1
|
Xie C, Zhang T, Qin Z. Plasmonic-Driven Regulation of Biomolecular Activity In Situ. Annu Rev Biomed Eng 2024; 26:475-501. [PMID: 38594921 DOI: 10.1146/annurev-bioeng-110222-105043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Selective and remote manipulation of activity for biomolecules, including protein, DNA, and lipids, is crucial to elucidate their molecular function and to develop biomedical applications. While advances in tool development, such as optogenetics, have significantly impacted these directions, the requirement for genetic modification significantly limits their therapeutic applications. Plasmonic nanoparticle heating has brought new opportunities to the field, as hot nanoparticles are unique point heat sources at the nanoscale. In this review, we summarize fundamental engineering problems such as plasmonic heating and the resulting biomolecular responses. We highlight the biological responses and applications of manipulating biomolecules and provide perspectives for future directions in the field.
Collapse
Affiliation(s)
- Chen Xie
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Tingting Zhang
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Zhenpeng Qin
- Department of Biomedical Engineering, University of Texas at Southwestern Medical Center, Richardson, Texas, USA
- Department of Bioengineering, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas, USA;
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
2
|
Gao S, Wu XT, Zhang W, Richardson T, Barrow SL, Thompson-Kucera CA, Iavarone AT, Klinman JP. Temporal Resolution of Activity-Related Solvation Dynamics in the TIM Barrel Enzyme Murine Adenosine Deaminase. ACS Catal 2024; 14:4554-4567. [PMID: 39099600 PMCID: PMC11296675 DOI: 10.1021/acscatal.3c02687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Murine adenosine deaminase (mADA) is a prototypic system for studying the thermal activation of active site chemistry within the TIM barrel family of enzyme reactions. Previous temperature-dependent hydrogen deuterium exchange studies under various conditions have identified interconnected thermal networks for heat transfer from opposing protein-solvent interfaces to active site residues in mADA. One of these interfaces contains a solvent exposed helix-loop-helix moiety that presents the hydrophobic face of its long α-helix to the backside of bound substrate. Herein we pursue the time and temperature dependence of solvation dynamics at the surface of mADA, for comparison to established kinetic parameters that represent active site chemistry. We first created a modified protein devoid of native tryptophans with close to native kinetic behavior. Single site-specific tryptophan mutants were back inserted into each of the four positions where native tryptophans reside. Measurements of nanosecond fluorescence relaxation lifetimes and Stokes shift decays, that reflect time dependent environmental reoroganization around the photo-excited state of Trp*, display minimal temperature dependences. These regions serve as controls for the behavior of a new single tryptophan inserted into a solvent exposed region near the helix-loop-helix moiety located behind the bound substrate, Lys54Trp. This installed Trp displays a significantly elevated value for Ea ( k Stokes shift ) ; further, when Phe61 within the long helix positioned behind bound substrate is replaced by a series of aliphatic hydrophobic side chains, the trends in Ea ( k Stokes shift ) mirror the earlier reported impact of the same series of function-altering hydrophobic side chains on the activation energy of catalysis, Ea ( k cat ) .The reported experimental findings implicate a solvent initiated and rapid (>ns) protein restructuring that contributes to the enthalpic activation barrier to catalysis in mADA.
Collapse
Affiliation(s)
- Shuaihua Gao
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
- California Institute for Quantitative Biosciences, and University of California, Berkeley, Berkeley, California, 94720, United States
| | - Xin Ting Wu
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
- California Institute for Quantitative Biosciences, and University of California, Berkeley, Berkeley, California, 94720, United States
| | - Wenju Zhang
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Tyre Richardson
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
- California Institute for Quantitative Biosciences, and University of California, Berkeley, Berkeley, California, 94720, United States
| | - Samuel L. Barrow
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
| | - Christian A. Thompson-Kucera
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
- California Institute for Quantitative Biosciences, and University of California, Berkeley, Berkeley, California, 94720, United States
| | - Anthony T. Iavarone
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
- California Institute for Quantitative Biosciences, and University of California, Berkeley, Berkeley, California, 94720, United States
| | - Judith P. Klinman
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
- California Institute for Quantitative Biosciences, and University of California, Berkeley, Berkeley, California, 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, 94720, United States
| |
Collapse
|
3
|
Basu A, Vaskevich A, Chuntonov L. Glutathione Self-Assembles into a Shell of Hydrogen-Bonded Intermolecular Aggregates on "Naked" Silver Nanoparticles. J Phys Chem B 2021; 125:895-906. [PMID: 33440116 DOI: 10.1021/acs.jpcb.0c10089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A detailed understanding of the molecular structure in nanoparticle ligand capping layers is crucial for their efficient incorporation into modern scientific and technological applications. Peptide ligands render the nanoparticles as biocompatible materials. Glutathione, a γ-ECG tripeptide, self-assembles into aggregates on the surface of ligand-free silver nanoparticles through intermolecular hydrogen bonding and forms a few nanometer-thick shells. Two-dimensional nonlinear infrared (2DIR) spectroscopy suggests that aggregates adopt a conformation resembling the β-sheet secondary structure. The shell thickness was evaluated with localized surface plasmon resonance spectroscopy and X-ray photoelectron spectroscopy. The amount of glutathione on the surface was obtained with spectrophotometry of a thiol-reactive probe. Our results suggest that the shell consists of ∼15 stacked molecular layers. These values correspond to the inter-sheet distances, which are significantly shorter than those in amyloid fibrils with relatively bulky side chains, but are comparable to glycine-rich silk fibrils, where the side chains are compact. The tight packing of the glutathione layers can be facilitated by hydrogen-bonded carboxylic acid dimers of glycine and the intermolecular salt bridges between the zwitterionic γ-glutamyl groups. The structure of the glutathione aggregates was studied by 2DIR spectroscopy of the amide-I vibrational modes using 13C isotope labeling of the cysteine carbonyl. Isotope dilution experiments revealed the coupling of modes forming vibrational excitons along the cysteine chain. The coupling along the γ-glutamyl exciton chain was estimated from these values. The obtained coupling strengths are slightly lower than those of native β-sheets, yet they appear large enough to point onto an ordered conformation of the peptides within the aggregate. Analysis of the excitons' anharmonicities and the strength of the transition dipole moments generally is in agreement with these observations.
Collapse
Affiliation(s)
- Arghyadeep Basu
- Schulich Faculty of Chemistry and Solid State Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Alexander Vaskevich
- Department of Materials and Interfaces, and Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lev Chuntonov
- Schulich Faculty of Chemistry and Solid State Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
4
|
Acceleration of catalysis in dihydrofolate reductase by transient, site-specific photothermal excitation. Proc Natl Acad Sci U S A 2021; 118:2014592118. [PMID: 33468677 DOI: 10.1073/pnas.2014592118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have studied the role of protein dynamics in chemical catalysis in the enzyme dihydrofolate reductase (DHFR), using a pump-probe method that employs pulsed-laser photothermal heating of a gold nanoparticle (AuNP) to directly excite a local region of the protein structure and transient absorbance to probe the effect on enzyme activity. Enzyme activity is accelerated by pulsed-laser excitation when the AuNP is attached close to a network of coupled motions in DHFR (on the FG loop, containing residues 116-132, or on a nearby alpha helix). No rate acceleration is observed when the AuNP is attached away from the network (distal mutant and His-tagged mutant) with pulsed excitation, or for any attachment site with continuous wave excitation. We interpret these results within an energy landscape model in which transient, site-specific addition of energy to the enzyme speeds up the search for reactive conformations by activating motions that facilitate this search.
Collapse
|
5
|
Leitner DM, Pandey HD, Reid KM. Energy Transport across Interfaces in Biomolecular Systems. J Phys Chem B 2019; 123:9507-9524. [DOI: 10.1021/acs.jpcb.9b07086] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- David M. Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Hari Datt Pandey
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Korey M. Reid
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
6
|
Sarkar D, Kang P, Nielsen SO, Qin Z. Non-Arrhenius Reaction-Diffusion Kinetics for Protein Inactivation over a Large Temperature Range. ACS NANO 2019; 13:8669-8679. [PMID: 31268674 PMCID: PMC7384293 DOI: 10.1021/acsnano.9b00068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Understanding protein folding and unfolding has been a long-standing fundamental question and has important applications in manipulating protein activity in biological systems. Experimental investigations of protein unfolding have been predominately conducted by small temperature perturbations (e.g., temperature jump), while molecular simulations are limited to small time scales (microseconds) and high temperatures to observe unfolding. Thus, it remains unclear how fast a protein unfolds irreversibly and loses function (i.e., inactivation) across a large temperature range. In this work, using nanosecond pulsed heating of individual plasmonic nanoparticles to create precise localized heating, we examine the protein inactivation kinetics at extremely high temperatures. Connecting this with protein inactivation measurements at low temperatures, we observe that the kinetics of protein unfolding is less sensitive to temperature change at the higher temperatures, which significantly departs from the Arrhenius behavior extrapolated from low temperatures. To account for this effect, we propose a reaction-diffusion model that modifies the temperature-dependence of protein inactivation by introducing a diffusion limit. Analysis of the reaction-diffusion model provides general guidelines in the behavior of protein inactivation (reaction-limited, transition, diffusion-limited) across a large temperature range from physiological temperature to extremely high temperatures. We further demonstrate that the reaction-diffusion model is particularly useful for designing optimal operating conditions for protein photoinactivation. The experimentally validated reaction-diffusion kinetics of protein unfolding is an important step toward understanding protein-inactivation kinetics over a large temperature range. It has important applications including molecular hyperthermia and calls for future studies to examine this model for other protein molecules.
Collapse
Affiliation(s)
- Daipayan Sarkar
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Peiyuan Kang
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Steven O. Nielsen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Zhenpeng Qin
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Surgery, The University of Texas at Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
7
|
Li J, Zhang Y, Zheng J. Intermolecular energy flows between surface molecules on metal nanoparticles. Phys Chem Chem Phys 2019; 21:4240-4245. [PMID: 30747170 DOI: 10.1039/c8cp05932b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three model systems are designed to investigate energy transport between molecules on metal nanoparticle surfaces. Energy is rapidly transferred from one carbon monoxide (CO) molecule to another CO molecule or an organic molecule on adjacent surface sites of 2 nm Pt particles within a few picoseconds. On the contrary, energy flow from a surface organic molecule to an adjacent CO molecule is significantly slower and, in fact, within experimental sensitivity and uncertainty the transfer is not observed. The energy transport on particle surfaces (about 2 km s-1) is almost ten times faster than inside a molecule (200 m s-1). The seemingly perplexing observations can be well explained by the combination of electron/vibration and vibration/vibration coupling mechanisms, which mediate molecular energy dynamics on metal nanoparticle surfaces: the strong electron/vibration coupling rapidly converts CO vibrational energy into heat that can be immediately sensed by nearby molecules; but the vibration/vibration coupling dissipates the vibrational excitation in the organic molecule as low-frequency intramolecular vibrations that may or may not couple to surface electronic motions.
Collapse
Affiliation(s)
- Jiebo Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | | | | |
Collapse
|
8
|
Ota K, Yamato T. Energy Exchange Network Model Demonstrates Protein Allosteric Transition: An Application to an Oxygen Sensor Protein. J Phys Chem B 2019; 123:768-775. [DOI: 10.1021/acs.jpcb.8b10489] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kunitaka Ota
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takahisa Yamato
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, 1 rue Laurent Fries Parc d’Innovation, 67404 Illkirch, Cedex, France
| |
Collapse
|
9
|
Leitner DM, Yamato T. MAPPING ENERGY TRANSPORT NETWORKS IN PROTEINS. REVIEWS IN COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1002/9781119518068.ch2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Reid KM, Yamato T, Leitner DM. Scaling of Rates of Vibrational Energy Transfer in Proteins with Equilibrium Dynamics and Entropy. J Phys Chem B 2018; 122:9331-9339. [DOI: 10.1021/acs.jpcb.8b07552] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Korey M. Reid
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Takahisa Yamato
- Graduate School of Science, Division of Material Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - David M. Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
11
|
Kozlowski R, Ragupathi A, Dyer RB. Characterizing the Surface Coverage of Protein-Gold Nanoparticle Bioconjugates. Bioconjug Chem 2018; 29:2691-2700. [PMID: 30004227 PMCID: PMC6093776 DOI: 10.1021/acs.bioconjchem.8b00366] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Functional enzyme-nanoparticle bioconjugates are increasingly important in biomedical and biotechnology applications such as drug delivery and biosensing. Optimization of the function of such bioconjugates requires careful control and characterization of their structures and activity, but current methods are inadequate for this purpose. A key shortcoming of existing approaches is the lack of an accurate method for quantitating protein content of bioconjugates for low (monolayer) surface coverages. In this study, an integrated characterization methodology for protein-gold nanoparticle (AuNP) bioconjugates is developed, with a focus on site-specific attachment and surface coverage of protein on AuNPs. Single-cysteine-containing mutants of dihydrofolate reductase are covalently attached to AuNPs with diameters of 5, 15, and 30 nm, providing a range of surface curvature. Site-specific attachment to different regions of the protein surface is investigated, including attachment to a flexible loop versus a rigid α helix. Characterization methods include SDS-PAGE, UV-vis spectrophotometry, dynamic light scattering, and a novel fluorescence-based method for accurate determination of low protein concentration on AuNPs. An accurate determination of both protein and AuNP concentration in conjugate samples allows for the calculation of the surface coverage. We find that surface coverage is related to the surface curvature of the AuNP, with a higher surface coverage observed for higher surface curvature. The combination of these characterization methods is important for understanding the functionality of protein-AuNP bioconjugates, particularly enzyme activity.
Collapse
Affiliation(s)
- Rachel Kozlowski
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ashwin Ragupathi
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - R. Brian Dyer
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
12
|
Pandey HD, Leitner DM. Small Saccharides as a Blanket around Proteins: A Computational Study. J Phys Chem B 2018; 122:7277-7285. [DOI: 10.1021/acs.jpcb.8b04632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hari Datt Pandey
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - David M. Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
13
|
Pandey HD, Leitner DM. Influence of thermalization on thermal conduction through molecular junctions: Computational study of PEG oligomers. J Chem Phys 2017; 147:084701. [DOI: 10.1063/1.4999411] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Hari Datt Pandey
- Department of Chemistry and Chemical Physics Program, University of Nevada, Reno, Nevada 89557, USA
| | - David M. Leitner
- Department of Chemistry and Chemical Physics Program, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
14
|
Abstract
The structure and function of biomolecules are strongly influenced by their hydration shells. Structural fluctuations and molecular excitations of hydrating water molecules cover a broad range in space and time, from individual water molecules to larger pools and from femtosecond to microsecond time scales. Recent progress in theory and molecular dynamics simulations as well as in ultrafast vibrational spectroscopy has led to new and detailed insight into fluctuations of water structure, elementary water motions, electric fields at hydrated biointerfaces, and processes of vibrational relaxation and energy dissipation. Here, we review recent advances in both theory and experiment, focusing on hydrated DNA, proteins, and phospholipids, and compare dynamics in the hydration shells to bulk water.
Collapse
Affiliation(s)
- Damien Laage
- École
Normale Supérieure, PSL Research University, UPMC Univ Paris
06, CNRS, Département de Chimie,
PASTEUR, 24 rue Lhomond, 75005 Paris, France
- Sorbonne
Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris, France
| | - Thomas Elsaesser
- Max-Born-Institut
für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - James T. Hynes
- École
Normale Supérieure, PSL Research University, UPMC Univ Paris
06, CNRS, Département de Chimie,
PASTEUR, 24 rue Lhomond, 75005 Paris, France
- Sorbonne
Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris, France
- Department
of Chemistry and Biochemistry, University
of Colorado, Boulder, Colorado 80309, United
States
| |
Collapse
|
15
|
Hsu WL, Shih TC, Horng JC. Folding stability modulation of the villin headpiece helical subdomain by 4-fluorophenylalanine and 4-methylphenylalanine. Biopolymers 2016; 103:627-37. [PMID: 26017817 DOI: 10.1002/bip.22689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/25/2015] [Accepted: 05/25/2015] [Indexed: 11/10/2022]
Abstract
HP36, the helical subdomain of villin headpiece, contains a hydrophobic core composed of three phenylalanine residues (Phe47, Phe51, and Phe58). Hydrophobic effects and electrostatic interactions were shown to be the critical factors in stabilizing this core and the global structure. To assess the interactions among Phe47, Phe51, and Phe58 residues and investigate how they affect the folding stability, we implanted 4-fluorophenylalanine (Z) and 4-methylphenylalanine (X) into the hydrophobic core of HP36. We chemically synthesized HP36 and its seven variants including four single mutants whose Phe51 or Phe58 was replaced with Z or X, and three double mutants whose Phe51 and Phe58 were both substituted. Circular dichroism and nuclear magnetic resonance measurements show that the variants exhibit a native HP36 like fold, of which F51Z and three double mutants are more stable than the wild type. Molecular modeling provided detailed interaction energy within the phenylalanine residues, revealing that electrostatic interactions dominate the stability modulation upon the introduction of 4-fluorophenylalanine and 4-methylphenylalanine. Our results show that these two non-natural amino acids can successfully tune the interactions in a relatively compact hydrophobic core and the folding stability without inducing dramatic steric effects. Such an approach may be applied to other folded motifs or proteins.
Collapse
Affiliation(s)
- Wei-Lin Hsu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, 30013, R.O.C
| | - Ting-Chia Shih
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, 30013, R.O.C
| | - Jia-Cherng Horng
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, 30013, R.O.C.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, 30013, R.O.C
| |
Collapse
|
16
|
Buchenberg S, Leitner DM, Stock G. Scaling Rules for Vibrational Energy Transport in Globular Proteins. J Phys Chem Lett 2016; 7:25-30. [PMID: 26650387 DOI: 10.1021/acs.jpclett.5b02514] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Computational studies of vibrational energy flow in biomolecules have to date mapped out transport pathways on a case-by-case basis. To provide a more general approach, we derive scaling rules for vibrational energy transport in a globular protein, which are identified from extensive nonequilibrium molecular dynamics simulations of vibrational energy flow in the villin headpiece subdomain HP36. We parametrize a master equation based on inter-residue, residue-solvent, and heater-residue energy-transfer rates, which closely reproduces the results of the all-atom simulations. From that fit, two scaling rules emerge, one for energy transport along the protein backbone which relies on a diffusion model and another for energy transport between tertiary contacts, which is based on a harmonic model. Requiring only the calculation of mean and variance of relatively few atomic distances, the approach holds the potential to predict the pathways and time scales of vibrational energy flow in large proteins.
Collapse
Affiliation(s)
- Sebastian Buchenberg
- Biomolecular Dynamics, Institute of Physics and Freiburg Institute for Advanced Studies (FRIAS), Albert Ludwigs University , 79104 Freiburg, Germany
| | - David M Leitner
- Biomolecular Dynamics, Institute of Physics and Freiburg Institute for Advanced Studies (FRIAS), Albert Ludwigs University , 79104 Freiburg, Germany
- Department of Chemistry and Chemical Physics Program, University of Nevada , Reno, Nevada 89557, United States
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics and Freiburg Institute for Advanced Studies (FRIAS), Albert Ludwigs University , 79104 Freiburg, Germany
| |
Collapse
|
17
|
Chuntonov L. 2D-IR spectroscopy of hydrogen-bond-mediated vibrational excitation transfer. Phys Chem Chem Phys 2016; 18:13852-60. [DOI: 10.1039/c6cp01640e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Inter-molecular vibrational energy transfer in the hydrogen-bonded complexes of methyl acetate and 4-cyanophenol is studied by dual-frequency 2D-IR spectroscopy.
Collapse
Affiliation(s)
- Lev Chuntonov
- Schulich Faculty of Chemistry and Solid State Institute
- Technion – Israel Institute of Technology
- Haifa 32000
- Israel
| |
Collapse
|
18
|
Leitner DM, Buchenberg S, Brettel P, Stock G. Vibrational energy flow in the villin headpiece subdomain: Master equation simulations. J Chem Phys 2015; 142:075101. [DOI: 10.1063/1.4907881] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- David M. Leitner
- Department of Chemistry and Chemical Physics Program, University of Nevada, Reno, Nevada 89557, USA
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| | - Sebastian Buchenberg
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, Freiburg, Germany
| | - Paul Brettel
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, Freiburg, Germany
| | - Gerhard Stock
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Meirovitch E, Liang Z, Freed JH. Protein dynamics in the solid state from 2H NMR line shape analysis: a consistent perspective. J Phys Chem B 2015; 119:2857-68. [PMID: 25594631 DOI: 10.1021/jp511386b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Deuterium line shape analysis of CD3 groups has emerged as a particularly useful tool for studying microsecond-millisecond protein motions in the solid state. The models devised so far consist of several independently conceived simple jump-type motions. They are comprised of physical quantities encoded in their simplest form; improvements are only possible by adding yet another simple motion, thereby changing the model. The various treatments developed are case-specific; hence comparison among the different systems is not possible. Here we develop a new methodology for (2)H NMR line shape analysis free of these limitations. It is based on the microscopic-order-macroscopic-disorder (MOMD) approach. In MOMD motions are described by diffusion tensors, spatial restrictions by potentials/ordering tensors, and geometric features by relative tensor orientations. Jump-type motions are recovered in the limit of large orientational potentials. Model improvement is accomplished by monitoring the magnitude, symmetry, and orientation of the various tensors. The generality of MOMD makes possible comparison among different scenarios. CD3 line shapes from the Chicken Villin Headpiece Subdomain and the Streptomyces Subtilisin Inhibitor are used as experimental examples. All of these spectra are reproduced by using rhombic local potentials constrained for simplicity to be given by the L = 2 spherical harmonics, and by axial diffusion tensors. Potential strength and rhombicity are found to be ca. 2-3 k(B)T. The diffusion tensor is tilted at 120° from the C-CD3 axis. The perpendicular (parallel) correlation times for local motion are 0.1-1.0 ms (3.3-30 μs). Activation energies in the 1.1-8.0 kcal/mol range are estimated. Future prospects include extension to the (2)H relaxation limit, application to the (15)N and (13)C NMR nuclei, and accounting for collective motions and anisotropic media.
Collapse
Affiliation(s)
- Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat-Gan 52900, Israel
| | | | | |
Collapse
|