppsala, Sweden
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH , 52425 Jülich, Germany.,Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf , 40225 Düsseldorf, Germany
| |
Collapse
|
26
|
The A2V mutation as a new tool for hindering Aβ aggregation: A neutron and x-ray diffraction study. Sci Rep 2017; 7:5510. [PMID: 28710429 PMCID: PMC5511251 DOI: 10.1038/s41598-017-05582-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/31/2017] [Indexed: 01/25/2023] Open
Abstract
We have described a novel C-to-T mutation in the APP gene that corresponds to an alanine to valine substitution at position 673 in APP (A673V), or position 2 of the amyloid-β (Aβ) sequence. This mutation is associated with the early onset of AD-type dementia in homozygous individuals, whereas it has a protective effect in the heterozygous state. Correspondingly, we observed differences in the aggregation properties of the wild-type and mutated Aβ peptides and their mixture. We have carried out neutron diffraction (ND) and x-ray diffraction (XRD) experiments on magnetically-oriented fibers of Aβ1-28WT and its variant Aβ1-28A2V. The orientation propensity was higher for Aβ1-28A2V suggesting that it promotes the formation of fibrillar assemblies. The diffraction patterns by Aβ1-28WT and Aβ1-28A2V assemblies differed in shape and position of the equatorial reflections, suggesting that the two peptides adopt distinct lateral packing of the diffracting units. The diffraction patterns from a mixture of the two peptides differed from those of the single components, indicating the presence of structural interference during assembly and orientation. The lowest orientation propensity was observed for a mixture of Aβ1-28WT and a short N-terminal fragment, Aβ1-6A2V, which supports a role of Aβ’s N-terminal domain in amyloid fibril formation.
Collapse
|
27
|
Gimeno A, Santos LM, Alemi M, Rivas J, Blasi D, Cotrina EY, Llop J, Valencia G, Cardoso I, Quintana J, Arsequell G, Jiménez-Barbero J. Insights on the Interaction between Transthyretin and Aβ in Solution. A Saturation Transfer Difference (STD) NMR Analysis of the Role of Iododiflunisal. J Med Chem 2017; 60:5749-5758. [DOI: 10.1021/acs.jmedchem.7b00428] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ana Gimeno
- CIC bioGUNE, Bizkaia Technology
Park, Building 801A, 48170 Derio, Spain
| | - Luis M. Santos
- IBMC—Instituto de Biologia Celular e Molecular, Campo Alegre 823, 4150 Porto, Portugal
- i3S—Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, Alfredo Allen, 4200-135 Porto, Portugal
| | - Mobina Alemi
- IBMC—Instituto de Biologia Celular e Molecular, Campo Alegre 823, 4150 Porto, Portugal
- i3S—Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, Alfredo Allen, 4200-135 Porto, Portugal
- Faculdade
de Medicina, Universidade do Porto, Alameda Prof. Hernani Monteiro, 4200-319 Porto, Portugal
| | - Josep Rivas
- Plataforma
Drug
Discovery, Parc Científic de Barcelona (PCB), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Daniel Blasi
- Plataforma
Drug
Discovery, Parc Científic de Barcelona (PCB), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Ellen Y. Cotrina
- Institut de Química
Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), 08034 Barcelona, Spain
| | - Jordi Llop
- Radiochemistry
and Nuclear Imaging Group, CIC biomaGUNE, Paseo Miramon 182, 20009 Donostia-San Sebastian, Spain
| | - Gregorio Valencia
- Institut de Química
Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), 08034 Barcelona, Spain
| | - Isabel Cardoso
- IBMC—Instituto de Biologia Celular e Molecular, Campo Alegre 823, 4150 Porto, Portugal
- i3S—Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, Alfredo Allen, 4200-135 Porto, Portugal
| | - Jordi Quintana
- Plataforma
Drug
Discovery, Parc Científic de Barcelona (PCB), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Gemma Arsequell
- Institut de Química
Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), 08034 Barcelona, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Bizkaia Technology
Park, Building 801A, 48170 Derio, Spain
- Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 13, 48009 Bilbao, Spain
- Departament
of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
- Plataforma
Drug
Discovery, Parc Científic de Barcelona (PCB), Baldiri Reixac 10, 08028 Barcelona, Spain
| |
Collapse
|
28
|
Ma WJ, Hu CK. Physical mechanism for biopolymers to aggregate and maintain in non-equilibrium states. Sci Rep 2017; 7:3105. [PMID: 28596529 PMCID: PMC5465232 DOI: 10.1038/s41598-017-03136-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/25/2017] [Indexed: 11/08/2022] Open
Abstract
Many human or animal diseases are related to aggregation of proteins. A viable biological organism should maintain in non-equilibrium states. How protein aggregate and why biological organisms can maintain in non-equilibrium states are not well understood. As a first step to understand such complex systems problems, we consider simple model systems containing polymer chains and solvent particles. The strength of the spring to connect two neighboring monomers in a polymer chain is controlled by a parameter s with s → ∞ for rigid-bond. The strengths of bending and torsion angle dependent interactions are controlled by a parameter s A with s A → -∞ corresponding to no bending and torsion angle dependent interactions. We find that for very small s A , polymer chains tend to aggregate spontaneously and the trend is independent of the strength of spring. For strong springs, the speed distribution of monomers in the parallel (along the direction of the spring to connect two neighboring monomers) and perpendicular directions have different effective temperatures and such systems are in non-equilibrium states.
Collapse
Affiliation(s)
- Wen-Jong Ma
- Graduate Institute of Applied Physics, National Chengchi University, Taipei, 11605, Taiwan.
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan.
| | - Chin-Kun Hu
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan.
- National Center for Theoretical Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- Department of Systems Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
29
|
Tran TT, Nguyen PH, Derreumaux P. Lattice model for amyloid peptides: OPEP force field parametrization and applications to the nucleus size of Alzheimer's peptides. J Chem Phys 2017; 144:205103. [PMID: 27250331 DOI: 10.1063/1.4951739] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Coarse-grained protein lattice models approximate atomistic details and keep the essential interactions. They are, therefore, suitable for capturing generic features of protein folding and amyloid formation at low computational cost. As our aim is to study the critical nucleus sizes of two experimentally well-characterized peptide fragments Aβ16-22 and Aβ37-42 of the full length Aβ1-42 Alzheimer's peptide, it is important that simulations with the lattice model reproduce all-atom simulations. In this study, we present a comprehensive force field parameterization based on the OPEP (Optimized Potential for Efficient protein structure Prediction) force field for an on-lattice protein model, which incorporates explicitly the formation of hydrogen bonds and directions of side-chains. Our bottom-up approach starts with the determination of the best lattice force parameters for the Aβ16-22 dimer by fitting its equilibrium parallel and anti-parallel β-sheet populations to all-atom simulation results. Surprisingly, the calibrated force field is transferable to the trimer of Aβ16-22 and the dimer and trimer of Aβ37-42. Encouraged by this finding, we characterized the free energy landscapes of the two decamers. The dominant structure of the Aβ16-22 decamer matches the microcrystal structure. Pushing the simulations for aggregates between 4-mer and 12-mer suggests a nucleus size for fibril formation of 10 chains. In contrast, the Aβ37-42 decamer is largely disordered with mixed by parallel and antiparallel chains, suggesting that the nucleus size is >10 peptides. Our refined force field coupled to this on-lattice model should provide useful insights into the critical nucleation number associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Thanh Thuy Tran
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
30
|
Das P, Chacko AR, Belfort G. Alzheimer's Protective Cross-Interaction between Wild-Type and A2T Variants Alters Aβ 42 Dimer Structure. ACS Chem Neurosci 2017; 8:606-618. [PMID: 28292185 DOI: 10.1021/acschemneuro.6b00357] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Whole genome sequencing has recently revealed the protective effect of a single A2T mutation in heterozygous carriers against Alzheimer's disease (AD) and age-related cognitive decline. The impact of the protective cross-interaction between the wild-type (WT) and A2T variants on the dimer structure is therefore of high interest, as the Aβ dimers are the smallest known neurotoxic species. Toward this goal, extensive atomistic replica exchange molecular dynamics simulations of the solvated WT homo- and A2T hetero- Aβ1-42 dimers have been performed, resulting into a total of 51 μs of sampling for each system. Weakening of a set of transient, intrachain contacts formed between the central and C-terminal hydrophobic residues is observed in the heterodimeric system. The majority of the heterodimers with reduced interaction between central and C-terminal regions lack any significant secondary structure and display a weak interchain interface. Interestingly, the A2T N-terminus, particularly residue F4, is frequently engaged in tertiary and quaternary interactions with central and C-terminal hydrophobic residues in those distinct structures, leading to hydrophobic burial. This atypical involvement of the N-terminus within A2T heterodimer revealed in our simulations implies possible interference on Aβ42 aggregation and toxic oligomer formation, which is consistent with experiments. In conclusion, the present study provides detailed structural insights onto A2T Aβ42 heterodimer, which might provide molecular insights onto the AD protective effect of the A2T mutation in the heterozygous state.
Collapse
Affiliation(s)
- Payel Das
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Anita R. Chacko
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Georges Belfort
- Howard
P. Isermann Department of Chemical and Biological Engineering, and
Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, United States
| |
Collapse
|
31
|
Carballo‐Pacheco M, Strodel B. Comparison of force fields for Alzheimer's A β42: A case study for intrinsically disordered proteins. Protein Sci 2017; 26:174-185. [PMID: 27727496 PMCID: PMC5275744 DOI: 10.1002/pro.3064] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 10/02/2016] [Accepted: 10/09/2016] [Indexed: 01/06/2023]
Abstract
Intrinsically disordered proteins are essential for biological processes such as cell signalling, but are also associated to devastating diseases including Alzheimer's disease, Parkinson's disease or type II diabetes. Because of their lack of a stable three-dimensional structure, molecular dynamics simulations are often used to obtain atomistic details that cannot be observed experimentally. The applicability of molecular dynamics simulations depends on the accuracy of the force field chosen to represent the underlying free energy surface of the system. Here, we use replica exchange molecular dynamics simulations to test five modern force fields, OPLS, AMBER99SB, AMBER99SB*ILDN, AMBER99SBILDN-NMR and CHARMM22*, in their ability to model Aβ42 , an intrinsically disordered peptide associated with Alzheimer's disease, and compare our results to nuclear magnetic resonance (NMR) experimental data. We observe that all force fields except AMBER99SBILDN-NMR successfully reproduce local NMR observables, with CHARMM22* being slightly better than the other force fields.
Collapse
Affiliation(s)
- Martín Carballo‐Pacheco
- Institute of Complex Systems, Structural Biochemistry (ICS‐6), Forschungszentrum Jülich GmbHJülich52425Germany
- AICES Graduate School, RWTH Aachen UniversitySchinkelstraße 2Aachen52062Germany
| | - Birgit Strodel
- Institute of Complex Systems, Structural Biochemistry (ICS‐6), Forschungszentrum Jülich GmbHJülich52425Germany
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University DüsseldorfUniversitätstraße 1Düsseldorf40225Germany
| |
Collapse
|
32
|
Ngo ST, Hung HM, Truong DT, Nguyen MT. Replica exchange molecular dynamics study of the truncated amyloid beta (11–40) trimer in solution. Phys Chem Chem Phys 2017; 19:1909-1919. [DOI: 10.1039/c6cp05511g] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure of the 3Aβ11–40 oligomer is determined for the first time using T-REMD simulations.
Collapse
Affiliation(s)
- Son Tung Ngo
- Computational Chemistry Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Applied Sciences
| | | | - Duc Toan Truong
- Department of Theoretical Physics
- Ho Chi Minh City University of Science
- Ho Chi Minh City
- Vietnam
| | - Minh Tho Nguyen
- Computational Chemistry Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Applied Sciences
| |
Collapse
|
33
|
Nguyen PH, Sterpone F, Pouplana R, Derreumaux P, Campanera JM. Dimerization Mechanism of Alzheimer Aβ 40 Peptides: The High Content of Intrapeptide-Stabilized Conformations in A2V and A2T Heterozygous Dimers Retards Amyloid Fibril Formation. J Phys Chem B 2016; 120:12111-12126. [PMID: 27933940 DOI: 10.1021/acs.jpcb.6b10722] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Amyloid beta (Aβ) oligomerization is associated with the origin and progression of Alzheimer's disease (AD). While the A2V mutation enhances aggregation kinetics and toxicity, mixtures of wild-type (WT) and A2V, and also WT and A2T, peptides retard fibril formation and protect against AD. In this study, we simulate the equilibrium ensemble of WT:A2T Aβ40 dimer by means of extensive atomistic replica exchange molecular dynamics and compare our results with previous equivalent simulations of A2V:A2V, WT:WT, and WT:A2V Aβ40 dimers for a total time scale of nearly 0.1 ms. Qualitative comparison of the resulting thermodynamic properties, such as the relative binding free energies, with the reported experimental kinetic and thermodynamic data affords us important insight into the conversion from slow-pathway to fast-pathway dimer conformations. The crucial reaction coordinate or driving force of such transformation turns out to be related to hydrophobic interpeptide interactions. Analysis of the equilibrium ensembles shows that the fast-pathway conformations contain interpeptide out-of-register antiparallel β-sheet structures at short interpeptide distances. In contrast, the slow-pathway conformations are formed by the association of peptides at large interpeptide distances and high intrapeptide compactness, such as conformations containing intramolecular three-stranded β-sheets which sharply distinguish fast (A2V:A2V and WT:WT) and slow (WT:A2T and WT:A2V) amyloid-forming sequences. Also, this analysis leads us to predict that a molecule stabilizing the intramolecular three-stranded β-sheet or inhibiting the formation of an interpeptide β-sheet spanning residues 17-20 and 31-37 would further reduce fibril formation and probably the cytotoxicity of Aβ species.
Collapse
Affiliation(s)
- Phuong H Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité , 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité , 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Ramon Pouplana
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona , 08028 Barcelona, Catalonia, Spain
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité , 13 Rue Pierre et Marie Curie, 75005 Paris, France.,IUF (Institut Universitaire de France) , 103 Boulevard Michel, 75005 Paris, France
| | - Josep M Campanera
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona , 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
34
|
Nguyen PH, Sterpone F, Campanera JM, Nasica-Labouze J, Derreumaux P. Impact of the A2V Mutation on the Heterozygous and Homozygous Aβ1-40 Dimer Structures from Atomistic Simulations. ACS Chem Neurosci 2016; 7:823-32. [PMID: 27007027 DOI: 10.1021/acschemneuro.6b00053] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The A2V mutation was reported to protect from Alzheimer's disease in its heterozygous form and cause an early Alzheimer's disease type dementia in its homozygous form. Experiments showed that the aggregation rate follows the order A2V > WT (wild-type) > A2V-WT. To understand the impact of this mutation, we carried out replica exchange molecular dynamics simulations of Aβ1-40 WT-A2V and A2V-A2V dimers and compared to the WT dimer. Our atomistic simulations reveal that the mean secondary structure remains constant, but there are substantial differences in the intramolecular and intermolecular conformations upon single and double A2V mutation. Upon single mutation, the intrinsic disorder is reduced, the intermolecular potential energies are reduced, the population of intramolecular three-stranded β-sheets is increased, and the number of all α dimer topologies is decreased. Taken together, these results offer an explanation for the reduced aggregation rate of the Aβ1-40 A2V-WT peptides and the protective effect of A2V in heterozygotes.
Collapse
Affiliation(s)
- Phuong H. Nguyen
- Laboratoire de
Biochimie Théorique, UPR 9080 CNRS, Université Paris
Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- Laboratoire de
Biochimie Théorique, UPR 9080 CNRS, Université Paris
Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Josep M. Campanera
- Departament
de Fisicoquimica, Facultat de Farmacia, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Jessica Nasica-Labouze
- Laboratoire de
Biochimie Théorique, UPR 9080 CNRS, Université Paris
Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Laboratoire de
Biochimie Théorique, UPR 9080 CNRS, Université Paris
Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
35
|
The Folding of de Novo Designed Protein DS119 via Molecular Dynamics Simulations. Int J Mol Sci 2016; 17:ijms17050612. [PMID: 27128902 PMCID: PMC4881441 DOI: 10.3390/ijms17050612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 02/01/2023] Open
Abstract
As they are not subjected to natural selection process, de novo designed proteins usually fold in a manner different from natural proteins. Recently, a de novo designed mini-protein DS119, with a βαβ motif and 36 amino acids, has folded unusually slowly in experiments, and transient dimers have been detected in the folding process. Here, by means of all-atom replica exchange molecular dynamics (REMD) simulations, several comparably stable intermediate states were observed on the folding free-energy landscape of DS119. Conventional molecular dynamics (CMD) simulations showed that when two unfolded DS119 proteins bound together, most binding sites of dimeric aggregates were located at the N-terminal segment, especially residues 5-10, which were supposed to form β-sheet with its own C-terminal segment. Furthermore, a large percentage of individual proteins in the dimeric aggregates adopted conformations similar to those in the intermediate states observed in REMD simulations. These results indicate that, during the folding process, DS119 can easily become trapped in intermediate states. Then, with diffusion, a transient dimer would be formed and stabilized with the binding interface located at N-terminals. This means that it could not quickly fold to the native structure. The complicated folding manner of DS119 implies the important influence of natural selection on protein-folding kinetics, and more improvement should be achieved in rational protein design.
Collapse
|
36
|
DeForte S, Reddy KD, Uversky VN. Quarterly intrinsic disorder digest (January-February-March, 2014). INTRINSICALLY DISORDERED PROTEINS 2016; 4:e1153395. [PMID: 28232896 DOI: 10.1080/21690707.2016.1153395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This is the 5th issue of the Digested Disorder series that represents a reader's digest of the scientific literature on intrinsically disordered proteins. We continue to use only 2 criteria for inclusion of a paper to this digest: The publication date (a paper should be published within the covered time frame) and the topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest issue covers papers published during the first quarter of 2014; i.e., during the period of January, February, and March of 2014. Similar to previous issues, the papers are grouped hierarchically by topics they cover, and for each of the included papers a short description is given on its major findings.
Collapse
Affiliation(s)
- Shelly DeForte
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, FL, USA
| | - Krishna D Reddy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, FL, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Biology Department, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
37
|
Baram M, Atsmon-Raz Y, Ma B, Nussinov R, Miller Y. Amylin-Aβ oligomers at atomic resolution using molecular dynamics simulations: a link between Type 2 diabetes and Alzheimer's disease. Phys Chem Chem Phys 2016; 18:2330-8. [PMID: 26349542 PMCID: PMC4720542 DOI: 10.1039/c5cp03338a] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clinical studies have identified Type 2 diabetes (T2D) as a risk factor of Alzheimer's disease (AD). One of the potential mechanisms that link T2D and AD is the loss of cells associated with degenerative changes. Amylin1-37 aggregates (the pathological species in T2D) were found to be co-localized with those of Aβ1-42 (the pathological species in AD) to form the Amylin1-37-Aβ1-42 plaques, promoting aggregation and thus contributing to the etiology of AD. However, the mechanisms by which Amylin1-37 co-aggregates with Aβ1-42 are still elusive. This work presents the interactions between Amylin1-37 oligomers and Aβ1-42 oligomers at atomic resolution applying extensive molecular dynamics simulations for relatively large ensemble of cross-seeding Amylin1-37-Aβ1-42 oligomers. The main conclusions of this study are first, Aβ1-42 oligomers prefer to interact with Amylin1-37 oligomers to form single layer conformations (in-register interactions) rather than double layer conformations; and second, in some double layer conformations of the cross-seeding Amylin1-37-Aβ1-42 oligomers, the Amylin1-37 oligomers destabilize the Aβ1-42 oligomers and thus inhibit Aβ1-42 aggregation, while in other double layer conformations, the Amylin1-37 oligomers stabilize Aβ1-42 oligomers and thus promote Aβ1-42 aggregation.
Collapse
Affiliation(s)
- Michal Baram
- Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel.
| | - Yoav Atsmon-Raz
- Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel.
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA. and Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 84105, Israel.
| |
Collapse
|
38
|
Lemkul JA, Huang J, MacKerell AD. Induced Dipole-Dipole Interactions Influence the Unfolding Pathways of Wild-Type and Mutant Amyloid β-Peptides. J Phys Chem B 2015; 119:15574-82. [PMID: 26629591 PMCID: PMC4690986 DOI: 10.1021/acs.jpcb.5b09978] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Amyloid-forming proteins undergo
a structural transition from α-helical
to disordered conformations and, ultimately, cross-β fibrils.
The unfolding and aggregation of the amyloid β-peptide (Aβ)
have been implicated in the development and progression of Alzheimer’s
disease (AD) and cerebral amyloid angiopathy (CAA). However, the events
underlying the initial structural transition leading to the disease
state remain unclear. Although most cases are sporadic, several genetic
variants exist that alter the electrostatic properties of Aβ
and lead to more rapid unfolding and more severe phenotypes. In the
present study, the enhanced unfolding is shown to be due to the mutated
side chains altering the local peptide-bond dipole moments leading
to local destabilization of the α-helix, as determined from
polarizable molecular dynamics (MD) simulations of wild-type (WT)
Aβ fragments and several common mutations. The local perturbation
of the helix then leads to progressive unwinding of the α-helix
in a cooperative fashion due to decreases in adjacent (i ± 1) and hydrogen-bonded (i + 4) peptide-bond
dipole moments. Side-chain dynamics, subsequent variations in dipole
moments, and ultimately the response in the peptide-bond dipole moments
are all modulated by solvent dielectric properties based on simulations
in water versus ethanol. The polarizable simulation results, along
with simulations using the additive CHARMM36 force field, further
indicate that cooperativity due to the alignment of peptide bonds
leading to enhanced dipole moments is a fundamental force in stabilizing
α-helices.
Collapse
Affiliation(s)
- Justin A Lemkul
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Jing Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| |
Collapse
|
39
|
Zheng X, Liu D, Roychaudhuri R, Teplow DB, Bowers MT. Amyloid β-Protein Assembly: Differential Effects of the Protective A2T Mutation and Recessive A2V Familial Alzheimer's Disease Mutation. ACS Chem Neurosci 2015; 6:1732-40. [PMID: 26244608 DOI: 10.1021/acschemneuro.5b00171] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Oligomeric states of the amyloid β-protein (Aβ) appear to be causally related to Alzheimer's disease (AD). Recently, two familial mutations in the amyloid precursor protein gene have been described, both resulting in amino acid substitutions at Ala2 (A2) within Aβ. An A2V mutation causes autosomal recessive early onset AD. Interestingly, heterozygotes enjoy some protection against development of the disease. An A2T substitution protects against AD and age-related cognitive decline in non-AD patients. Here, we use ion mobility-mass spectrometry (IM-MS) to examine the effects of these mutations on Aβ assembly. These studies reveal different assembly pathways for early oligomer formation for each peptide. A2T Aβ42 formed dimers, tetramers, and hexamers, but dodecamer formation was inhibited. In contrast, no significant effects on Aβ40 assembly were observed. A2V Aβ42 also formed dimers, tetramers, and hexamers, but it did not form dodecamers. However, A2V Aβ42 formed trimers, unlike A2T or wild-type (wt) Aβ42. In addition, the A2V substitution caused Aβ40 to oligomerize similar to that of wt Aβ42, as evidenced by the formation of dimers, tetramers, hexamers, and dodecamers. In contrast, wt Aβ40 formed only dimers and tetramers. These results provide a basis for understanding how these two mutations lead to, or protect against, AD. They also suggest that the Aβ N-terminus, in addition to the oft discussed central hydrophobic cluster and C-terminus, can play a key role in controlling disease susceptibility.
Collapse
Affiliation(s)
- Xueyun Zheng
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Deyu Liu
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Robin Roychaudhuri
- Department of Neurology, David Geffen School
of Medicine, Molecular Biology Institute and Brain Research Institute, University of California Los Angeles, Los Angeles, California 90095, United States
| | - David B. Teplow
- Department of Neurology, David Geffen School
of Medicine, Molecular Biology Institute and Brain Research Institute, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Michael T. Bowers
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
40
|
Das P, Murray B, Belfort G. Alzheimer's protective A2T mutation changes the conformational landscape of the Aβ₁₋₄₂ monomer differently than does the A2V mutation. Biophys J 2015; 108:738-47. [PMID: 25650940 DOI: 10.1016/j.bpj.2014.12.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 12/20/2022] Open
Abstract
The aggregation of amyloid-β (Aβ) peptides plays a crucial role in the etiology of Alzheimer's disease (AD). Recently, it has been reported that an A2T mutation in Aβ can protect against AD. Interestingly, a nonpolar A2V mutation also has been found to offer protection against AD in the heterozygous state, although it causes early-onset AD in homozygous carriers. Since the conformational landscape of the Aβ monomer is known to directly contribute to the early-stage aggregation mechanism, it is important to characterize the effects of the A2T and A2V mutations on Aβ₁₋₄₂ monomer structure. Here, we have performed extensive atomistic replica-exchange molecular dynamics simulations of the solvated wild-type (WT), A2V, and A2T Aβ₁₋₄₂ monomers. Our simulations reveal that although all three variants remain as collapsed coils in solution, there exist significant structural differences among them at shorter timescales. A2V exhibits an enhanced double-hairpin population in comparison to the WT, similar to those reported in toxic WT Aβ₁₋₄₂ oligomers. Such double-hairpin formation is caused by hydrophobic clustering between the N-terminus and the central and C-terminal hydrophobic patches. In contrast, the A2T mutation causes the N-terminus to engage in unusual electrostatic interactions with distant residues, such as K16 and E22, resulting in a unique population comprising only the C-terminal hairpin. These findings imply that a single A2X (where X = V or T) mutation in the primarily disordered N-terminus of the Aβ₁₋₄₂ monomer can dramatically alter the β-hairpin population and switch the equilibrium toward alternative structures. The atomistically detailed, comparative view of the structural landscapes of A2V and A2T variant monomers obtained in this study can enhance our understanding of the mechanistic differences in their early-stage aggregation.
Collapse
Affiliation(s)
- Payel Das
- Soft Matter Theory and Simulations Group, Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York.
| | - Brian Murray
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
41
|
Trafficking and degradation pathways in pathogenic conversion of prions and prion-like proteins in neurodegenerative diseases. Virus Res 2015; 207:146-54. [DOI: 10.1016/j.virusres.2015.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/01/2014] [Accepted: 01/22/2015] [Indexed: 11/20/2022]
|
42
|
Zhang M, Hu R, Chen H, Chang Y, Ma J, Liang G, Mi J, Wang Y, Zheng J. Polymorphic cross-seeding amyloid assemblies of amyloid-β and human islet amyloid polypeptide. Phys Chem Chem Phys 2015; 17:23245-56. [PMID: 26283068 DOI: 10.1039/c5cp03329b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Epidemiological studies have shown that the development of Alzheimer's disease (AD) is associated with type 2 diabetes (T2D), but it still remains unclear how AD and T2D are connected. Heterologous cross-seeding between the causative peptides of Aβ and hIAPP may represent a molecular link between AD and T2D. Here, we computationally modeled and simulated a series of cross-seeding double-layer assemblies formed by Aβ and hIAPP peptides using all-atom and coarse-gained molecular dynamics (MD) simulations. The cross-seeding Aβ-hIAPP assemblies showed a wide range of polymorphic structures via a combination of four β-sheet-to-β-sheet interfaces and two packing orientations, focusing on a comparison of different matches of β-sheet layers. Two cross-seeding Aβ-hIAPP assemblies with different interfacial β-sheet packings exhibited high structural stability and favorable interfacial interactions in both oligomeric and fibrillar states. Both Aβ-hIAPP assemblies displayed interfacial dehydration to different extents, which in turn promoted Aβ-hIAPP association depending on interfacial polarity and geometry. Furthermore, computational mutagenesis studies revealed that disruption of interfacial salt bridges largely disfavor the β-sheet-to-β-sheet association, highlighting the importance of salt bridges in the formation of cross-seeding assemblies. This work provides atomic-level information on the cross-seeding interactions between Aβ and hIAPP, which may be involved in the interplay between these two disorders.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tarus B, Tran TT, Nasica-Labouze J, Sterpone F, Nguyen PH, Derreumaux P. Structures of the Alzheimer's Wild-Type Aβ1-40 Dimer from Atomistic Simulations. J Phys Chem B 2015; 119:10478-87. [PMID: 26228450 DOI: 10.1021/acs.jpcb.5b05593] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have studied the dimer of amyloid beta peptide Aβ of 40 residues by means of all-atom replica exchange molecular dynamics. The Aβ-dimers have been found to be the smallest toxic species in Alzheimer's disease, but their inherent flexibilities have precluded structural characterization by experimental methods. Though the 24-μs-scale simulation reveals a mean secondary structure of 18% β-strand and 10% α helix, we find transient configurations with an unstructured N-terminus and multiple β-hairpins spanning residues 17-21 and 30-36, but the antiparallel and perpendicular peptide orientations are preferred over the parallel organization. Short-lived conformational states also consist of all α topologies, and one compact peptide with β-sheet structure stabilized by a rather extended peptide with α-helical content. Overall, this first all-atom study provides insights into the equilibrium structure of the Aβ1-40 dimer in aqueous solution, opening a new avenue for a comprehensive understanding of the impact of pathogenic and protective mutations in early-stage Alzheimer's disease on a molecular level.
Collapse
Affiliation(s)
- Bogdan Tarus
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Thanh T Tran
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Jessica Nasica-Labouze
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
44
|
Carballo-Pacheco M, Ismail AE, Strodel B. Oligomer Formation of Toxic and Functional Amyloid Peptides Studied with Atomistic Simulations. J Phys Chem B 2015; 119:9696-705. [PMID: 26130191 DOI: 10.1021/acs.jpcb.5b04822] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Amyloids are associated with diseases, including Alzheimer's, as well as functional roles such as storage of peptide hormones. It is still unclear what differences exist between aberrant and functional amyloids. However, it is known that soluble oligomers formed during amyloid aggregation are more toxic than the final fibrils. Here, we perform molecular dynamics simulations to study the aggregation of the amyloid-β peptide Aβ25-35, associated with Alzheimer's disease, and two functional amyloid-forming tachykinin peptides: kassinin and neuromedin K. Although the three peptides have similar primary sequences, tachykinin peptides, in contrast to Aβ25-35, form nontoxic amyloids. Our simulations reveal that the charge of the C-terminus is essential to controlling the aggregation process. In particular, when the kassinin C-terminus is not amidated, the aggregation kinetics decreases considerably. In addition, we observe that the monomeric peptides in extended conformations aggregate faster than those in collapsed hairpin-like conformations.
Collapse
Affiliation(s)
- Martín Carballo-Pacheco
- †AICES Graduate School and Aachener Verfahrenstechnik: Molecular Simulations and Transformations, RWTH Aachen University, Schinkelstraße 2, 52062 Aachen, Germany.,‡Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Ahmed E Ismail
- †AICES Graduate School and Aachener Verfahrenstechnik: Molecular Simulations and Transformations, RWTH Aachen University, Schinkelstraße 2, 52062 Aachen, Germany
| | - Birgit Strodel
- ‡Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,¶Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
45
|
Berthoumieu O, Nguyen PH, Castillo-Frias MPD, Ferre S, Tarus B, Nasica-Labouze J, Noël S, Saurel O, Rampon C, Doig AJ, Derreumaux P, Faller P. Combined experimental and simulation studies suggest a revised mode of action of the anti-Alzheimer disease drug NQ-Trp. Chemistry 2015; 21:12657-66. [PMID: 26179053 DOI: 10.1002/chem.201500888] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Indexed: 11/09/2022]
Abstract
Inhibition of the aggregation of the monomeric peptide β-amyloid (Aβ) into oligomers is a widely studied therapeutic approach in Alzheimer's disease (AD). Many small molecules have been reported to work in this way, including 1,4-naphthoquinon-2-yl-L-tryptophan (NQ-Trp). NQ-Trp has been reported to inhibit aggregation, to rescue cells from Aβ toxicity, and showed complete phenotypic recovery in an in vivo AD model. In this work we investigated its molecular mechanism by using a combined approach of experimental and theoretical studies, and obtained converging results. NQ-Trp is a relatively weak inhibitor and the fluorescence data obtained by employing the fluorophore widely used to monitor aggregation into fibrils can be misinterpreted due to the inner filter effect. Simulations and NMR experiments showed that NQ-Trp has no specific "binding site"-type interaction with mono- and dimeric Aβ, which could explain its low inhibitory efficiency. This suggests that the reported anti-AD activity of NQ-Trp-type molecules in in vivo models has to involve another mechanism. This study has revealed the potential pitfalls in the development of aggregation inhibitors for amyloidogenic peptides, which are of general interest for all the molecules studied in the context of inhibiting the formation of toxic aggregates.
Collapse
Affiliation(s)
- Olivia Berthoumieu
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4 (France) and Université de Toulouse, UPS, INPT, 31077 Toulouse Cedex 4 (France)
| | - Phuong H Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France)
| | - Maria P Del Castillo-Frias
- Manchester Institute of Biotechnology, Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN (UK)
| | - Sabrina Ferre
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4 (France) and Université de Toulouse, UPS, INPT, 31077 Toulouse Cedex 4 (France)
| | - Bogdan Tarus
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France)
| | - Jessica Nasica-Labouze
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France)
| | - Sabrina Noël
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4 (France) and Université de Toulouse, UPS, INPT, 31077 Toulouse Cedex 4 (France)
| | - Olivier Saurel
- IPBS Institute of Pharmacology and Structural Biology, Université de Toulouse, UPS, 205 route de Narbonne, 31077 Toulouse (France).,IPBS, UMR 5089, CNRS, 205 route de Narbonne, BP 64182, 31077 Toulouse (France)
| | - Claire Rampon
- Université de Toulouse, UPS, CNRS, Centre de Recherches sur la Cognition, Animale, 118 route de Narbonne, 31062 Toulouse Cedex 4 (France)
| | - Andrew J Doig
- Manchester Institute of Biotechnology, Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN (UK).
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France). .,Institut Universitaire de France, IUF, 103 Boulevard Saint-Michel, 75005 Paris (France).
| | - Peter Faller
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4 (France) and Université de Toulouse, UPS, INPT, 31077 Toulouse Cedex 4 (France).
| |
Collapse
|
46
|
Tran L, Ha-Duong T. Exploring the Alzheimer amyloid-β peptide conformational ensemble: A review of molecular dynamics approaches. Peptides 2015; 69:86-91. [PMID: 25908410 DOI: 10.1016/j.peptides.2015.04.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/02/2015] [Accepted: 04/07/2015] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease is one of the most common dementia among elderly worldwide. There is no therapeutic drugs until now to treat effectively this disease. One main reason is due to the poorly understood mechanism of Aβ peptide aggregation, which plays a crucial role in the development of Alzheimer's disease. It remains challenging to experimentally or theoretically characterize the secondary and tertiary structures of the Aβ monomer because of its high flexibility and aggregation propensity, and its conformations that lead to the aggregation are not fully identified. In this review, we highlight various structural ensembles of Aβ peptide revealed and characterized by computational approaches in order to find converging structures of Aβ monomer. Understanding how Aβ peptide forms transiently stable structures prior to aggregation will contribute to the design of new therapeutic molecules against the Alzheimer's disease.
Collapse
Affiliation(s)
- Linh Tran
- BioCIS, UMR CNRS 8076, LabEx LERMIT, Faculty of Pharmacy, University Paris Sud, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | - Tâp Ha-Duong
- BioCIS, UMR CNRS 8076, LabEx LERMIT, Faculty of Pharmacy, University Paris Sud, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France.
| |
Collapse
|
47
|
Zhang T, Nguyen PH, Nasica-Labouze J, Mu Y, Derreumaux P. Folding Atomistic Proteins in Explicit Solvent Using Simulated Tempering. J Phys Chem B 2015; 119:6941-51. [PMID: 25985144 DOI: 10.1021/acs.jpcb.5b03381] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Following a previous report on a coarse-grained protein model in implicit solvent, we applied simulated tempering (ST) with on-the-fly Helmholtz free energy (weight factors) determination to the folding or aggregation of seven proteins with the CHARMM, OPLS, and AMBER protein, and the SPC and TIP3P water force fields. For efficiency and reliability, we also performed replica exchange molecular dynamics (REMD) simulations on the alanine di- and deca-peptide, and the dimer of the Aβ16-22 Alzheimer's fragment, and used experimental data and previous simulation results on the chignolin, beta3s, Trp-cage, and WW domain peptides of 10-37 amino acids. The sampling with ST is found to be more efficient than with REMD for a much lower CPU cost. Starting from unfolded or extended conformations, the WW domain and the Trp-cage peptide fold to their NMR structures with a backbone RMSD of 2.0 and 1 Å. Remarkably, the ST simulation explores transient non-native topologies for Trp-cage that have been rarely discussed by other simulations. Our ST simulations also show that the CHARMM22* force field has limitations in describing accurately the beta3s peptide. Taken together, these results open the door to the study of the configurations of single proteins, protein aggregates, and any molecular systems at atomic details in explicit solvent using a single normal CPU. They also demonstrate that our ST scheme can be used with any force field ranging from quantum mechanics to coarse-grain and atomistic.
Collapse
Affiliation(s)
- Tong Zhang
- †Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Denis Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France.,‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Phuong H Nguyen
- †Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Denis Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Jessica Nasica-Labouze
- †Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Denis Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France.,§International School of Advanced Studies (SISSA), Via Bonomea, 265, 34126 Trieste, Italy
| | - Yuguang Mu
- ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Philippe Derreumaux
- †Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Denis Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France.,∥Institut Universitaire de France, 103 Boulevard Saint-Michel, 75005 Paris, France
| |
Collapse
|
48
|
Ning L, Pan D, Zhang Y, Wang S, Liu H, Yao X. Effects of the Pathogenic Mutation A117V and the Protective Mutation H111S on the Folding and Aggregation of PrP106-126: Insights from Replica Exchange Molecular Dynamics Simulations. PLoS One 2015; 10:e0125899. [PMID: 25993001 PMCID: PMC4439087 DOI: 10.1371/journal.pone.0125899] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/24/2015] [Indexed: 11/19/2022] Open
Abstract
The fragment 106-126 of prion protein exhibits similar properties to full-length prion. Experiments have shown that the A117V mutation enhances the aggregation of PrP106-126, while the H111S mutation abolishes the assembly. However, the mechanism of the change in the aggregation behavior of PrP106-126 upon the two mutations is not fully understood. In this study, replica exchange molecular dynamics simulations were performed to investigate the conformational ensemble of the WT PrP106-126 and its two mutants A117V and H111S. The obtained results indicate that the three species are all intrinsically disordered but they have distinct morphological differences. The A117V mutant has a higher propensity to form β-hairpin structures than the WT, while the H111S mutant has a higher population of helical structures. Furthermore, the A117V mutation increases the hydrophobic solvent accessible surface areas of PrP106-126 and the H111S mutation reduces the exposure of hydrophobic residues. It can be concluded that the difference in populations of β-hairpin structures and the change of hydrophobic solvent accessible areas may induce the different aggregation behaviors of the A117V and the H111S mutated PrP106-126. Understanding why the two mutations have contrary effects on the aggregation of PrP106-126 is very meaningful for further elucidation of the mechanism underlying aggregation and design of inhibitor against aggregation process.
Collapse
Affiliation(s)
- Lulu Ning
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Dabo Pan
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
- School of pharmaceutical technology, Qiandongnan National Polytechnic, Kaili, China
| | - Yan Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Shaopeng Wang
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
- * E-mail: (HL); (XY)
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
- * E-mail: (HL); (XY)
| |
Collapse
|
49
|
Cheon M, Hall CK, Chang I. Structural Conversion of Aβ17-42 Peptides from Disordered Oligomers to U-Shape Protofilaments via Multiple Kinetic Pathways. PLoS Comput Biol 2015; 11:e1004258. [PMID: 25955249 PMCID: PMC4425657 DOI: 10.1371/journal.pcbi.1004258] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/29/2015] [Indexed: 11/18/2022] Open
Abstract
Discovering the mechanisms by which proteins aggregate into fibrils is an essential first step in understanding the molecular level processes underlying neurodegenerative diseases such as Alzheimer's and Parkinson's. The goal of this work is to provide insights into the structural changes that characterize the kinetic pathways by which amyloid-β peptides convert from monomers to oligomers to fibrils. By applying discontinuous molecular dynamics simulations to PRIME20, a force field designed to capture the chemical and physical aspects of protein aggregation, we have been able to trace out the entire aggregation process for a system containing 8 Aβ17-42 peptides. We uncovered two fibrillization mechanisms that govern the structural conversion of Aβ17-42 peptides from disordered oligomers into protofilaments. The first mechanism is monomeric conversion templated by a U-shape oligomeric nucleus into U-shape protofilament. The second mechanism involves a long-lived and on-pathway metastable oligomer with S-shape chains, having a C-terminal turn, en route to the final U-shape protofilament. Oligomers with this C-terminal turn have been regarded in recent experiments as a major contributing element to cell toxicity in Alzheimer's disease. The internal structures of the U-shape protofilaments from our PRIME20/DMD simulation agree well with those from solid state NMR experiments. The approach presented here offers a simple molecular-level framework to describe protein aggregation in general and to visualize the kinetic evolution of a putative toxic element in Alzheimer's disease in particular.
Collapse
Affiliation(s)
- Mookyung Cheon
- Center for Proteome Biophysics, Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Carol K. Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail: (CKH); (IC)
| | - Iksoo Chang
- Center for Proteome Biophysics, Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
- * E-mail: (CKH); (IC)
| |
Collapse
|
50
|
Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete NV, Coté S, De Simone A, Doig AJ, Faller P, Garcia A, Laio A, Li MS, Melchionna S, Mousseau N, Mu Y, Paravastu A, Pasquali S, Rosenman DJ, Strodel B, Tarus B, Viles JH, Zhang T, Wang C, Derreumaux P. Amyloid β Protein and Alzheimer's Disease: When Computer Simulations Complement Experimental Studies. Chem Rev 2015; 115:3518-63. [PMID: 25789869 DOI: 10.1021/cr500638n] [Citation(s) in RCA: 478] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jessica Nasica-Labouze
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H Nguyen
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Olivia Berthoumieu
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Sébastien Coté
- ∥Département de Physique and Groupe de recherche sur les protéines membranaires (GEPROM), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3T5, Canada
| | - Alfonso De Simone
- ⊥Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andrew J Doig
- #Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Peter Faller
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Alessandro Laio
- ○The International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Mai Suan Li
- ◆Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.,¶Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Simone Melchionna
- ⬠Instituto Processi Chimico-Fisici, CNR-IPCF, Consiglio Nazionale delle Ricerche, 00185 Roma, Italy
| | | | - Yuguang Mu
- ▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Anant Paravastu
- ⊕National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Samuela Pasquali
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | - Birgit Strodel
- △Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Bogdan Tarus
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - John H Viles
- ▼School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Tong Zhang
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | | | - Philippe Derreumaux
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,□Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|