1
|
Moppel I, Elliott B, Chen S. Intermolecular hydrogen bonding behavior of amino acid radical cations. Org Biomol Chem 2024; 22:3966-3978. [PMID: 38690804 DOI: 10.1039/d4ob00301b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Amino acid and peptide radicals are of broad interest due to their roles in biochemical oxidative damage, pathogenesis and protein radical catalysis, among others. Using density functional theory (DFT) calculations at the ωB97X-D/def2-QZVPPD//ωB97X-D/def2-TZVPP level of theory, we systematically investigated the hydrogen bonding between water and fourteen α-amino acids (Ala, Asn, Cys, Gln, Gly, His, Met, Phe, Pro, Sel, Ser, Thr, Trp, and Tyr) in both neutral and radical cation forms. For all amino acids surveyed, stronger hydrogen-bonding interactions with water were observed upon single-electron oxidation, with the greatest increases in hydrogen-bonding strength occurring in Gly, Ala and His. We demonstrate that the side chain has a significant impact on the most favorable hydrogen-bonding modes experienced by amino acid radical cations. Our computations also explored the fragmentation of amino acid radical cations through the loss of a COOH radical facilitated by hydrogen bonding. The most favorable pathways provided stabilization of the resulting cationic fragments through hydrogen bonding, resulting in more favorable thermodynamics for the fragmentation process. These results indicate that non-covalent interactions with the environment have a profound impact on the structure and chemical fate of oxidized amino acids.
Collapse
Affiliation(s)
- Isabella Moppel
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA.
| | - BarbaraAnn Elliott
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA.
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA.
| |
Collapse
|
2
|
Chen L, Li X, Xie Y, Liu N, Qin X, Chen X, Bu Y. Modulation of proton-coupled electron transfer reactions in lysine-containing alpha-helixes: alpha-helixes promoting long-range electron transfer. Phys Chem Chem Phys 2022; 24:14592-14602. [PMID: 35667661 DOI: 10.1039/d2cp00666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The proton-coupled electron transfer (PCET) reaction plays an important role in promoting many biological and chemical reactions. Usually, the rate of the PCET reaction increases with an increase in the electron transfer distance because long-range electron transfer requires more free energy barriers. Our density functional theory calculations here reveal that the mechanism of PCET occurring in lysine-containing alpha(α)-helixes changes with an increasing number of residues in the α-helical structure and the different conformations because of the modulation of the excess electron distribution by the α-helical structures. The rate constants of the corresponding PCET reactions are independent of or substantially shallower dependent on the electron transfer distances along α-helixes. This counter-intuitive behavior can be attributed to the fact that the formation of larger macro-cylindrical dipole moments in longer helixes can promote electron transfer along the α-helix with a low energy barrier. These findings may be useful to gain insights into long-range electron transfer in proteins and design α-helix-based electronics via the regulation of short-range proton transfer.
Collapse
Affiliation(s)
- Long Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Xin Li
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Yuxin Xie
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Nian Liu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Xin Qin
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Xiaohua Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China.
| |
Collapse
|
3
|
Lermyte F, Valkenborg D, Loo JA, Sobott F. Radical solutions: Principles and application of electron-based dissociation in mass spectrometry-based analysis of protein structure. MASS SPECTROMETRY REVIEWS 2018; 37:750-771. [PMID: 29425406 PMCID: PMC6131092 DOI: 10.1002/mas.21560] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 05/11/2023]
Abstract
In recent years, electron capture (ECD) and electron transfer dissociation (ETD) have emerged as two of the most useful methods in mass spectrometry-based protein analysis, evidenced by a considerable and growing body of literature. In large part, the interest in these methods is due to their ability to induce backbone fragmentation with very little disruption of noncovalent interactions which allows inference of information regarding higher order structure from the observed fragmentation behavior. Here, we review the evolution of electron-based dissociation methods, and pay particular attention to their application in "native" mass spectrometry, their mechanism, determinants of fragmentation behavior, and recent developments in available instrumentation. Although we focus on the two most widely used methods-ECD and ETD-we also discuss the use of other ion/electron, ion/ion, and ion/neutral fragmentation methods, useful for interrogation of a range of classes of biomolecules in positive- and negative-ion mode, and speculate about how this exciting field might evolve in the coming years.
Collapse
Affiliation(s)
- Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Dirk Valkenborg
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Agoralaan, Diepenbeek, Belgium
- Applied Bio and Molecular Systems, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Joseph A Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California
- UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
4
|
Hossen T, Sahu K. New Insights on Hydrogen-Bond-Induced Fluorescence Quenching Mechanism of C102-Phenol Complex via Proton Coupled Electron Transfer. J Phys Chem A 2018; 122:2394-2400. [PMID: 29455531 DOI: 10.1021/acs.jpca.7b12055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The H-bonded coumarin 102 (C102)-phenol complex has been a model system usually used to understand the influence of H-bonding on photophysical processes. Zhao and Han first showed that significant H-bond strengthening occurs in the excited state and proposed the possibility of fluorescence quenching in the complex via internal conversion from a locally excited (LE) state to a low-lying charge transfer (CT) state. Later, we experimentally confirmed fluorescence quenching of C102-phenol complex in a nonpolar solvent (cyclohexane). However, we also found that the existence of the low-lying CT state is ambiguous. Here, we proposed an alternative mechanism for the fluorescence quenching in the H-bonded complex. For this, we evaluate the excited state potential energy surface considering complete H atom-transfer from phenol to C102 along the H-bonding coordinate. Surprisingly, we observed two distinct minima separated by a low-energy barrier. One minimum corresponds to the complex with shortening of H-bond consistent with that of Zhao and Han. On the other hand, the second minimum, which has even lower energy than the first minimum, is likely to be arising from the proton-coupled electron transfer (PCET) process. The nature of the lowest excited state alters from LE to CT type at the second minimum, which may account for the fluorescence quenching phenomena in the system.
Collapse
Affiliation(s)
- Tousif Hossen
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati 781039 , Assam India
| | - Kalyanasis Sahu
- Department of Chemistry , Indian Institute of Technology Guwahati , Guwahati 781039 , Assam India
| |
Collapse
|
5
|
Asakawa D, Yamashita A, Kawai S, Takeuchi T, Wada Y. N-Cα Bond Cleavage of Zinc-Polyhistidine Complexes in Electron Transfer Dissociation Mediated by Zwitterion Formation: Experimental Evidence and Theoretical Analysis of the Utah-Washington Model. J Phys Chem B 2016; 120:891-901. [PMID: 26673038 DOI: 10.1021/acs.jpcb.5b11118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electron capture dissociation (ECD) and electron transfer dissociation (ETD) of gas-phase ions are widely used for peptide/protein sequencing by mass spectrometry. To understand the general mechanism of ECD/ETD of peptides, we focused on the ETD fragmentation of metal-peptide complexes in the absence of remote protons. Since Zn(2+) strongly binds to neutral histidine residues in peptides, Zn(2+)-polyhistidine complexation does not generate any remote protons. However, in the absence of remote protons, electron transfer to the Zn(2+)-polyhistidine complex induced the N-Cα bond cleavage. The formation pathway for the ETD products was investigated by density functional theory calculations. The calculations showed that the charge-reduced zinc-peptide radical, [M + Zn](•+), can exist in the low-energy zwitterionic amide π* states, which underwent homolytic N-Cα bond dissociation. The homolytic cleavage resulted in the donation of an electron from the N-Cα bond to the nitrogen atom, producing an iminoenol c' anion. The counterpart z(•) radical contained a radical site on the α-carbon atom. The iminoenol c' anion then abstracted a proton to presumably form the more stable amide c' fragment. The current experimental and computational joint study strongly suggested that the N-Cα bond cleavage occurred through the aminoketyl radical-anion formation for Zn(2+)-polyhistidine complexes in ETD.
Collapse
Affiliation(s)
- Daiki Asakawa
- National Metrology Institute of Japan (NMIJ), Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba Central 2, Umezono 1-1-1, Tsukuba, Ibaraki, 305-8568, Japan
| | - Asuka Yamashita
- Department of Chemistry, Faculty of Science, Nara Women's University , Kitauoyanishi-machi, Nara, 630-8506, Japan
| | - Shikiho Kawai
- Department of Chemistry, Faculty of Science, Nara Women's University , Kitauoyanishi-machi, Nara, 630-8506, Japan
| | - Takae Takeuchi
- Department of Chemistry, Faculty of Science, Nara Women's University , Kitauoyanishi-machi, Nara, 630-8506, Japan
| | - Yoshinao Wada
- Department of Molecular Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health , Murodo-cho 840, Izumi, Osaka, 594-1101, Japan
| |
Collapse
|
6
|
Riffet V, Jacquemin D, Cauët E, Frison G. Benchmarking DFT and TD-DFT Functionals for the Ground and Excited States of Hydrogen-Rich Peptide Radicals. J Chem Theory Comput 2014; 10:3308-18. [DOI: 10.1021/ct5004912] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vanessa Riffet
- Laboratoire
de Chimie Moléculaire, Département de Chimie, Ecole
polytechnique and CNRS, 91128 Palaiseau cedex, France
| | - Denis Jacquemin
- Laboratoire
CEISAM, UMR CNRS 6230, Université de Nantes, 2 rue de la
Houssinière - BP 92208, 44322 Nantes cedex 3, France
- Institut Universitaire
de France, 103 bd Saint-Michel, F-75005 Paris Cedex 05, France
| | - Emilie Cauët
- Service
de Chimie quantique et Photophysique, Université Libre de Bruxelles, CP160/09, 50 av. F.D. Roosevelt, 1050 Bruxelles, Belgium
| | - Gilles Frison
- Laboratoire
de Chimie Moléculaire, Département de Chimie, Ecole
polytechnique and CNRS, 91128 Palaiseau cedex, France
| |
Collapse
|
7
|
Wodrich MD, Zhurov KO, Corminboeuf C, Tsybin YO. On the viability of heterolytic peptide N-C(α) bond cleavage in electron capture and transfer dissociation mass spectrometry. J Phys Chem B 2014; 118:2985-92. [PMID: 24559292 DOI: 10.1021/jp500512a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
While frequently employed as an experimental technique, the mechanistic picture surrounding the gas-phase dissociation of peptides carrying multiple positive charges during electron capture and electron transfer dissociation tandem mass spectrometry remains incomplete. Despite this mechanistic uncertainty, most proposals agree that the peptide backbone N-Cα bond located to the C-terminal (right) side of an aminoketyl radical formed in a peptide backbone during the electron capture process is homolytically cleaved. Recently, we introduced the "enol" mechanism, which proposes that a backbone N-Cα bond located to the N-terminal (left) side of an aminoketyl radical is cleaved heterolytically. Here, we further validate this mechanism using replica-exchange molecular dynamics to create unbiased representative sets of low-energy conformers for several model tryptic peptide systems (H-Alax-Lys-OH(2+), x = 3-5). Transition state barrier enthalpies for the cleavage of N-Cα bonds proceeding via the homolytic (right-side) and heterolytic (left-side) pathways, determined by density functional computations, identify the preferred cleavage route for each conformer. These findings support our original hypothesis that heterolytic N-Cα cleavage can exist in a competitive balance with homolytic cleavages, independent of the relative energy of the precursor dication species. Smaller peptide systems see decreased heterolytic N-Cα cleavage probabilities, likely resulting from an insufficient hydrogen-bonding network needed to stabilize and ultimately annihilate the transition state zwitterion. This observation may explain the early dismissal of left-side cleavage pathways based on computational studies employing small model systems.
Collapse
Affiliation(s)
- Matthew D Wodrich
- Biomolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|