1
|
Molecular dynamics simulations and quantitative calculations on photo-responsive behavior of wormlike micelles constructed by gemini surfactant 12–3-12·2Br− and cinnamates with different ortho-substituents. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2
|
Chen Q, Liu W, Liu H, Huang X, Shang Y, Liu H. Molecular Dynamics Simulations and Density Functional Theory on Unraveling Photoresponsive Behavior of Wormlike Micelles Constructed by 12-2-12·2Br - and trans- ortho-Methoxy Cinnamate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9499-9509. [PMID: 32683870 DOI: 10.1021/acs.langmuir.0c01476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photoresponsive systems with controllable self-assembly morphologies and adjustable rheological properties have attracted widespread interest by researchers in the past few years. Among them, the photoresponsive systems consisting of ortho-methoxycinnamic (OMCA) and Gemini surfactants are endowed with rich self-assemblies with different states and in different scales including spherical micelles, wormlike micelles, vesicles, aqueous two-phase system (ATPS), etc. All these self-assemblies display excellent photoresponsive behavior. However, the mechanism of these photoresponsive behaviors has not been unraveled systematically so far. In this study, molecular dynamics (MD) simulations, density functional theory (DFT) calculations, transmission electron microscopy, and rheology are employed to investigate the photoresponsive behaviors of wormlike micelles caused by photoisomerization of trans-OMCA in 12-2-12·2Br-/trans-OMCA solutions and to unravel the underlying mechanisms of these photoresponsive behaviors. The experimental results show that 12-2-12·2Br-/trans-OMCA micelles display photoresponsiveness after UV-light irradiation, with the transformation of micellar morphologies from wormlike micelle to spherical micelles. In MD simulations, certain micelle morphologies in experiments and the specific packing between 12-2-12·2Br-/OMCA were successfully captured. The larger three-dimensional structure and steric hindrance of cis-OMCA disturb the interior structure of micelles. The stronger hydrophilicity of cis-OMCA induces the escape of cis-OMCA from the interval of micelles to the solution. The energy results prove that trans-OMCA associates more strongly with 12-2-12·2Br- than cis-OMCA. These causes lead to the fission and repacking of wormlike micelles.
Collapse
Affiliation(s)
- Qizhou Chen
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenxiu Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hengjiang Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiangrong Huang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Patel L, Mansour O, Bryant H, Abdullahi W, Dalgliesh RM, Griffiths PC. Interaction of Low Molecular Weight Poly(diallyldimethylammonium chloride) and Sodium Dodecyl Sulfate in Low Surfactant-Polyelectrolyte Ratio, Salt-Free Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8815-8825. [PMID: 32668905 DOI: 10.1021/acs.langmuir.0c01149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Coacervation is widely used in formulations to induce a beneficial character to the formulation, but nonequilibrium effects are often manifest. Electrophoretic NMR (eNMR), pulsed-gradient spin-echo NMR (PGSE-NMR), and small-angle neutron scattering (SANS) have been used to quantify the interaction between low molecular cationic poly(diallyldimethylammonium chloride) (PDADMAC) and the anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution as a model for the precursor state to such nonequilibrium processes. The NMR data show that, within the low surfactant concentration one-phase region, an increasing surfactant concentration leads to a reduction in the charge on the polymer and a collapse of its solution conformation, attaining minimum values coincident with the macroscopic phase separation boundary. Interpretation of the scattering data reveals how the rodlike polymer changes over the same surfactant concentration window, with no discernible fingerprint of micellar type aggregates, but rather with the emergence of disklike and lamellar structures. At the highest surfactant concentration, the emergence of a weak Bragg peak in both the polymer and surfactant scattering suggests these precursor disk and lamellar structures evolve into paracrystalline stacks which ultimately phase separate. Addition of the nonionic surfactant hexa(ethylene glycol) monododecyl ether (C12E6) to the system seems to have little effect on the PDADMAC/SDS interaction as determined by NMR, merely displacing the observed behavior to lower SDS concentrations, commensurate with the total SDS present in the system. In other words, PDADMAC causes the disruption of the mixed SDS/C12E6 micelle, leading to SDS-rich PDADAMC/surfactant complexes coexisting with C12E6-rich micelles in solution.
Collapse
Affiliation(s)
- Leesa Patel
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham, ME4 4TB, U.K
| | - Omar Mansour
- Faculty of Health and Life Sciences, Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, U.K
| | - Hannah Bryant
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham, ME4 4TB, U.K
| | - Wasiu Abdullahi
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham, ME4 4TB, U.K
| | - Robert M Dalgliesh
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, U.K
| | - Peter C Griffiths
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham, ME4 4TB, U.K
| |
Collapse
|
4
|
|
5
|
Schillén K, Galantini L, Du G, Del Giudice A, Alfredsson V, Carnerup AM, Pavel NV, Masci G, Nyström B. Block copolymers as bile salt sequestrants: intriguing structures formed in a mixture of an oppositely charged amphiphilic block copolymer and bile salt. Phys Chem Chem Phys 2019; 21:12518-12529. [PMID: 31145393 DOI: 10.1039/c9cp01744e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To study the formation and characterize the structure of mixed complexes of oppositely charged block copolymers and surfactants are of great significance for practical applications, e.g., in drug carrier formulations that are based on electrostatically assisted assembly. In this context, biocompatible block copolymers and biosurfactants (like bile salts) are particularly interesting. In this work, we report on the co-assembly in dilute aqueous solution between a cationic poly(N-isopropyl acryl amide) (PNIPAM) diblock copolymer and the oppositely charged bile salt surfactant sodium deoxycholate at ambient temperature. The cryogenic transmission electron microscopy (cryo-TEM) experiments revealed the co-existence of two types of co-assembled complexes of radically different morphology and inner structure. They are formed mainly as a result of the electrostatic attraction between the positively charged copolymer blocks and bile salt anions and highlight the potential of using linear amphiphilic block copolymers as bile salt sequestrants in the treatment of bile acid malabsorption and hypercholesterolemia. The first complex of globular morphology has a coacervate core of deoxycholate anions and charged copolymer blocks surrounded by a PNIPAM corona. The second complex has an intriguing tape-like supramolecular morphology of several micrometer in length that is striped in the direction of the long axis. A model is presented in which the stretched cationic blocks of several block copolymers interact electrostatically with the bile salt molecules that are associated to form a zipper-like structure. The tape is covered on both sides by the PNIPAM chains that stabilize the overall complex in solution. In addition to cryo-TEM, the mixed system was investigated in a range of molar charge fractions at a constant copolymer concentration by static light scattering, small angle X-ray scattering, and electrophoretic mobility measurements.
Collapse
Affiliation(s)
- Karin Schillén
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy.
| | - Guanqun Du
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Alessandra Del Giudice
- Department of Chemistry, Sapienza University of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy.
| | - Viveka Alfredsson
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Anna M Carnerup
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Nicolae V Pavel
- Department of Chemistry, Sapienza University of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy.
| | - Giancarlo Masci
- Department of Chemistry, Sapienza University of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy.
| | - Bo Nyström
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern N-0315, Oslo, Norway
| |
Collapse
|
6
|
Zemerov SD, Roose BW, Greenberg ML, Wang Y, Dmochowski IJ. Cryptophane Nanoscale Assemblies Expand 129Xe NMR Biosensing. Anal Chem 2018; 90:7730-7738. [PMID: 29782149 PMCID: PMC6050516 DOI: 10.1021/acs.analchem.8b01630] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cryptophane-based biosensors are promising agents for the ultrasensitive detection of biomedically relevant targets via 129Xe NMR. Dynamic light scattering revealed that cryptophanes form water-soluble aggregates tens to hundreds of nanometers in size. Acridine orange fluorescence quenching assays allowed quantitation of the aggregation state, with critical concentrations ranging from 200 nM to 600 nM, depending on the cryptophane species in solution. The addition of excess carbonic anhydrase (CA) protein target to a benzenesulfonamide-functionalized cryptophane biosensor (C8B) led to C8B disaggregation and produced the expected 1:1 C8B-CA complex. C8B showed higher affinity at 298 K for the cytoplasmic isozyme CAII than the extracellular CAXII isozyme, which is a biomarker of cancer. Using hyper-CEST NMR, we explored the role of stoichiometry in detecting these two isozymes. Under CA-saturating conditions, we observed that isozyme CAII produces a larger 129Xe NMR chemical shift change (δ = 5.9 ppm, relative to free biosensor) than CAXII (δ = 2.7 ppm), which indicates the strong potential for isozyme-specific detection. However, stoichiometry-dependent chemical shift data indicated that biosensor disaggregation contributes to the observed 129Xe NMR chemical shift change that is normally assigned to biosensor-target binding. Finally, we determined that monomeric cryptophane solutions improve hyper-CEST saturation contrast, which enables ultrasensitive detection of biosensor-protein complexes. These insights into cryptophane-solution behavior support further development of xenon biosensors, but will require reinterpretation of the data previously obtained for many water-soluble cryptophanes.
Collapse
Affiliation(s)
- Serge D. Zemerov
- Department of Chemistry, University of Pennsylvania, 231 S 34 St., Philadelphia, PA 19104
| | - Benjamin W. Roose
- Department of Chemistry, University of Pennsylvania, 231 S 34 St., Philadelphia, PA 19104
| | | | | | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 S 34 St., Philadelphia, PA 19104
| |
Collapse
|
7
|
Gradzielski M, Hoffmann I. Polyelectrolyte-surfactant complexes (PESCs) composed of oppositely charged components. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.01.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Water-soluble nanoparticles from PEGylated linear cationic block copolymers and anionic surfactants. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4236-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Ferreira GA, Loh W. Liquid crystalline nanoparticles formed by oppositely charged surfactant-polyelectrolyte complexes. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Fan Y, Kellermeier M, Xu AY, Boyko V, Mirtschin S, Dubin PL. Modulation of Polyelectrolyte–Micelle Interactions via Zeta Potentials. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00584] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yaxun Fan
- Department
of Chemistry, University of Massachusetts at Amherst, Amherst, Massachusetts 01003, United States
- Key
Laboratory of Colloid and Interface Science, Beijing National Laboratory
for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Matthias Kellermeier
- Advanced
Materials and Systems Research, BASF SE, Carl-Bosch-Str. 38, D-67056 Ludwigshafen, Germany
| | - Amy Y. Xu
- Department
of Chemistry, University of Massachusetts at Amherst, Amherst, Massachusetts 01003, United States
| | - Volodymyr Boyko
- Advanced
Materials and Systems Research, BASF SE, Carl-Bosch-Str. 38, D-67056 Ludwigshafen, Germany
| | - Sebastian Mirtschin
- Advanced
Materials and Systems Research, BASF SE, Carl-Bosch-Str. 38, D-67056 Ludwigshafen, Germany
| | - Paul L. Dubin
- Department
of Chemistry, University of Massachusetts at Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
11
|
Comert F, Nguyen D, Rushanan M, Milas P, Xu AY, Dubin PL. Precipitate–Coacervate Transformation in Polyelectrolyte–Mixed Micelle Systems. J Phys Chem B 2017; 121:4466-4473. [DOI: 10.1021/acs.jpcb.6b12895] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fatih Comert
- Department
of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Duy Nguyen
- Department
of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Marguerite Rushanan
- Department
of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Peker Milas
- Department
of Physics, University of Massachusetts Amherst, 666 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Amy Y. Xu
- Department
of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Paul L. Dubin
- Department
of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
12
|
Fegyver E, Mészáros R. Complexation between Sodium Poly(styrenesulfonate) and Alkyltrimethylammonium Bromides in the Presence of Dodecyl Maltoside. J Phys Chem B 2015; 119:5336-46. [DOI: 10.1021/acs.jpcb.5b01206] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Edit Fegyver
- Laboratory
of Interfaces and Nanosized Systems, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány
1/A, Hungary
| | - Róbert Mészáros
- Laboratory
of Interfaces and Nanosized Systems, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány
1/A, Hungary
- Department
of Chemistry, University J. Selyeho, 945 01 Komárno, Slovakia
| |
Collapse
|
13
|
Fegyver E, Mészáros R. Fine-tuning the nonequilibrium behavior of oppositely charged macromolecule/surfactant mixtures via the addition of nonionic amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:15114-15126. [PMID: 25469711 DOI: 10.1021/la503928x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The various commercial applications of oppositely charged polyelectrolytes (P) and ionic surfactants (S) with added nonionic amphiphiles initiated intensive research on the polyion/mixed surfactant interaction. A large group of earlier studies revealed that one of the major effects of the nonionic cosurfactants is the suppression of the associative phase separation of P/S systems. In contrast, recent studies indicated that in the dilute surfactant concentration range the added uncharged amphiphile enhances the precipitation concentration range. In order to rationalize these observations, the mixtures of poly(diallyldimethylammonium chloride) (PDADMAC), sodium dodecyl sulfate (SDS), and dodecyl maltoside (C12G2) are investigated using a variety of experimental methods. It is shown that the nonionic cosurfactant has two distinct and competing impacts on the mixed surfactant binding onto the polyions. The composition dependent variation of the chemical potentials of the amphiphiles determines which of these effects is the dominant one, explaining the seemingly diverse earlier observations and their interpretations. We also demonstrate that the nonionic amphiphile affects considerably the nonequilibrium features of polyion/ionic surfactant complexation. Namely, the presence of the uncharged surfactant can destabilize the colloidal dispersion of P/S nanoparticles formed in the two-phase composition range. However, at the same concentration range highly stable dispersions of polyion/mixed surfactant nanoparticles can be produced through the application of a new two-step solution preparation technique. This method is based on the order of addition effect of the two surfactants which can be utilized in future scientific and industrial applications.
Collapse
Affiliation(s)
- Edit Fegyver
- Laboratory of Interfaces and Nanosized Systems, Institute of Chemistry, Eötvös Loránd University , Pázmány Péter Sétány 1/A, Budapest 1117, Hungary
| | | |
Collapse
|