1
|
Abstract
In this study, molecular dynamic simulations are employed to investigate the homogeneous nucleation mechanism of NaCl crystal in solutions. According to the simulations, the dissolved behaviors of NaCl in water are dependent on ion concentrations. With increasing NaCl concentrations, the dissolved Na+ and Cl- ions tend to be aggregated in solutions. In combination with our recent studies, the aggregate of dissolved solutes is mainly ascribed to the hydrophobic interactions. Different from the two-step mechanism, no barrier is needed to overcome the formation of the aggregate. In comparison with the classical nucleation theory (CNT), because of the formation of solute aggregate, this lowers the barrier height of nucleation and affects the nucleation mechanism of NaCl crystal in water.
Collapse
|
2
|
Brini E, Fennell CJ, Fernandez-Serra M, Hribar-Lee B, Lukšič M, Dill KA. How Water's Properties Are Encoded in Its Molecular Structure and Energies. Chem Rev 2017; 117:12385-12414. [PMID: 28949513 PMCID: PMC5639468 DOI: 10.1021/acs.chemrev.7b00259] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Indexed: 11/29/2022]
Abstract
How are water's material properties encoded within the structure of the water molecule? This is pertinent to understanding Earth's living systems, its materials, its geochemistry and geophysics, and a broad spectrum of its industrial chemistry. Water has distinctive liquid and solid properties: It is highly cohesive. It has volumetric anomalies-water's solid (ice) floats on its liquid; pressure can melt the solid rather than freezing the liquid; heating can shrink the liquid. It has more solid phases than other materials. Its supercooled liquid has divergent thermodynamic response functions. Its glassy state is neither fragile nor strong. Its component ions-hydroxide and protons-diffuse much faster than other ions. Aqueous solvation of ions or oils entails large entropies and heat capacities. We review how these properties are encoded within water's molecular structure and energies, as understood from theories, simulations, and experiments. Like simpler liquids, water molecules are nearly spherical and interact with each other through van der Waals forces. Unlike simpler liquids, water's orientation-dependent hydrogen bonding leads to open tetrahedral cage-like structuring that contributes to its remarkable volumetric and thermal properties.
Collapse
Affiliation(s)
- Emiliano Brini
- Laufer
Center for Physical and Quantitative Biology, Department of Physics and Astronomy, and Department of
Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Christopher J. Fennell
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Marivi Fernandez-Serra
- Laufer
Center for Physical and Quantitative Biology, Department of Physics and Astronomy, and Department of
Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Barbara Hribar-Lee
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
pot 113, SI-1000 Ljubljana, Slovenia
| | - Miha Lukšič
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
pot 113, SI-1000 Ljubljana, Slovenia
| | - Ken A. Dill
- Laufer
Center for Physical and Quantitative Biology, Department of Physics and Astronomy, and Department of
Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
3
|
Affiliation(s)
- Santanu Roy
- Physical Science Division, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99352, United States
| | - Marcel D. Baer
- Physical Science Division, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99352, United States
| | - Christopher J. Mundy
- Physical Science Division, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99352, United States
| | - Gregory K. Schenter
- Physical Science Division, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99352, United States
| |
Collapse
|
4
|
Shi Y, Beck T. Deconstructing Free Energies in the Law of Matching Water Affinities. J Phys Chem B 2017; 121:2189-2201. [DOI: 10.1021/acs.jpcb.7b00104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Shi
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Thomas Beck
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
5
|
Wei S, Chen M, Wei C, Huang N, Li L. Opposite counter-ion effects on condensed bundles of highly charged supramolecular nanotubes in water. SOFT MATTER 2016; 12:6285-6292. [PMID: 27373802 DOI: 10.1039/c6sm00902f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although ion specificity in aqueous solutions is well known, its manifestation in unconventional strong electrostatic interactions remains implicit. Herein, the ionic effects in dense packing of highly charged polyelectrolytes are investigated in supramolecular nanotube prototypes. Distinctive behaviors of the orthorhombic arrays composed of supramolecular nanotubes in various aqueous solutions were observed by Small Angle X-ray Scattering (SAXS), depending on the counter-ions' size and affiliation to the surface -COO(-) groups. Bigger tetra-alkyl ammonium (TAA(+)) cations weakly bonding to -COO(-) will compress the orthorhombic arrays, while expansion is induced by smaller alkaline metal (M(+)) ions with strong affiliation to -COO(-). Careful analysis of the changes in the SAXS peaks with different counter/co-ion combinations indicates dissimilar mechanisms underlying the two explicit types of ionic effects. The pH measurements are in line with the ion specificity by SAXS and reveal the strong electrostatic character of the system. It is proposed that the small distances between the charged surfaces, in addition to the selective adsorption of counter-ions by the surface charge, bring out the observed distinctive ionic effects. Our results manifest the diverse mechanisms and critical roles of counter-ion effects in strong electrostatic interactions.
Collapse
Affiliation(s)
- Shenghui Wei
- National Synchrotron Radiation Lab, University of Science and Technology of China, Hefei, China.
| | - Mingming Chen
- National Synchrotron Radiation Lab, University of Science and Technology of China, Hefei, China.
| | - Chengsha Wei
- Department of Polymer Science and Engineering, CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei, China
| | - Ningdong Huang
- National Synchrotron Radiation Lab, University of Science and Technology of China, Hefei, China.
| | - Liangbin Li
- National Synchrotron Radiation Lab, University of Science and Technology of China, Hefei, China. and Department of Polymer Science and Engineering, CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei, China
| |
Collapse
|
6
|
High-resolution Measurement of Contact Ion-pair Structures in Aqueous RbCl Solutions from the Simultaneous Corefinement of their Rb and Cl K-edge XAFS and XRD Spectra. J SOLUTION CHEM 2016. [DOI: 10.1007/s10953-016-0487-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Borreguero JM, Lynch VE. Molecular Dynamics Force-Field Refinement against Quasi-Elastic Neutron Scattering Data. J Chem Theory Comput 2015; 12:9-17. [DOI: 10.1021/acs.jctc.5b00878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jose M. Borreguero
- Neutron
Data Analysis and
Visualization Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, United States
| | - Vickie E. Lynch
- Neutron
Data Analysis and
Visualization Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, United States
| |
Collapse
|
8
|
Duignan TT, Parsons DF, Ninham BW. A continuum solvent model of ion-ion interactions in water. Phys Chem Chem Phys 2015; 16:22014-27. [PMID: 25205066 DOI: 10.1039/c4cp02822h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The calculation of ion-ion interactions in water is a problem of long standing importance. Modelling these interactions is a prerequisite to explaining Hofmeister (specific ion) effects. We here generalize our solvation model of ions to calculate the free energy of two ions in water as a function of separation. The same procedure has previously been applied to calculate ion interactions with the air-water interface successfully. The Conductor like Screening Model (COSMO) is used. This treats the ions on a quantum mechanical level and calculates numerically the electrostatic response of the surrounding solvent. Estimates of the change in the cavity formation energy and the change in the ion-water dispersion energy as the ions approach are included separately. The calculated interaction potentials are too attractive and this is a significant issue. However, they do reproduce the affinity of similarly sized ions for each other, which is a crucial property of these potentials. They are also oscillatory, another important property. We normalize the potentials to reduce the over-attraction, and good correlation with experimental values is achieved. We identify the driving contributions to this like-prefers-like behaviour. We then put forward a plausible hypothesis for the over-attraction of the potentials. An agreeable feature of our approach is that it does not rely on salt specific parameters deliberately adjusted to reproduce experimental values.
Collapse
Affiliation(s)
- Timothy T Duignan
- Applied Mathematics Department, Australian National University, Canberra, ACT 0200, Australia.
| | | | | |
Collapse
|
9
|
Iwahara J, Esadze A, Zandarashvili L. Physicochemical Properties of Ion Pairs of Biological Macromolecules. Biomolecules 2015; 5:2435-63. [PMID: 26437440 PMCID: PMC4693242 DOI: 10.3390/biom5042435] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 11/23/2022] Open
Abstract
Ion pairs (also known as salt bridges) of electrostatically interacting cationic and anionic moieties are important for proteins and nucleic acids to perform their function. Although numerous three-dimensional structures show ion pairs at functionally important sites of biological macromolecules and their complexes, the physicochemical properties of the ion pairs are not well understood. Crystal structures typically show a single state for each ion pair. However, recent studies have revealed the dynamic nature of the ion pairs of the biological macromolecules. Biomolecular ion pairs undergo dynamic transitions between distinct states in which the charged moieties are either in direct contact or separated by water. This dynamic behavior is reasonable in light of the fundamental concepts that were established for small ions over the last century. In this review, we introduce the physicochemical concepts relevant to the ion pairs and provide an overview of the recent advancement in biophysical research on the ion pairs of biological macromolecules.
Collapse
Affiliation(s)
- Junji Iwahara
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Alexandre Esadze
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Levani Zandarashvili
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
10
|
Kumar P, Kulkarni AD, Yashonath S. Influence of a Counterion on the Ion Atmosphere of an Anion: A Molecular Dynamics Study of LiX and CsX (X = F–, Cl–, I–) in Methanol. J Phys Chem B 2015; 119:10921-33. [DOI: 10.1021/acs.jpcb.5b00481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Parveen Kumar
- Solid
State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Anant D. Kulkarni
- Centre
for Computational Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - S. Yashonath
- Solid
State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
- Center
for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
11
|
Kohagen M, Pluhařová E, Mason PE, Jungwirth P. Exploring Ion-Ion Interactions in Aqueous Solutions by a Combination of Molecular Dynamics and Neutron Scattering. J Phys Chem Lett 2015; 6:1563-1567. [PMID: 26263314 DOI: 10.1021/acs.jpclett.5b00060] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent advances in computational and experimental techniques have allowed for accurate description of ion pairing in aqueous solutions. Free energy methods based on ab initio molecular dynamics, as well as on force fields accounting effectively for electronic polarization, can provide quantitative information about the structures and occurrences of individual types of ion pairs. When properly benchmarked against electronic structure calculations for model systems and against structural experiments, in particular neutron scattering, such force field simulations represent a powerful tool for elucidating interactions of salt ions in complex biological aqueous environments.
Collapse
Affiliation(s)
- Miriam Kohagen
- †Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Eva Pluhařová
- ‡Department of Chemistry, École Normale Supérieure, UMR ENS-CNRS-UPMC 8640, 24 rue Lhomond, 75005 Paris, France
| | - Philip E Mason
- †Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Pavel Jungwirth
- †Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| |
Collapse
|
12
|
Benjamin I. Correlating structure and thermodynamics of hydrophobic–hydrophilic ion pairs in water. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
|